Compatibility Relations for Time-Domain and Static
Electromagnetic Field Problems

Ioan E. Lager and Gerrit Mur
Faculty of Electrical Engineering
Delft University of Technology
P.O. Box 5031, 2600GA Delft, The Netherlands

Abstract - When computing an electromagnetic
field using a numerical method, e. g. the fi-
nite element method, it i1s possible that, although
Maxwell’s equations are discretized accurately,
highly inaccurate computational results are ob-
tained. In those cases it can easily be shown
that (some of) the electromagnetic compatibil-
ity relations (field properties that follow from
Maxwell’s equations) are not satisfied. The diver-
gence condition on the fluxes, for instance, follows
directly from the field equations but not necessar-
ily from their discretized counterparts. This ne-
cessitates inclusion of the compatibility relations
in the finite-element formulation of the field prob-
lem. First a survey is given of all electromagnetic
compatibility relations for the time-domain elec-
tromagnetic field equations. Subsequently the
compatibility relations for the static field equa-
tions are discussed.

I. INTRODUCTION

Because of its flexibility, the finite-element method
seems to be the most suitable method for computing elec-
tromagnetic fields in inhomogeneous media and/or com-
plicated geometries. In the finite-element formulation of
an electromagnetic field problem the field equations can
only be satisfied approximately. As a consequence of this,
field properties that follow from Maxwell’s electromag-
netic field equations, the electzomagnetic compatibility
relations [1], may not be reflected accurately in a numer-
ical solution. In earlier papers (2, 3] Mur presented meth-
ods for computing the electric and/or the magnetic field
directly, using a combination of linear edge and linear
nodal expansion functions for obtaining optimum com-
putational efficiency. In these papers the importance of
including the divergence condition, which is one of the
compatibility relations, in the formulation of the problem
was discussed. The equations applying to the divergence
of the electric and magnetic flux densities follow directly
from the electromagnetic field equations. They are satis-
fied whenever the field equations are satisfied exactly.
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In the present paper the use of the divergence condi-
tion will be generalized to the use of the compatibility
relations for electromagnetic fields. It will also be shown
that the use of divergence-free edge elements, which is
advocated by some anthors (see [4] and the references
contained in it) for satisfying some of these compatibil-
ity relations, as well as the use of face elements, iniro-
duces the possibility of violating additional relations of
the compatibility type. The importance of including the
electromagnetic compatibility relations explicitly in the
finite-element formulation of the problem is stressed.

The analysis of the compatibility relations is carried
out first for methods for computing time-domain (tran-
sient) electromagnetic fields. The analysis of methods
for time-harmonic electromagnetic field problems runs
along similar lines and leads to similar conclusions. It
can be shown (and verified experimentally) that the im-
portance of the compatibility relations increases with de-
creasing frequencies (slower variations of the solution in
time) and, consequently, the compatibility relations are
of the utmost importance for the numerical computation
of static electric and magnetic fields. These cases will
be discussed separately showing the connections between
the compatibility relations for transient fields and those
for static fields.

II. THE BASIC EQUATIONS
As the point of departure for our analysis we use the

time-domain electromagnetic field equations

8,.D
& B

+J —Vx H=-J%, (1)

1V x E=—-K"™, (2)

where J®** and K are sources of electric and mag-
netic current that are known, throughout the domain of
computation D (see Fig. 1), as a function of the time
coordinate ¢. In (2) we have included the magnetic cur-
rent K for symmetry reasons. J°*' and K*** may also
represent contrast sources used in a contrast-source for-
mulation that replaces a transparent obstacle in a known



external field by equivalent sources. The field equations
are supplemented by the interface conditions

v x E continuous across sourcefree interfaces, (3}

v x H continuous across sourcefree interfaces, (4)

and the boundary conditions

v x E=v x E™ on 8D, (5)
vx H=vx H™ on 8Dy, (6)

where v is the unit vector along the normal to either
the interface T or the outer boundary 8D = 8D U 8Dy
(with 8Dg N 3Dy = 8) of the domain of computation D,
and where v x E* and v x H*™ are known, along the
relevant parts of this outer boundary, as a function of £.

oD = BDE U 3DH

Fig. 1. The domain of computation P.

Together with the constitutive equations and the initial
conditions at ¢ = 2, (1)-(6) define an eleciromagnetic-
field problem with a unique solution [5]. Note that the
source terms in (1) and (2) are not related to the bound-
ary conditions in (5) and (6).

III. THE COMPATIBILITY RELATIONS

Compatibility relations {1] are properties of a field that
are direct consequences of the field equations and that
must be satisfied to allow them to have a solution. For
the electromagnetic field equations they are discussed be-
low.

A. Interior

Applying the divergence operator V- to (1) and (2) it
follows that

V- D+J)= -V I, (7
v -B= -V K™ (8)
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The electromagnetic compatibility (divergence) relations
(7) and (8) apply to subdomains of the domain of com-
putation in which the electromagnetic field vectors are
continuously differentiable functions of the spatial coor-
dinates.

B. Interfaces

The field vectors are not differentiable with respect to
the spatial coordinates at the interfaces between regions
with different medium properties. In that case (7) and
(8) are replaced by

v-(8;D+J)+v-J** continuous across interface, (9)

(10)

v 3B +v- K" continuous across interface,

where ¢ is the unit vector normal to the interface.

Note that (9} and (10) express the continuity condi-
tion applying to the normal components of the electric
and the magnetic flux densities across an interface be-
tween different media.

C. OQuier boundary

A third type of compatibility relation is found when
studying the behavior of the field near the cuter bound-
ary of the domain of computation. Applying the operator
v-, where v denotes the unit vector along the normal to
the outer boundary, to (1) and (2) we obtain, using (5)
and (6), the relations

v-(D+J)=v-(Vx H™ - J*) on 8Dy, (11)

(12)
These equations express the fact that preseribing the
tangential components of the electric {magnetic) field
strength at a given part D (8Dy) of the outer bound-
ary 0D implies a related behavior of the normal compo-
nents of the magnetic (electric) flux densities at that part
of the boundary.

Note that these equations have the form of additional
boundary conditions applying at the outer boundary of
the domain of computation. They follow, however, di-
rectly from the fact that the field inside the domain of
computation should satisfy Maxwell’s equations.

v-8B=—v-(V x E¥ + K**) on 8D5.

D. Compatibility relations and edge elements

Some authors use divergence-free edge elements {e.g.
Whitney 1) for imposing the divergence conditions ex-
actly. Edge elements cause the tangential components of



ihe fields to be continuous, they leave the normal compo-
nents free to jump. Apart from the fact that divergence-
free edge elements can only be used in the simple case
where the compatibility relations (7) and (8) reduce to
V-D =0 (or V-J =0) and V- B = 0, respectively, the
resulting freedom of the normal component of the field at
the interface between two adjoining tetrahedra to jump,
even when it should be continuous, is unwanted. Con-
sequently, the continuity of the normal flux has to be
added to our list of compatibility relations to be imposed
upon the solution. Failing to do so may be the caunse
of undesired surface charge distributions in between edge
elements. When adjoining finite elements contain identi-
cal materials, and assuming that the external sources of
current are continuous between those finite elements, the
following relations hold

(13)

(14)

/- E continuous between edge elements,

v+ H continuous between edge elements.

In the alternative cases, (9) and (10) still apply. Imposing
these relations resnlts in an increase of the connectivity
of the system matrices. Note that the need for impos-
ing the continuity relations (13) and (14) is caused solely
by the use of edge expansion functions and not by the
electromagnetic field problem or the finite-element for-
mulation used.

E. Compatibility relations and face elements

Some authors propose the use of face (also called facet)
elements for modeling flux distributions. Face elements
cause the normal fluxes between tetrahedra to be con-
tinuous, they have the disadvantage of leaving tangential
components free to jump, even when they should be con-
tinuous. Assuming that no surface sources of current are
present at the interface between those finite elements, the
following continuity relations should hold

v ¥ E continuous between face elements,

(15)

(16)

otherwise the proper jump condition should be imple-
mented. Imposing these relations results in an increase
of the connectivity of the system matrix {matrices}. Note
that the need for imposing the continunity relations (15)
and (16) is caused solely by the use of face expansion
functions that do not automatically satisfy the continu-
ity conditions (3) and (4).

v x H continnous between face elements,
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F. In summary

Equations (7)-(12) are a set of six electromagnetic
compatibility relations that are direct consequences of
Maxwell’s equations. In exact methods for solving the
electromagnetic field equations they are antomatically
accounted for. In numerical methods, for instance in
the finite-element method, for solving the electromag-
netic field equations they should be taken into account
explicitly whenever the method used does not automati-
cally account for them.

Equations (13)-(16) are additional compatibility rela-
tions the need for which is caused by the use of either
edge or face elements in homogeneous domains. In those
domains edge and face elements allow unphysical discon-
tinuities in the solution snd compatibility relations have
to be added to the formulation of the field problem for
restricting those discontinuities to acceptable values.

Note that (7)-(16) do not contain any extra informa-
tion that is not contained in the field equations. However,
failing to include them in the finite-element formulation
of an electromagnetic-field problem, either exactly or nu-
merically, may be the cause of highly inaccurate results.
Errors of this type are often referred to as "spurious so-
lutions” or "vector parasites”.

IV. APPLICATION to STATIC ELECTRIC FIELDS

For static electric fields the basic equations (1} - (6)
reduce to

V x E=-K*, (17)

together with the interface condition

v x E continuous across sourcefree interfaces,

(18)
and the boundary condition

vx E=vx B on 8Dg.

(19)

Note that we have lost the boundary condition on 8Dy
which has to be replaced by the compatibility relation
applying to this part of the outer boundary.

A. Interior compatibility
In case of a conducting medium (7) reduces to

V-J=-V.J% (20)

In case of a non-conducting (dielectric) medium (7) re-
duces to



v.D= pe,ext’

(21)
where p®¢** denotes the known external electric volume
charge density.

B. Interface compatibility

In case of a conducting medium (9) reduces to

(22)

in case of a non-conducting (dielectric} medium (9} re-
duces to

t . .
v -J 4+ v J continuous across interface,

V‘Dﬁ = a,e,ext'

(23)

where D|? denotes the jump in D across the interface and
where o°°** denotes the known external electric surface
charge density. In case of an interface between a conduct-
ing and a non-conducting {dielectric) medium (9) reduces
to

voJ=v I3 (24)

at the conducting side of the interface.
C. Ouler boundary compaiibility
In case of a conducting medium (11) reduces to

v- J=v-(Vx H®™ — J°**) on 8Dy. (25)
Recall that H* and J®** are not related. In case of a

non-conducting (dielectric) medium (11) reduces to

v-D =o%*" on 87y, (26)

where ¢®°* denotes the known external electric surface
charge density at the outer boundary.

D. Compatibility relations and edge elements

In case adjoining tetrahedra contain identical materials
as regards their electric properties (13) applies, otherwise

(22)-(24) apply.
E. Compatibility relations and face elements

In case no surface souces of magnetic current are
present at the interface between adjoining face elements

(15) applies, otherwise the proper jump condition should
be implemented.
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V. APPLICATION to STATIC MAGNETIC FIELDS

For static magnetic fields the basic equations (1) - (6)
reduce to

Vx H=J0%, (27)

together with the interface condition

(28)

v x H continuous across sonrcefree interfaces,

and the boundary condition

vx H=vx H™ ondDy. (29)

Note that we have lost the boundary condition on Dg
which has to be replaced by the compatibility relation
applying to this part of the outer boundary.

A. Interior compatibility
For static magnetic fields equation (8) reduces to

vV.B= pm,ext.

(30)
where p™**' denotes the known external magnetic vol-
ume charge density.

B. Interface compatibilily

For static magnetic fields equation (10) reduces to

(31)

where o™ ¢*' denotes the known external magnetic sur-
face charge density at the interface.

uBlll’ — O,m,ext’

C. Outer boundary compatibility

For static magnetic fields the continuity of the normal
flux (12) reduces to

v B = g™ on 8Dg.

(32)
where o™t denotes the known external magnetic sur-
face charge density at the outer boundary.

D. Compatibility relations and edge elements
In case adjoining tetrahedra contain identical materials

as regards their magnetic properties (14) applies, other-
wise (31) applies.



E. Compatibility relalions and face elements

In case no surface sources of electric current are present
at the interface between adjoining face elements (18) ap-
plies, otherwise the proper jump condition should be im-
plemented.

V1. CONCLUSIONS

When the electromagnetic field equations are solved
numerically using expansions that do not themselves ex-
actly satisfy these equations, which is the case in the
finite-element method, it is necessary to include the com-
patibility relations in the formulation in order to obtain
correct results. Attempts io solve this difficulty by using
edge elements merely complicate the situation by intro-
ducing the need to impose additional compatibility rela-
tions. In our analysis we have first presented the com-
patibility relations applying to time-domain (transient)
fields and, subsequently, those for static fields. In doing
so, the relation between those two cases is clarified and
a better understanding is obtained of the function of the
compatibility relations and their application in the entire
range from static to high frequency applications.

In summary, we conclude that we have presented the
electromagnetic field compatibility relations. To obtain
reliable computational results from finite-element meth-
ods for solving the eleciromagnetic field equations, these
relations should be made a part of the formulation of the
problem.
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