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ABSTRACT: This narrative presents an alternate philosophy for the accurate
solution of operator equations, you might say "both singular and nonsingular”
in general. In this approach, we try to solve the exact operator equation in
an approximate way, quite differently from the matrix methods which try to
solve the approximate operator equation in an exact fashion. The advantage of
this new philosophy is that convergence is assured and a priori error
estimates are available. The conjugate gradient methods are numerical methods
which provide a means to reach this new goal, as opposed to an efficient means
of just solving matrix equations, which some researchers have assumed them to
be. We thereby take the position that there is a heaven-and-hell difference
between the application of the conjugate gradient method to solve an operator
equation and its application to the solution of matrix equations.

1. THE BASIC PHILOSOPHY: The objective is to solve the operator equation
AX = Y, where A is the known integro-differential operator and X is the
unknown to be solved for the known excitation Y. The actual problem setting
is in an infinite dimensional space, which in simple terms means that we have
an infinite number of unknowns to be solved for. Historically, the matrix
methods, starting with Method of Moments, have first projected the original
problem posed in an infinite dimensional space to a finite dimensional space
(described by the moment matrix) and then have tried to solve the approximate
finite dimensional problem exactly using Gaussian elimination and, in recent
times, with the iterative methods, particularly the conjugate gradient method.
Unfortunately, this basic philosophy lacks mathematical rigor. The area in
which this manifests itself is a complete lack of theoretical convergence
analysis of the sequence of solutions for an arbitrary operator equation.
Whatever convergence analysis exists for matrix methods is generated from
numerical experimentation of a particular problem. Hence, there is no
guarantee that as the number of unknowns is increased, there is a monotonic
convergence of the sequence of approximate solutions [1-2].

What we have tried to do over the years is to usher in a new concept
and also point out the deficiencies of the conventional matrix methods. The
approach taken by us and Van den Berg [3] are philosophically the same and
similar to the work of Hayes [4]. The basic philosophy is simple: Let us not
discretize the problem right from the beginning or assume a set of known
expansion functions by projecting the operator to a finite dimensional space.
Let us see if we can develop a theoretical solution symbolically in an exact
fashion. It is at this stage, that our philosophies differ radically from the
conventional matrix methods viewpoint. First let us see if we can find a
solution to the exact operator equation - let it be in a symbolic fashion. By
developing the solution in this way, we have an absolute guarantee to begin
with, namely that as the degree of approximation is increased, we indeed have
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a monotonic convergence of the solution and that in the limit our solution
converges to the exact solution. So in our method, we start with the
"blessings" of convergence and, unlike matrix methods, we do not have to
ntweak" the expansion functions sometimes in midstream to generate meaningful
results. Now we observe that the computer cannot generate the exact solution
or, for that matter, follow the exact recipe to reach the solution as it
cannot handle an infinite number of unknowns. Therefore, we try to

approximate the exact solution.

In summary, the matrix methods first approximate the operator equation
and then seek to solve it exactly, whereas in our approach we try to solve
exactly the operator equation by utilizing an jterative method, say one of the
conjugate gradient methods [5-7] (there are various versions of the conjugate
gradient method) and then approximate the exact recipe numerically, yielding
an approximate solution. The reward of following the latter procedure is that
there is an unconditional guarantee of monotonic convergence to the true
solution, as the number of unknowns is increased without "tweaking" any
expansion or weighting functions. No such statements can be made for matrix
methods, indicating that there are some fundamental differences, in reality,
between these two procedures - differences which are not tautological.

In the next section we show how to utilize this new operator form to
generate solutions.

2. THE ACT:

Consider the following integral equation:

1
f(x')cos m(x-x') dx' = sin 7x ; 0= x <1 (L.

0

The objective is to solve for £(x). Before we start number crunching let us
take a few moments to "meditate” over the problem. The first question that is
raised is: does a solution to this problem exist? The existence of the
solution of an operator equation is given by the Fredholm Alternative Theorem,
which states that a solution to AX = Y exists, iff Y is orthogonal to every
non-trivial solution of the homogeneous adjoint equation A*u - 0, where A" is
the adjoint operator. Hence for a solution to exist all u must be orthogonal
to Y. 1If this condition is violated then a solution to the problem does not
exist. In this example, we have a self-adjoint operator, since

1 1
<Au;;v> = dx v(x) dx’' u(x')cos w(x-x') = <u;A*v>; so A-A*. (2)
0 0

By expanding the kernel

cos n(x-X') = cos mX COS xx' + sin mx sin nx’
it is seen that there is an infinite set of nontrivial solutions to the
adjoint homogeneous equation. Hence, unless Y is orthogonal to all such

solutions u, we are just wasting our time trying to solve this problem. It is
seen that sin mnx is orthogonal to all such solutions (sin max and cos mmX for
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of the homogeneous equation and hence the solution to the
However, the solution is not unique, as a solution to the
tion can be added to any solution creating a different

m > 1 and m odd)
problem exists.
homogeneous equa
solution.

But, what has nexistence" got to do with electromagnetics? All
electromagnetics problems do not have solutions! Consider the problem of
electromagnetic scattering from a closed conducting structure at a frequency
corresponding to the internal resonant frequency of the same structure. This
problem has been recently addressed quite exhaustively!!!. Now the simple
truth is that the above problem, when represented by an electric field
integral equation, has for the homogeneous equation a nontrivial solution, and
unless the excitation is orthogonal to every solution of the homogeneous
equation, a solution to the problem does not exist according to the Fredholm
alternative. Therefore, instead of trying to solve a problem which is not
solvable mathematically, we think we ought to pose the problem in a different
way. Yet, methods are still being researched as how to solve this unsolveable
problem! An interested reader should look at the development of the modified
Green's function as discussed on pp.215-218 of Stakgold[8].

Next, questions about uniqueness, ill-conditioning and the like are
addressed. The operator in (1) has a nontrivial solution to the homogeneous
equation and it is a positive semidefinite operator. Hence, any matrix
methods utilized to solve this equation will fail as the matrix is singular.
The strength of the conjugate gradient method lies in the fact that it can
solve singular operator equations and the user does not have to worry about
the nature of the equation. But, now comes the question: what is the meaning
of the solution if the operator is singular? It turns out that the conjugate
gradient method will yield the minimum norm solution, if the iteration was
started with a zero initial guess. The minimum norm solution implies that of
all the possible solutions of this equation, the conjugate gradient method
will yield a solution which has the least energy. The solution procedure for
a positive semidefinite operator will start with xj = 0 and residual
r, =Y - AX = sin =mx. Since the operator is self-adjoint, P, = r, = sin nx.

We update Xq = X, + 8,P4 » where a, = "ro"2/<Apo;p°> =2
and X = 2 sin mx and 1y = O and hence 2 sin nx is the minimum norm
solution. It can be shown that another solution q = (-7 /8)x(x-1)
also satisfies (1). However,

1 1
"X1"2 - |X1|2 dx > IQIZ dx
0 0

and the second solution is not minimum norm. So if we have an ill-conditioned
problem, in this case perfectly singular, we can find the minimum norm
solution through the use of iterative methods. Direct methods do not work
well for ill-conditioned, singular problems. Observe that we have utilized
the conjugate gradient method to solve the operator equation directly as first
suggested by Hayes [&4].

In electromagnetics problems, for example, evaluation of Ap, and

"x1"2 cannot be done analytically. Hence, we have to evaluate these
quantities numerically. It is at this point that we introduce numerical
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approximations. An additional advantage of handling it in this way is that
one can have a grasp on the numerical value of the discretization error. The
discretization error in the evaluation of Ap, and "xlu can be minimized by
simply taking more samples of the functions of interests. For such
situations, the residual AX, -Y will never go to zero as n » = . Whatever is
left will be the discretization error.

3. EPILOGUE: For illustrative purposes, it is educational to look into the
philosophical differences of first discretizing the operator equation and then
finding an exact solution to the problem, as opposed to first finding s
symbolically exact solution and then finding an approximation to that. In the
conventional matrix methods, let us assume that the elements of the matrix
have been integrated with sufficient degree of accuracy (even if one chooses a
Galerkin procedure) and the final error is always zero as the matrix equation
has been solved to the machine precision using either Gaussian elimination or
conjugate gradient or by any other method.

Now in the conjugate gradient solution of the operator equation, there
are two errors. First the error in the generation of the sequence of the
approximation, i.e. "Xexact - Xn" after m iterations and, secondly, the
discretization error made in the evaluation of AXn . If we perform a large
number of iterations, presumably "Xexact - Xn"»O, whereas the operator
(AX,, -Y) would not be zero due to discretization error. So by applying the
conjugate gradient method directly to the solution of the operator equation,
it is seen that the final error may never become zero, unlike that of matrix
methods. The global residual error provides an estimate of the discretization
error (i.e. we have obtained X, ... subject to the stated discretization
error). If this error is large, finer discretization may be preferred. Also
no "tweaking" of the expansion functions is involved when one applies the
conjugate gradient method directly to the solution of the operator equation.
This is the sme philosophy in Van den Berg's approach.

Another point to make: What is the difference between applying the
iterative method to the solution of the matrix equation, where each elemenE of
the matrix is evaluated at each iteration and the storage decreases from N
to 6N, as opposed to applying the conjugate gradient method directly to the
solution of the operator equation? It is interesting to note that the
application of the conjugate gradient method directly to the solution of an
operator equation may sometimes even be computationally more efficient than
computing the matrix elements once and using them at each iteration,
particularly, when the scatterer geometry fits into an FFT (Fast Fourier
Transform) grid [6-7]. However, for an arbitrarily shaped structure, it may
not be efficient in some instances to use FFT to perform the evaluation of the
convolution. In that case, application of an iterative method directly to the
solution of an operator-application of an iterative method directly to the
solution of an operator equation may be rather time consuming. However, in
spite of this disadvantage, the reward of applying the conjugate gradient
method directly to the solution of the operator equation lies in the fact that
not only does one have a handle on the discretization error, but also he can
solve a problem to a "global" prespecified degree of accuracy.

CONCLUSION: An alternate philosophy is presented for solving operator

equations. In this new philosophy the exact system is solved in an
approximate numerical fashion as opposed to solving an approximate matrix
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equation in an exact way. The advantage of this new philosophy is that
convergence to the exact solution is guaranteed and a priori error estimates
are available. The conjugate gradient method therefore just turns out to be a
method which accomplishes our desired objective of formulating and evaluating
a symbolic exact solution of the problem. The use of the conjugate gradient
method is distinctly different from its use in solving moment-method matrix
equations, sometimes in an efficient way. The basic difference between these
two philosophies is the stage at which numerical discretization is made. Our
claim is that the new philosophy just presented not only guarantees absolute
convergence but also an estimate of the numerical discretization error
incurred in the actual solution of the problem.
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