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Abstract

Local meshing or sub-gridding has been advocated by
a number of authors as a way of increasing the spatial
resolution of the finite difference time domain method
(FDTD). In this paper we show how to use supracon-
vergence to analyze the error in a simple sub-gridding
strategy in two dimensions. We also analyze the spurious
reflection that occurs at an interface between two grids
for the standard FDTD scheme, for simple subgridding
method and for another subgridding scheme employing
linear interpolation. The overall order of convergence of
the reflection coefficients is the same for all the methods,
but the linear scheme has a lower amplitude spurious
transmitted mode compared to the simple subgridding
scheme.

Keywords: Maxwell’s equations, Yee’s scheme, Sub-
gridded meshes, error estimates.

1 Introduction

In this paper we shall describe the state of the art of
the error analysis of Yee's finite difference time domain
scheme (FDTD) [1]. Except on uniform grids of iden-
tical cubes (or squares in two dimensions), it is neces-
sary to use “supraconvergence” techniques to obtain the
correct order of convergence of the method {2, 3]. These
techniques essentially involve a standard finite difference
analysis of consistency and stability allowing for special
interactions between the stability and consistency prop-
erties of the method.

Here we shall analyze the convergence of two modifi-
cations to the basic Yee scheme which attempt to handle
sub-gridding [4, 5, 6, 7]. A sub-grided Yee scheme is one
that uses multiple mesh sizes in a single simulation with
an abrupt transition between regions of different sized
elements. At the interface between meshes of different
size, the classical Yee FDTD scheme has to be modified
and this modification has to be done in a way that pre-
vents excessive numerical reflection from the interface.
We shall analyze two such methods, the first being a
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very simple method motivated by the work of Ewing et.
al. {8]. In this method, piecewise constant interpolation
is used to obtain field values required by the finite dif-
ference scheme. Remarkably, the resulting scheme seems
t0 be second order accurate (by numerical experiments).
Using a supraconvergence analysis, we wiil prove three
halves order accuracy. We shall also provide a reflection
analysis at the interface, supporting the observation of
second order convergence. The second method we shall
analyze is similar to the method proposed by Kim and
Hoefer [3] in that piecewise linear interpolation is used
in the development of the extended FDTD scheme. Us-
ing a reflection analysis, we shall show how this method
improves on the simple scheme. Piecewise quadratic in-
terpolation has been proposed in [6]. We shall not ana-
Iyze that method here, but our analysis of the other two
methods suggests that quadratic interpolation may not
be necessary.

Sub-gridding schemes have been studied in other ar-
eas, for example in wave propagation [9]. A particularly
important paper in the development of the method is
[10] which deals with time-stepping issues. In this pa-
per we shall only concentrate on spatial discretization.
Time stepping is also obviously a very important aspect
of the problem and we hope to incorporate this into the
analysis at a later date.

2 The Model Problem

For simplicity we shall restrict our analysis to the
Maxwell system in two space dimensions (TM mode). In
this case the magnetic field is polarized parallel to the
axis of an infinite cylindrical scatter. Hence the mag-
netic field can be represented by a scalar quantity. The
electric field is a vector normal to the axis of the cylin-
der and hence has two components. We expect that our
method of analysis will carry over to three dimensions.

The problem we shall approximate is the following.
Let Q = [-L,L]?,L > 0 be a square domain. As in our
previous work, the extension of our estimates to more
complex domains consisting of unions of squares is possi-
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ble. We want to approximate the electric field E(x, ) =
(EM)(z,t), E®H(z,))T and magnetic field H(z,t) (here
the superscript 7 denotes transpose, & = (z1,%2)7 is
the spatial coordinate, and t is time) which satisfy the
Maxwell System

%—f—_V)xH = —-Jin§, (la)
%f—+VxE = Qin (2 (1b)
Here J(z,t) is a given current density, and
“ oH
B
€XH= v , VxE:iE(z)__a_E(l)
T8

The analysis of the error in the FDTD approximation of
the extension of (1a)-(1b) that incorporates smoothly
varying electromagnetic parameters ¢ and p, and a
smooth conductivity follows the same lines as the anal-
ysis given here. Step changes in these parameters would
require a new analysts.

In addition to the differential equation, we shall as-
sume a perfectly conducting boundary condition:

nx E=0o0nd0 (2)
where n is the unit outward normal to {2 and 882 is the
boundary of Q. Finally, we assume given initial data

E(z,0) = Ep(zx) and H(z,0) = Ho(z)in Q@ (3)

where Eq and Hy are known functions.

3 Standard Yee Scheme

As a reference configuration, we first describe the stan-
dard Yee scheme on a step grid in which the grid cells
are suddenly compressed in one direction. This is not
yet a sub-grid since the step grid is refined in one di-
rection only and still has the standard mesh structure.
More precisely, for ¢ < 0 we assume that a standard Yee
grid has been used with a mesh having cells of size 2h
where h > 0. For z > 0 the cells are of length & in the
z direction and of length 2k in the y direction. Thus
at z = 0 the cells are suddenly compressed in the z di-
rection. Figure 1 shows a typical grid. Obviously this
type of grid would only be used if there were features in
the region z > 0 that could be better resolved using a
compressed grid.

We define the grid parameter b = L/(2N), N > 0
where N is an integer. The horizontal grid lines are at
y =1y = 2lh, —N <1 < N. For z <0 the vertical grid
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x=0
2h

2h 2h

Figure 1: A typical grid for the standard Yee scheme
analyzed in this paper. A compressed grid and a uniform
grid meet at z = 0.

lines are at £ = 2oy = 2lh, ~N <l < 0andforz >0
they are at z = 2; = lh, 0 £ 1 £ 2N. In the Yee FDTD
scheme, the electric field variables are associated with
edges of the grid. Thus the finite difference electric field
unknowns are (taking into account the zero boundary
data):

qu)v = E(l)(:rp,yq,t)

forg=2l,-N+1<I<N-1and

=

2r+1
p=r+%

if —-N<r<0,
f0<r<2;

and
Ef,?; =~ E®(zp,yq,t)

forg=2l+1,—-N <! <N and

-

Magnetic FDTD variables are associated with the cen-
troid of the grid cells so

2r
r

if —-N+1£7r<0,
fo<r <2N.

g=21+1 —-N<I<N,
Hpg =~ H(zp,yq,t){ P=2r+1 —-N<r <0,
p=r+i O0<r<2N

The standard Yee FDTD scheme [1} is used for all vari-
ables associated with points with z < 0 (i.e., in the uni-
form grid). Similarly, the contour path extension of the
Yee scheme (see for example [11)) is used to discretize the
problem for z > 0. Figure 2 shows cells either side of
z = 0 and shows the location of the degrees of freedom.
Since the equations for Yee’s scheme are well-known we
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Figure 2: A diagram of the cells either side of z = 0.
Here j = 21 + 1 for some [ with —N <I< N. Atz =0
the grid size changes abruptly.

will only write down those for the two cells adjoining
z =0 in Figure 2.

(1)

dB® .
4P L — Ok (Hoy 340 — Hog) (12)
= —4h2 JSI]_),J‘_FD
dE?) .
49?520 Oh(Hog; — Horg) (4b)
2
= —4r2J%)
dH_1 5
Wl o[ -5 W
1 1
—(BY jaa - E(—l),i—l)] =0

2dE'§2J? 2 1(2)
3h Tt_ — 2h(H_y,; = Hyp;) = =3h°Jg 5 {4d)

dEL

2h2-—1£:t'iﬂ — h(Hij2 542 — Hipa5) (4e)
1
= —2h2J§/)2,j+13
o :

2% —L = 2h(Hyyz,5 — Hapng) = -2r2J7 (4D)

dHyja;
2h? =L 4 on(E) - E() (4g)

(1) (1) =
_h(E1/2.j+1 - E1/2,j—1) =0,

where j = 20 +1and —N <1 < N. Here JJ) =

JM(z4,ys,t). By numbering the electric field unknowns
and the magnetic field unknowns we can form two vec-
tors E and ﬁ of the unknown field values. Then if we
number the discrete currents in the same way as the elec-
tric field, we can write the finite difference equations in
maitrix form:

ME%ﬁ—cﬁ = -Ms7 (52)
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MH%B +CTE = 0. (5b)
The matrices Mg and Mg are diagonal with diagonal
entries either 4h? (if the corresponding unknown is in
z < 0), 2h? (if the unknown is in z > 0) or 3h? (if the
unknown is on z = 0). Of key importance to the stability
of the scheme is that the curl matrix for the electric and
magnetic fields are related by transposition. In [2] we
proved stability for a generalization of (5a)-(5b), how-
ever this generalization is insufficient to handle the sub-
gridding algorithms analyzed in this paper. So we next
prove a stability result for a generalization of (5a)~(5b).
To do this we define two mesh dependent discrete norms
for the discrete electric and magnetic fields respectively:

IEle = ETM:E,
WE e = @TMeH.

Theorem 3.1 Suppose ﬁ and H satisfy the system of
differential equations:

d
MEEEE -CH

d T
Mﬂaﬁ+c E

I

CE)-I- ME?

(6a)

CTe+ Mya  (6b)
where @, Et 5 and ?are given continuous vector func-
tions of time. In addition suppose att =0, H =0, E =
0. Then there exists a constant ¢ independent of t such

that
NE®) He + NE® lz

< of mag IF Ol + e, I7) 1z

+ f (I3s) e + 11ts) Nl
0

= =
)l +|s|f§(s)|ns)ds.) .

Proof. Rewriting (6a) and (6b) we have

Ml (B-7)-c(B+7) = Mo (7-55).
MH(% (H+7)+c” (B-6) = My (a’+ %3’).

T
Multiplying the first equation by (ﬁ— ?) and the sec-

T
ond by (ﬁ + F) and adding we obtain (since the curl
terms cancel)
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(WE - ZUE + I1H + Bik)
IE - Bz 17~ S 3z
B + Bl @+ S B

b=
AN Sl

Integrating this, and using standard estimates (see [3])
we obtain:

IE - SOIE + IE + Bl
< 2I(E - O +2ME + DO

v ([ (1= 250+ 1+ ZB ) )

Now taking square roots of both sides, and using the fact
that

HE@Is <1l (B -

2

&) Oz + 1Tl
and

NE@I= <1l ( +7) ©liz + 17 Olia
together with the fact that E(0) = 0 and H(0) =
completes the proof. 0

In [2] we showed how a simpler version of the above
stability result, and a careful decomposition of the local
truncation error, can be used to prove convergence of
the FDTD scheme on arbitrary tensor product grids (in-
cluding the grid shown in Figure 1). Precisely, we prove
that

WE. = B g + |He — H [|lx = O + th?),

where E. {resp. f—fe) is the vector of exact values of E
(resp. H) at the finite difference points and E and
are the semi-discrete Yee finite difference approximations
described in thzs section. Thus, despite the uncentered
difference for Eo %) the method retains its second order
convergence rate.

Of course there will be a spurious reflection from the
interface at z = 0 since a plane wave incident from z < 0
will experience a change of grid at £ = 0. To quantify
this reflection, we can analyze the reflection of a single
frequency plane wave at the interface. We now suppose
that the grid covers the entire plane (so that L = o0),
that J = 0, and that the discrete electromagnetic field
is time harmonic so that

Eaﬂ — E{’Y} =it 404 Hop= H(‘Y —iwt (7)

for all valid choices of @, 3 and + where w is a constant.
Using this assumption in the FDTD equations amounts
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to replacing d/(dt) by -—iw and using “hat” variables. It
will be convenient to work only with the scalar magnetic
field for the reflection analysis so we eliminate the electric
field variables and arrive at the following equations:

—Wzﬂp,q 4h,2 (HJH-M' 2ﬁp.q +H, —2,;) (8)

4h2 ( Pq+2“2Hpq+Hpq— )

forp=—(20+1),0<I<Nandg=2m+1, ~N <
m < N;

. 1 /. . N
_Wsz,q = R (Hp+1 ¢ — 2Hp 4+ H, —l,q) (9)
4h2 (Hp g+2 — 2Hpq + Hpq 2)

forp=I1+1/2,1<IgN—-landg=2m+1, -N <
m< N

- 1
._wz.H_]_’q == 4h2 (H.. 1,q+2 — 2H_]_ ] + H..]_ a— 2)
1
4h2 (3H1/2,q gH—l,q + H—3,q) (10)

for g =2m+1, —N§m<Na.ndﬁnally

'"""2H1/2,q 4h2 (H1/2 grz — 2Hypa,q + Hipo, q—~2)
1 2
h2 (Ha/z ¢ 3H1/2,q + EH—I,q) (11)

for g = 2m+1, - N < m < N. To perform the reflection
analysis we assume that the discrete magnetic field in
r < 0 consists of an incident plane wave and a reflected
plane wave with amplitude R so that

H.p = exp(i(k1%a + k2ys))
+Rexp(i(—k1zo + koys)) (12)

for all valid o and B if @ < 0. In = > 0 the discrete mag-
netic field consists of a plane wave transmitted through
the artificial grid interface at z =0. Thusifa >0

Hop = T exp(i(kiza + kays)) (13)

here ki, k2 and k] are the wave numbers which are un-
known. The amplitudes T and R must also be found.
Obviously, if the method handled the mesh interface at
z = 0 transparently, we would have T = 1,R = 0 and
ki = k. Due to the mesh interface this will not be
exactly true.

Substituting (12) in (8) we conclude that (8) is satis-
fied provided the standard semi-discrete Yee dispersion
relation holds. This implies that k; and ks must be cho-
sen s0 that

w?h? = sin® (ki h) + sin® (ko h). (14)
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Zh : k
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Figure 3: A typical grid for the sub-gridded Yee scheme
analyzed in this paper.

Sirmilarly, if {13) is substituted into (9) we can see that
(9) is satisfied provided k; is chosen so that

!

w?h? = 4sin? (k;—h) + sin® (k2h) - (15)

For given w and k», it is obvious that k{ # k; and s0 a
spurious reflection occurs at z = 0. Next we substitute
{12) and (13) into {10} and (11) {using the assumption
that (14) and (15) hold). Thanks to MAPLE we can
then obtain a series expansion for R and T in terms of
h as follows

R = %(wz — B2)R2 + O(hY), (16a)
= 1~ -1% (w? — E2) + O(h%). (16b)

It is a little surprising that the reflection and transmis-
sion error is O(h?), since we know that even if the grid
changes by arbitrary stretchings in the z and y direc-
tions, the overall error is O(h?).

The above results give a reference by which to compare
the results in the remainder of the paper. We would like
to develop a sub-gridding extension of the FD'TD scheme
keeping an O{h?) global error and keeping the reflection
and transmission error of order similar to that in (16a)-
(16b). Of course it might be useful to improve on the
reference. For example it might be possible to improve
the reflection at the interface by a move complicated
interpolation strategy. We will not pursue that direction
here.
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Figure 4: A diagram of the cells either side of z = 0. At
z = ( the grid size is decreased by a factor of 2.

4 A Simple Method

In this section we shall present and analyze a simple sub-
gridding technigue. The method is based on piecewise
constant interpolation. Note that if we want to use the
stability estimate in Theorem 1, we are not free to choose
arbitrary interpolation for the electric and magnetic field
values since the final equations must have the form of
{5a) and (5b).

We now assume that the mesh in £ > 0 is refined
by a factor 1/2 in the z and y directions compared to
the mesh for £ < 0. Figure 3 shows such a mesh. All
elements in the mesh are squares, but the grid is refined
abruptly at z = 0. In the regions z > 0 and z < 0,
the standard Yee unknowns will be used (i.e., on the
edges and centroids of the mesh). Along z = 0, we use
the degrees of freedom associated with the coarser mesh.
Figure 4 shows cells either side of z = 0 and indicates
the location of the finite difference values.

Now we can write down the sub-gridded FDTD equa-
tions. The equations for all the unknowns in 2 < 0
are the same as in the previous section. See for ex-
ample (4a) - (4¢c). Similarly, all unknowns in z > A
satisfy standard FDTD equations, as does E:S;: for
—2N +1 < j < 2N — 1. The only changes are in the
equations for ES?, Hyg,54172 and Hyg 172, § = 21+1,
—N <[ < N. We start with the magnetic field. If we use
the standard Yee scheme for H; /3 ;412 We would need

a value for E((f} +1/2- Extending Eé,z} by a constant we
use Eézj) 12 = (()2} (this amounts to using a one-sided

integration rule in the contour path extension of the Yee

scheme). Similarly Eé?_l 2= E'(()? . Thus the equa-

tions for Hip j41/2 and Hypp j_1/2 are (for j =20+ 1,
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~N<I<N)

d (1) (1)
h? praciERESVERL (Elﬂ,jﬂ B El/z’j)

(2) @\ _
+h (Em. e - Eo‘j) — 0, (17)

d 1) (1)
hzaH1/2,j—l/2 -h (E£/2,j - El/ZJ—l)
2
+h (BE) s - ES)) = 0. (18)

Now that we have a complete set of equations for the
magnetic field variables, we know that the vectors of
unknown ﬁ and H satisfy (5b) with a suitable choice of
Mp and CT. Thus the equations for £ can be obtained
from (5a) (i.e., we are not free to choose the interpolation
scheme for both equations at the same time). Then since
Theorem 3.1 is satisfied the method will be stable. The
following equation for Eézj) results:

d
3’125}3({:? —2hH. 1 ;+h (Hyjz 50172 + Hijzg-172)
= -3h2J{%. (19)

Notice the similarity between this equation and equation
(4d). It is interesting to note that the piecewise constant
interpolation used in writing down (17) and (18) gives
rise to a piecewise linear interpolation of H in (19).

In order to analyze the convergence rate of the scheme
outlined above, we can apply Theorem 3.1. Since we
have a uniform mesh for z < 0 and £ > 0, we know
that apart from the equations for Eé? » Hiyaje172 and
His j—1/2, the local truncation error is second order.
Equation (17) has a constant local truncation error since

E((,ZJ) is an Q(h) approximation to Eé? 1/2- More pre-
cisely, if E(x,t) and H(x,t) satisfy (1a) and (1b)

a
hzaH(%/z: Yjs1/2:t)

~h (Em (Z1/2: Y541, 1) — E(l)($1/2,yj=t))

+h (E® (21, 4341/2,8) = B® (20,15, 1))

h2 9E(3)

i , 3
2 ay ($0,y3,t)+o(h),

and

a
hZB—tH (®1/2,45-1/2,1)
—h (E(l) (Il/ﬂayj!t) - EW (x1/2vyj-1:t))

+h (E(” (21, ¥j-12:8) = B (z0,95,1))

K BE®)
= —?Ty(mg,yj,t)+0(h3).
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Thus we define the mesh function K,’ defined on edges
in the grid, by 85 = 0 for all valid choices of & and §
corresponding to vertical edges in the mesh and

(1) hOE®

0af = 55—

2 Oy

fa=1/2, f=j, wherej=2[+1, -N <! < N and
6&1,23 = ( otherwise. Then we have that if ¢ F = EL - E

(20,95, ) (20)

and ?H = e ™ ﬁ!
=+
MHa; —+ CTeE = CT5'+ Mya (21)

and furthermore & = aih + O(h?) where oy is non-
zero only for those unknowns associated with the strip
0 < z € k. The point of this estimate is that the local
truncation error has been decomposed into the discrete
curl of a first order quantity plus first order quantities.

It remains to analyze the local truncation error in the
electric field equations. Except for the equation for Ec(,zj
{(see (19)) all the remaining electric field equations are
centered FDTD equations so the local truncation error
for these equations is second order. For (19) we know

that
Hijaq1/2 + Hujzjorje = 2Hy o j + O(h?).

Hence the local truncation error in (19) is first order.
FPutting the electric field equations together in matrix
form, we see that

9z F

8E

where v = 'y“}lh + O(h?). ’?1 is non-zero only for degrees
of freedom lying on z =0 (i.e., from (19)).

Mg -CeH = M7 (22)

- We have not to attempted to decompose the electric
field error further since the simple analysis used to ob-
tain (22) gives a similar form to that obtained for the
magnetic field equations in (21).

Applying Theorem 3.1, we conclude that

“=E —H 4
Iz + 112 1l < © (gaax, 15" e

& =4
+f (lnamﬂm?zum mi—fum) ds)

But [|3 e = V& TMgeé = O (h3/2) since 3 is given by
(20) so that only O(1/h) entries are non-zero. By (20)
each non-zero entry is Q(h) and Mg is diagonal with en-
tries O(R?) so V& TMgé = \/ORIO(TTRO(R)O(R).
Similarly since o = @ih+ O(h?) with @) non-zero only
for those degrees of freedom within O(h) of z = 0, we
have ||| )l = O(R*/2), and similarly ||| 7} x = O(R%2).
We have thus proved the following theorem:
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Theorem 4.1 Suppose E and H are computed using the
semi-discrete sirnple method, and E, and ﬁ ¢ are the cor-
responding vectors of ezact solution values, then

B = B. s + I — He llx = OGRY? + th3/%).

Remark. This estimate is not as good as the estimate
for the unsub-gridded case given in the previous section,
but the estimate may well be pessimistic as we shall show
by a computational example and by a reflection analysis.

Next let us perform a reflection analysis at the in-
terface z = 0. This is slightly more complex than the
analysis of the standard FDTD at a grid interface (see
the previous section). Again we move to the frequency
domain using (7). Then we eliminate the electric field to
obtain a system of equations involving only the magnetic
field equations.

For magnetic field variables in 2 < —2h, the standard
FDTD discretization vields, as before (8). For H.jj,
j= 2041, —c0 <l < oo, we obtain

N 1 /- . .
_uﬂH_;,j 1z (H—l,j+1 —2H_,;+ H—l,j—l)
1 /27, .
+4_h?_ (§ (H1/21.‘f+1/2 + H1/2,j—1/2)
7 N
—gH-ij+ H—s,j)

For magnetic field variables in 0 < z < h we obtain:

-
~w Hia 4172

(Hlj‘z‘,j+3/2 - 2ﬂ1/2,j+1/2 + ﬁ1/2,j—1/2)

hZ
1 - 4

+33 Hapoja1/2 — §H1/2j+1/2
1. 2.

—§H1/2,j—1/2 + gH—l,j ) (23}

—w2ﬂ1/2,j—1/z
1

h2

(ﬁ1/2,j+1/2 ~2Hy 5512 + ﬁ1/2,j—3/2)
1 - 1 ..

+E'2' Hayg j-1/2 — §H1/2,j+1/2
4 - 2 -

_§H1/2,j—1/2 + EH-LJ‘) , (24)

(25)

for j =21+ 1, —oc €1 £ 0. For z > h, the standard
Yee scheme on the sub-grid yields

N 1 N ~ -
wHyy = w (Hpﬂ,q —2Hpq + H, —I,q) (26)
1 /- . .
"*‘p (Hp,q+1 —2Hp g+ Hp,q—l)
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forp=r+1/2,0<r <ocandg=s5+1/2, —o0 <
r < oo. From the above equations (or Figure 4) we
can see that the stencil repeats on a period of 2k in the
y direction (i.e. if we move a distance 2h upward or
downwards in the grid then the same equation holds).
Thus we assume that for all valid choices of @ and 3

& & 2ikah

Hopio = Hoge (27)

Using this in (8), (23), (23), (24) and (26) results in a
set of five equations defined on the strip —oco € 2 < o0
and 0 € y < 2h. Now we assume that for z < 2h the
magnetic field is made up of a reflected and incident part,
sofor{ >0, j=—(2l +1), we have:

Hjq = eit¥1d 4 Re=thki) (28)

‘Using this and (27) and (28) in (8) shows that (8) is
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satisfied provided ki and k» satisfy (14). For z > h, we
want to choose H to be a discrete plane wave. If we
choose

aei(l+1/2)k"1heihk2/2’

(29a)
{29b})

13!‘.-{-1/2,1/2
ﬁel( / ) 1%e thks/ y

ﬁz+1/2,—1 /2

and use these definitions in (26) for p =1+ 1, ¢ = 3

and p=1+1%,¢g=—1%, 1 >0 we find that the following
equations must be satisfied by k{, o and 8

!
~hla = 2cos(ksh)B - 2a - 4sin’ (—’“12") a,
kB
~w?h?8 = 2cos(kzh)a — 23 — 4sin® (—15—) B.

This is a homogeneous matrix equation for o and 8 and
50, to have a non-trivial solution, the determinant must
vanish. Thus

I

232 .2 (kR ? 2
w?h® — 2 —4sin - - = 4 cos® (ko h),

and thus we have two values for k. The first is the
“physical” value of ki which satisfies
'

w?h? - 2 + 4sin? (M

5 ) = —2cos(k2h).

After a little manipulation this is exactly (15). We de-
note this root k{l). Using MAPLE we find that

Y = Jw? — k2 + O(h?)

which justifies the “physical” label.
which we denote k%z} satisfies

The other root,

k(2)
w?h? — 2 + 4sin? 12

h) = 2cos(kzh). (30)
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In this case MAPLE gives

9 Fiy
ks = & = Wt + B + O(h?).

This is a spurious mode.

Corresponding to k) = kgl)

(5) = (i)

= k{?

in, we have the eigenvector

and corresponding to k] we have

(5) = (L)

Thus we must allow for two transmitted waves at the in-
terface with amplitude factors T and 3. So we assume
that for I > 0

-

Hiy012 = (31a)
(T1 ei(r+1/2)k§”h + Theiti+l /z)k§2)h) eihka/2,

Hy2,212= (31b)
(T1 ei(:+1/2)k{” R ei(z+1/z)k§2)h) o—ihka/2

There are three unknowns, 77 and 7% from above and R
from (28). We substitute for H in (23), (23) and (24),
giving a system of three linear equations for 73,75 and
B. Using MAPLE these can be solved to yield

30} - 8W2k2 + sz 9 3
R TP R +0(R®),  (32a)
_ 3wt 32k — 602,
T o= 1= O, (32b)
T, = — — k2kyh? + O(RY), (32¢)

12
provided ky # w.

Thus the order of accuracy of the reflection and trans-
mission coefficients of the simple sub-gridded method de-
scribed in this section are the same as for the FDTD
scheme at an interface between grids of different sizes
(see (16a)-(16b)). The difference is that the simple
sub-gridding scheme has a spurious mode with ampli-
tude proportional to h%. These results suggest (and this
is what we observe computationally} that the simple
method will be second order accurate rather than 3/2
order as our error analysis predicts.

5 A Linear Interpolation Method

Other aunthors have suggested using higher order inter-
polation to construct sub-gridded schemes. Here we an-
alyze a scheme based on linear interpolation similar to
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a semi-discrete version of the scheme in [5]. The model
problem in Figure 3 is not suitable for this method since
it is difficult to handle the interface if it hits a bound-
ary. This is unlikely to be a problem in practice, but
to avoid it here we shall only perform a reflection anal-
ysis assuming an infinite interface. The arrangement of
unknowns is the same as for the simple scheme in the
previous section (see Figure 4).

We start by writing down the equations for H /5 j11/2
and Hysp o172, 5 = 2L+ 1, —00 < 1 < co. To write

down the equation for Hy/p j,1/2 we need Eé? 172 and
we obtain this by linear interpolation between the clos-
est values of E® in the grid (rather than by constant

interpolation as used in the previous section) thus

2 32
E® —E},J’+

(2}
0,4+1/2 — E

4 7J+2
and hence
(1) 1
W “H1/2.J+1/2 h (E1/2,j+1 - E§/)2,j) (33)
(2) @ _ 1o \_
+h (E1 EARY EO.j - ZEO,j-l-E) =0

Similarly for Hye j_1/2 we obtain:

d (1) (1)
W Hipge —h (E1/2 i~ i, _1-1) (34)
9 32 2
+h (Egg e Ec‘,‘} 4ES‘} 2) =0.

The remaining magnetic field equations are standard
FDTD equations. Now that we have specified the mag-
netic field equations, the electric field equations are de-
termined so as to have the form of (5a)-(5b). This im-
plies that standard FDTD equations hold for all electric
field variables except those on £ = 0. On z = 0 the
following equation holds:

3h2dE

3
% (Zhﬂ_i,j - ZhH1/2,j+1/2_ (35)

3 1 1
—hHysg5-10 = =hHys jrapa — ThH1 2 5372
4 4 4

= =3h%Jo;,

for j=2141, ~00 <! < 0.

The reflection analysis can be performed in exactly
the same way as for the simple scheme analyzed in the
previous section. We start by assuming a time harmonic
profile using (7). Then we eliminate the electric field
and obtain equations for the magnetic field alone. For
the magnetic field variables in z < —2h, the standard
FDTD discretization (8) holds, and for z > h (26) holds
as before.
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The equation for H_; ;, j =20+ 1, —oco < I < o0 is

Ay, H_tjor =201+ Ho15m2) (36)

= 4h.3 (
1 . N
+5m B s;- 3H—1,j +3 (H1/2.j+1/2+

1
Hyjzi-1/2) + g (H1/2 grasz + Hijajo 3/2))

For -gl/Z,j+1/2 and ﬁl/?,j—l/2 we obtain

'“w2f:11/2,j+1/2 =
1
7z (31/2,_1-1-3/2 —2H1 75 40172+ Hipa g 1/2)

+ﬁ (E3/2,j+1/2 - ﬁ1/2,j+1/2) (37)

3 /2 1 /.- .
] (SH_ T4 (Hl/2=3'+1/2 + Hl/z,j—l/z)
1
1z (H1/2,3+3/2 + Hl/z,; 3/2))
1 2 . 1/~ .
*+ Iz (gH-l,j+2 2 (H1/2,j+5/2 + H1/2,j+3/2)
1

13 (H1/2,3+7/2 + H1/2,3+1/2))

and

—w?Hy2 o172 =

1
72 (Hyj2,541/2 — 2Hupaj1/2 + Hipag-sp2)
+"— (H3/2,j-1/2 — Hya5-1/2) (38)
3 1
4h‘2 H_ 53 - Z (H1/21j+1/2 +H1/2!j-1/2)
1
75 (Hijag4a72 + Hllz,j—sfz))
1
4h2 3H— G-z (H1/2,j—~3/2 + Hiyajos/2)

- '5 (Hisa,j-1/2 + Hl/z,j-m)) '

As before, we assume that inz <0

H,p = (e¥*120k 4 Re=iki2ah) ¢ik228h (39)
and require that &, satisfy (14) so that (8) is satisfied.
For z > 0 we use Hy g given by (31a)-(31b) and require
that k{ ) satisfy {15) and k(2 satisfy (30). Then (26)
is satmﬁed Using (39) and (31a)-(31b) in (36), (37)
and (38) yields a linear system for R, T%* and T3, Via

MAPLE we obtain (provided ks # w)

1 (3w4 — 12w2k2 + 10k}

R -
16 w? — k2

) h? + O(H®),

45
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1 /3t ﬁwzk%+2k4
(1) = 2 2 3
T 1- 16( g )h + O{h%),
(2) ¢ 2 _ 121354 5
T 48\/(» kik3h® + O(h°).

Compared to (32a)—(32c) we can see that B and T()
are of the same order of accuracy for the linear inter-
polation case studied here and for the simple method
in the previous section. The only obvious gain of using
the linear method is that the spurious transmitted mode
with amplitude 7(® is now greatly decreased compared
to (32¢) (T = O(h*) rather than O{h?) for the simple
method).

6 Numerical Results

The error estimate for the simple sub-gridding scheme
predicts an O{h3/?) rate of convergence, whereas the re-
flection analysis suggests an O(h?) rate. In this section
we present the results of a simple numerical experiment
which shows that, at least in the case studied here, the
method is second order convergent.

The problem we study is the propagation of a Gaus-
sian wave across the square [0, 2] x [0, 2]. The exact wave
is given by

Ee(:cat) = ( _kil )g(t-k'w): Hc(a:?t) = _g(t_k'm)r
where k = (cos(1),5in(1))7 and g(s) = exp(—10(s—1)?).
The boundary conditions are chosen to introduce the
wave into the square (and J = 0). We use a mesh like
that in Figure 3 with a sudden change in the mesh size
at z = 0 and, as before, define the mesh parameter h to
be the size of the mesh squares in the finer mesh. We
use leapfrog time stepping with a uniform time-step of
At = h/+/2 (which is not optimal for the coarser grid—
see [5] for suggestions about an improved strategy).

Figure 5 shows a log-log plot of the discrete error in the
magnetic field defined by ||| l| z against h together
with a reference line for O(h?) convergence. It is clear
that the method is showing second order convergence.

7 Conclusion

We have provided some preliminary analysis of two sub-
gridding schemes. In order to guarantee stability, we
have constructed the schemes by applying interpolation
only to evaluate the electric field at the interface. Sym-
metry considerations then force the magnetic field to be
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Figure 5: A log-log plot of the error |Hf{: - ﬁ|]| H against
the mesh parameter h and a reference line showing O(h?)
convergence. Clearly, for this example, the simple sub-
gridding scheme is exhibiting O(h?) convergence rather
than O(h%/2) as predicted by theory.

interpolated in a way to guarantee stability (this reduces
flexibility in constructing the sub-gridding scheme).

Our analysis shows that the simple scheme employing
constant interpolation performs surprisingly well. It is
provably O(h3/2) convergent, and simple numerical ex-
periment together with a reflection analysis suggest that
the method can be O(h?) accurate in practice.

The linear interpolation scheme analyzed in section
5 has the advantage of improving the amplitude of the
transmitted spurious mode, but the reflected mode is
still only second order. The use of this method when the
grid interface intersects a boundary presents a problem.

Clearly, the real problem is three dimensional, so the
analysis started in this paper needs to be extended to
three dimensions. In addition the application of the lin-
ear scheme at boundaries needs to be investigated.
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