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Abstract

In solving systems of linear equations arising
from practical engineering models such as the
electromagnetic wave scattering problems, it is
critical to choose a fast and robust solver. Due
to the large scale of those problems, precondi-
tioned Krylov iterative methods are most suit-
able. The Krylov iterative methods require the
computation of matrix-vector product opera-
tions at each iteration, which account for the
major computational cost of this class of meth-
ods. We use the multilevel fast multipole algo-
rithm (MLFMA) to reduce the computational
complexity of the matrix-vector product oper-
ations. We conduct an experimental study on
the behavior of three Krylov iterative methods,
BiCG, BiCGSTAB, and TFQMR, and of two
preconditioners, the ILUT preconditioner, and
the sparse approximate inverse (SAI) precon-
ditioner. The preconditioners are constructed
by using the near part matrix numerically gen-
erated in the MLFMA. Our experimental re-
sults indicate that a well chosen preconditioned
Krylov iterative method maintains the computa-
tional complexity of the MLFMA and effectively
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reduces the overall simulation time.

1 Introduction

The hybrid integral equation approach combines
the volume integral equation and the surface in-
tegral equation to model the scattering and radi-
ation by mixed dielectric and conducting struc-
tures [12]. For example, when a radome is ap-
plied to an antenna, the combined system con-
sists of both dielectrics and conductors. Hence,
the hybrid surface-volume integral equation is
ideal for this problem [3]. The volume integral
equation is applied to the material region (V)
and the surface integral equation is enforced over
the conducting surface (S). The hybrid surface-
volume integral equations for electromagnetic
scattering problems can be formally written as
follows,

{Ls(r,7") - Js(r') + Ly (r,7") - Jv (r") }tan

- E@),  res,
—E+ Ls(r,r") - Js(r') + Ly (r,7") - Jv (r')
= —E(r), rev,

where E™™¢ stands for the excitation field pro-
duced by an instant radar, the subscript “tan”
stands for taking the tangent component from
the vector it applies to, and Lq, (2 = S,V), is
an integral operator that maps the source Jg to
electric field E(r) and it is defined as

La(r,r") - Ja(r') =
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iwub/ (I+k;2VV)G(r,r") - Jo(r') dSY.
Q’

Here G(r,r') = e/l /(4x|r — '|) is the 3D
scalar Green’s function for the background me-
dia, and i = v/—1. It should be pointed out that
E isrelated to Jy in the above integral equations
by Jy =iw(ey —€)E.

We follow the general steps of the method
of moments (MoM) [17] to discretize the hybrid
surface-volume integral equations, and solve
the resultant matrix equation by a multilevel
fast multipole algorithm (MLFMA), which is a
multilevel implementation of the fast multipole
method (FMM). A matrix equation is given as
the form

ZSS ZSV aS US
[ZVSZVV]'[aV]I[UV]: (1)
where a® and a" stand for the vectors of the
expansion coefficients for the surface current and
the volume function, respectively [3, 12], and the
matrix elements can be generally written as

Zyn = i [ L)
Q

/ dQ' (I + k; 2VV)G(r,r') - x (') £

The material function x(r') = 1if ' is a surface
patch, and x = (/e — 1) if Q' is a volume cell.
It can be seen that the coefficient matrix aris-
ing from discretized hybrid integral equations is
nonsymmetric. Once the matrix equation (1)
is solved by numerical matrix equation solvers,
the expansion coefficients a® and a" can be used
to calculate the scattered field and radar cross
section. In antenna analysis problems the co-
efficients can be used to retrieve the antenna’s
input impedance and calculate the antenna’s ra-
diation pattern. In the following, we use A to
denote the coefficient matrix in Equation (1),
z=[a®,av]", and b = [US,U"]T for simplicity.

The basic idea of the FMM is to convert
the interaction of element-to-element to the in-
teraction of group-to-group. Using the addition
theorem for the free-space scalar Green’s func-
tion, the matrix-vector product Az can be writ-
ten as

Az = (AD + AN)J; + VfAV:g.’L',

where V;, A, and V; are sparse matrices. We de-
note By = (Ap + An) for simplicity. The FMM

speeds up the matrix-vector product operations
and reduces the computational complexity of a
matrix-vector product from O(N?) to O(N'?),
where N is the order of the matrix [4]. The
computational complexity is further reduced to
O(Nlog N) with the multilevel fast multipole
algorithm (MLFMA) [3]. As the level of the
MLFMA decreases, we find that the number of
nonzeros in the near part matrix By increases
significantly. The accuracy of the computed so-
lution is strongly related to the number of levels
of the MLFMA [11]. That is, as the number
of the MLFMA levels decreases, the computed
solution is close to the exact solution, but the
near part matrix By becomes denser. It is well-
known that the MLFMA is an approximation
method.

A matrix problem involving N unknowns
may be solved in CN** N4% floating point op-
erations, where C'is a constant depending on the
implementation of a particular iterative method
[2, 4, 5, 15], and N47 is the floating point op-
erations needed for each matrix-vector multipli-
cation. For many realistic problems, Nitr de-
pends on both the iterative solver and the tar-
get properties (shape and material). For exam-
ple, a problem with an open-ended cavity needs
much more iterations than that with a solid con-
ducting box of the same size. Since Ni*** is a
proportional factor in the CPU counter, to fur-
ther reduce the total CPU time, it is necessary
to reduce the number of iterations of the itera-
tive solvers. Hence preconditioning techniques,
which may speed up the convergence rate of the
Krylov iterative methods, are needed in this ap-
plication.

We iteratively solve the linear system
of the form Ax = b, where the coefficient
matrix A is a large scale, dense, and com-
plex valued matrix for electrically large targets.
The biconjugate gradient (BiCG) method [9],
the biconjugate gradient stabilized method
(BiCGSTAB) [16], and the transpose-free vari-
ant of the quasi-minimum residual method
(TFQMR) [6] are some of the well-known Krylov
iterative methods which are applicable to non-
Hermitian matrices. In our experimental tests,
we use these three methods as the iterative
solver, coupled with different preconditioning
strategies to solve a few study cases of repre-
sentative electromagnetic scattering problems.
We propose to use an incomplete lower-upper
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(ILU) triangular factorization with a dual drop-
ping strategy [11, 14] and a sparse approximate
inverse (SAI) technique [8, 10, 19] to construct a
preconditioner from the near part matrix (By)
in the MLFMA implementation. We mainly
compare the performance difference of different
Krylov iterative methods combined with differ-
ent preconditioners.

2 Preconditioned Krylov It-
erative Methods

Krylov iterative methods are considered to be
the most effective iterative solution methods
currently available [1, 7, 15]. The complexity
of these methods is on the order of O(Niter N2)
if the convergence is achieved in N** iterations.
The Krylov iterative methods such as BiCG re-
quire the computation of some matrix-vector
product operations at each iteration, which ac-
count for the major computational cost of this
class of methods.

In our experiments, we observe that the
convergence behavior of BiCG is irregular. Few
theoretical results are known about the conver-
gence of BiCG [2]. BiCG requires two matrix-
vector products (one with A and one with
A# the complex conjugate transpose of A)
at each step of iteration. BiCGSTAB is one
of variant of BiCG to avoid the irregular con-
vergence patterns of BiCG. A residual vector
is minimized locally and it has substantially
smoother convergence behavior. Each iteration
step of BICGSTAB also requires two matrix-
vector products (both with 4). TFQMR is also
chosen to get a smoother convergence behav-
ior. TFQMR requires two matrix-vector prod-
ucts (both with A) at each iteration. All of three
solvers designed to solve non-Hermitian linear
systems. Every related algorithm which is im-
plemented in our program originally comes from
[2, 6, 15).

The convergence behavior of the Krylov
methods depends on the distribution of the
eigenvalues and on the condition number of the
coefficient matrix. By applying a good precon-
ditioner we may achieve better spectrum and
smaller condition number compared to those
of the original coefficient matrix. Therefore,
the convergence behavior of the Krylov itera-
tive method can be improved by a good pre-
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conditioner. In our previous papers [10, 11]
we show that the ILUT and the SAI precondi-
tioned BiCG method has tight spectrum around
1 and small condition numbers with little ex-
tra CPU time to construct the precondition-
ers and small extra memory to store the pre-
conditioner matrix. For some problems, iter-
ative methods without a preconditioner might
not converge. Hence, preconditioning techniques
should be used in practical applications with the
Krylov iterative method to reduce the number
of iterations. Most preconditioning techniques,
such as the ILU(0), rely on a fixed sparsity pat-
tern, obtained from the sparsified coefficient ma-
trix by dropping small magnitude entries. Some
SAI techniques need access to the full coefficient
matrix (to construct a sparsified matrix), which
is not available in the FMM.

The purpose of the preconditioning is to
make the preconditioned matrix M A as close to
the identity matrix I as possible. To this end, we
try to construct a matrix M that approximates
the matrix A~!. It is difficult to make the ma-
trix M sparse, since in most cases the inverse
of a matrix A is dense even if A is sparse. We
evaluate three different Krylov iterative meth-
ods with two preconditioners, the ILU precon-
ditioner with a dual dropping strategy (ILUT)
(with a fill-in parameter p and a drop tolerance
7) [11, 14] and the SAI preconditioner [10, 19],
using the non-preconditioning case as compari-
son. In the MLFMA implementation, the global
matrix A is not numerically available, but the
near part matrix By is. We thus construct the
ILUT and the SAI preconditioners with respect
to the matrix By. The total storage of the ILUT
preconditioner is bounded by 2p/N. Here the pa-
rameter 7 controls the computational cost, and
the parameter p controls the memory cost. We
use a static sparsity pattern strategy for con-
structing the SAT preconditioner M. For SAI,
we construct a sparsified matrix By from the
near part matrix By. Here the matrix BN is
obtained from By by removing some small mag-
nitude entries of By with respect to a threshold
parameter €;. The computational procedure is
given in [10], in which €1, €2, and €3 are three
user provided threshold drop tolerance param-
eters chosen by a heuristic process. By judi-
ciously choosing those parameters, we are able
to construct both preconditioners that are effec-
tive and do not use much memory space. We
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use the notation of ILUT(7, p) and SAI(e1, €2,
e3) for simplicity, see [10, 11].

3 Numerical Experiments

The major cost of the preconditioned itera-
tive solvers is the matrix-vector product with
both the coefficient matrix and the precondi-
tioner [18]. There are two matrix-vector prod-
ucts at each iteration of BiCG, BiICGSTAB, and
TFQMR. A number of numerical examples are
presented to demonstrate the performance of the
preconditioned Krylov iterative methods.! Note
that the examples are different from the ones in
our previous two papers [10, 11] with different
incident angles.

We examine the convergence behavior
based on the number of preconditioned itera-
tions. We compare three different Krylov itera-
tive methods (BiCG, BiCGSTAB, and TFQMR)
with the ILUT preconditioner, the SAI precon-
ditioner, and no preconditioner one and another.
The efficiency of the ILU preconditioner with a
dual dropping strategy (ILUT) and the SAI pre-
conditioner (with BiCQ) is reported in [10, 11].
Since both ILUT and SAT preconditioners have
been shown to be efficient for solving the dense
complex linear systems from electromagnetic
wave scattering problems, we mainly compare
the performance difference of three Krylov itera-
tive methods, BiCG, BiICGSTAB, and TFQMR.

We calculate the radar cross section (RCS)
to demonstrate the performance of our precondi-
tioned Krylov iterative solvers for different con-
ducting geometries with and without coating.
The geometries considered include plates, an-
tenna arrays, and cavities (see Table 1). The
mesh sizes for all the test structures are about
one tenth of a wavelength.

The test problems are described in Ta-
ble 1 and some numerical results are listed
in Table 2. In Tables 1 and 2, “level”
indicates the number of levels in the mul-
tilevel fast multipole algorithm, “setup” the
setup CPU time in seconds for constructing

L All cases are tested on one processor of an HP Super-
dome cluster at the University of Kentucky. The proces-
sor has 2 GB local memory and runs at 750 MHz. The
code is written in Fortran 77 and is run in single pre-
cision. The computation terminates when the 2-norm
residual is reduced by 10~3, or the number of iterations
exceeds 2,000.

a preconditioner, “#it” the number of the
(preconditioned) Krylov iterations, and “to-
tal” the CPU time in seconds for both the
setup and the iteration phase. The notations
used for “case” are 0=BiCG, 1=BiCGSTAB,
2=TFQMR, N=NONE, I=ILUT, and S=SAIL
Thus, “P3C2S” means that the P3C case is
solved by using TFQMR with the SAI precon-
ditioner.

Due to space limit, we report one set of
parameters for the ILUT and the SAT precondi-
tioners. In our experiments, we use ILUT(103,
30) for the P1C and P3C cases, ILUT(102, 130)
for the C1C case, and SAT(0.03,0.04, 0.05) for all
test cases.

According to the total CPU time for solv-
ing a problem, BiICGSTAB with the SAT and the
ILUT preconditioners seems to converge very
fast for most cases (see Table 2). Without a
preconditioner, the results are various depend-
ing on cases. For the problem which has a small
number of unknowns (say, less than 1000), the it-
erative solver with the SATI preconditioner takes
more time than with the ILUT preconditioner,
mainly due to the higher cost in constructing the
SAT preconditioner.

Figures 1 — 3 show the number of itera-
tions of (a) BiCG with three different precon-
ditioners, (b) BiCGSTAB with three different
preconditioners, (¢) TFQMR with three differ-
ent preconditioners, (d) NONE-preconditioned
three different solvers, (e) ILUT preconditioned
three different solvers, and (f) SAI precondi-
tioned three different solvers.

In the P1C case, we observe that all three
iterative solvers with the SAI preconditioner
converge faster than the other two, and with-
out a preconditioner are the slowest. Without
a preconditioner, BiCG is the fastest one and
TFQMR is the slowest. With the ILUT pre-
conditioner, BICGSTAB is the fastest one and
BiCG is the slowest. With the SATI precondi-
tioner, BICGSTAB is the fastest one and the
BiCG is the slowest.

In the C1C case, we see that BiCG and
BiCGSTAB iterative solvers with the SAI pre-
conditioner converge faster than the other two,
and without a preconditioner are the slowest.
TFQMR with the ILUT preconditioner is the
fastest one and that without preconditioner are
the slowest. Without a preconditioner, TFQMR
is the fastest one and BiCG is the slowest. With
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Table 1: Information about the matrices used in the experiments (all length units are in Ag, the

wavelength in free-space).

case | level | unknowns | matrix nonzeros target size and description
P1C 4 1,416 A 2,005,056 | Dielectric plate over conducting plate
Ap 66,384 | 2.98824 x 2 x 0.1
By 155,616 | frequency = 200MHz
C1C 5 20,176 A 407,070,976 | Cavity
Ap 1,565,032 | 3 x 1 x 0.5
By 3,728,842 | frequency = 1GHz
P3C 7 100,800 A 10,160,640,000 | Patch array (30 x 30)
Ap 3,571,808 | Array size: 22.25 x 22.25
By 7,211,632 | frequency = 300MHz

Table 2: Numerical results with different test cases.

[ case | setup | #it | total || case [ setup | #it [ total [[ case [ setup [ #it [ total |
P1CON 973 112.3 C1CON 812 1431.1 P3CON 347 | 2499.9
P1CIN — | 1044 118.4 C1C1N 751 1310.3 P3CIN - | 201 1450.9
P1C2N 2000 | 225.9 C1C2N 509 893.2 P3C2N 216 1529.1
P1COI 40 5.4 C1C0I 367 | 1028.4 P3CO0I 37 414.5
P1C1I 0.3 24 3.3 C1C1I 67.5 112 327.6 P3C1I 111.5 12 205.7
P1C2I 30 4.3 C1C21 179 577.5 P3C2I 20 275.9
P1C0S 29 11.5 C1C0S 322 714.9 P3C0S 41 376.0
P1C1S 8.0 15 9.7 C1C1S 110.9 120 326.2 P3C1S 64.2 17 189.6
P1C2S 17 10.1 C1C2S 199 476.4 P3C2S 26 254.7

the ILUT preconditioner, BiCGSTAB is the
fastest one and BiCG is the slowest. With the
SATI preconditioner, BICGSTAB is the fastest
one and the BiCG is the slowest.

In the P3C case, we find that all three
iterative solvers with the ILUT preconditioner
converge faster than the other two, and with-
out a preconditioner are the slowest. With all
three different preconditioners, BiCGSTAB is
the fastest one and BiCG is the slowest.

Although a general iterative solver for
solving some categories of problems efficiently
might not exist [13], according to the results
from our numerical experiments, we can see that
BiCGSTAB with the SAI or the ILUT precon-
ditioners is robust and converges very fast for
solving three dimensional model cases from elec-
tromagnetic scattering simulations. In all cases,
these Krylov iterative methods without a pre-
conditioner are much less efficient.

4 Conclusions

We conducted a few numerical tests to show that
the Krylov iterative methods coupled with the

ILUT and the SAI preconditioners are efficient
to solve the problems arising from electromag-
netic scattering.

Our numerical results indicate that, solv-
ing the large non-Hermitian dense linear sys-
tem arising from the electromagnetic scatter-
ing by using the BiCGSTAB method with the
ILUT preconditioner and the SAT preconditioner
achieves faster convergence in most cases. The
ILUT and the SAI preconditioned Krylov itera-
tive solvers (BiCG, BiCGSTAB, and TFQMR)
maintain the computational complexity of the
MLFMA, and consequently reduces the total
CPU time. Our experimental experience may
help researchers and engineers choose suitable
robust solvers in practical large scale electro-
magnetic simulations.
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