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Abstract— The basics of two domain decomposition = Domain decomposition methods (DDM) have been
methods based on the surface equivalence principlsuccessfully used to solve many complex multi-scale
and the method of moments, namely, the surface tanEM problems, in particular, in the context of the finite
gential equivalence principle (TEPA) and the linear element method, see e.g. [1] and [2]. The basic idea in
embedding via Green’s operators (LEGO), are out-a DDM is to divide a large and complex problem into
lined to solve electromagnetic scattering problems. Insmaller and simpler subproblems that can be solved
order to efficiently solve large problems, the meth-independently. This essentially isolates the solution
ods are combined with the characteristic basis func-of one region from another and in many cases signif-
tion method and the eigencurrent expansion methodicantly improves the matrix conditioning. The other
Numerical examples demonstrate that the developethenefits of DDMs include, for example, the inherent
hybrid techniques lead to a significant reduction onaptitude for parallelization and for usage in combina-
the number of degrees of freedom and the size of theion with hybrid methods.
matrix equation to be solved. In this paper, we discuss two DDM approaches
based on the surface equivalence (Huygens) princi
ple and the method of moments (MoM) to solve
large and complex EM problems. The algorithms are
the surface tangential equivalence principle algorithm
(TEPA) [3] and the linear embedding via Green’s op-
erators (LEGO) [4]. TEPA is a modification of the
. INTRODUCTION equivalence principle algorithm [5-7] and LEGO is
Electromagnetic (EM) scattering by large and com-the full 3-D extension of the procedure presented in
plex structures, such as EM band gaps, frequency sd8].
lective surfaces, metamaterials, antenna arrays, etc. In many cases, these algorithms can lead to savings
have received a lot of interest lately. In the conven-on the number of unknowns and improvements on the
tional integral equation and finite element approachescondition number of the matrix compared to the tra-
the structure is first divided into simple elements andditional MoM formulations. However, the methods
then the unknown quantities, currents or fields, arestill produce dense matrix equations and the computa-
expanded with basis functions defined on these eletional cost increases with the same rate as in the con-
ments. As the size of the structure gets large, the numventional formulations. Hence, the methods can be-
ber of elements required to sufficiently model the un-come too expensive for large scale problems. In order
known and the structure details increases, eventuallyo further reduce the number of unknowns and the so-
leading to the problem of solving huge, possibly very lution time, TEPA and LEGO are combined with the
ill-conditioned, linear systems. This may be a very characteristic basis function method (CBFM) [9-13]
challenging task even with the most powerful com- and the eigencurrent expansion method (EEM) [4], re-
puters and efficient fast algorithms. spectively.

Index Terms-Domain decomposition methods, elec-
tromagnetic scattering, method of moments, multi-
scale problems, surface integral equations.
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[I. INTEGRAL EQUATIONS conditions on the interfaces and surfaces gives a set of
Let us consider time-harmonic electromagnetic surface integral equations that can be solved numeri-
(EM) scattering by a large number of arbitrarily cally with the MoM. The problem is that if the number
shaped object®,,, p = 1,..., P, in a homogeneous of the objects is large and/or the structures are compli-
backgroundD,. The objects can be either perfect cated, this traditional surface integral equation formu-

electric conductors (PEC) or homogeneous dielectricjation leads to a large and ill-conditioned dense matrix
as well as their combinations. For simplicity, assumeequation which is difficult to solve. In the following

that the objects are disjoint.

sections the scattering problem is reformulated using

Let S, denote the surface d@p,. The scattered EM domain decomposition methods.

fields 7, and H, due toD,, can be expressed at point

rin Dy as
s 0 0
Eqg, "o ﬁg)p) _Kép) Jp (1)
— . (1
s © 1 .0
Op KOp % [’Op M,

Hereny = +/po/e0 is the wave impedance dby,
Jp, =n,xHy,andM, = —n, x E, are the equiva-
lent electric and magnetic current densitiesSrwith
the unit normal vectorn, pointing into Dy. The sur-

face integral operators((]f,) andlcg‘f,) are defined as

LOE) = = [Gutr.) Vi ) ds
IRq
5
+ik, /Gd(r,r')F(r') ds’
5
ds,n(r)
2’ik7q Vs 'F(T.)’ (2)
KW (F)(r) = Vx / Galr,r') F(r')dS’
5
ds
i) F (), ®

wherek, = w, /g, is the wavenumber oD, ' €
Sp,r € Dy and

eikd\r—'r’|

Gd (T'? T'/) (4)

- Arc|lr —r'|’
is the homogeneous space Green’s functionDgf
with the wavenumber oD,. In addition, F' is either
M, orJ,, and

1 ifres,
05, = { 0 otherwise ®)

[Il. DOMAIN DECOMPOSITION
The basic idea of the formulation applied in this pa-

per is to reformulate the original scattering problem as
a new equivalent problem with generalized scattering
and translation operators. First, the objects (scatter-
ers) are divided into groups. The groups may con-
sist of one or more objects and are enclosed by virtual
equivalence surfaceB;, [ = 1,...,L. The domains
enclosed by surfaceR; are called bricks. Next, we
define the scattering and translation operators of the
bricks. The grouping, bricks, and the scattering and
translation operators are illustrated in Figure 1.

A. Scattering operators

Let us first consider the EM problem consisting of
a single brick only. The brick embeds a structure
which, being illuminated by an incident fielf" =
[E', H']T, develops induced (secondary) sources that
radiate the scattered fiel® = [E*, H®]”. That scat-
tered field remains the same if we replace the actual
sources on the structure inside the brick with equiva-
lent (secondary) sourcel§’ and M on the surface of
the brick. Formally, this can be expressed via a gener-
alized scattering operatd;; of the brick! as a map-
ping from the incident currenfsff onto the secondary
currentsU;

vi=sup. U= [0 e
The scattering operator is defined via the use of the
surface equivalence principle (1) as a product of four
surface integral operators, as follows

Su= (Pl(l()))_l P(O) (Ppp)_l P(O) (7)

Ip pl

where the operatoréPy)~!, P\, P and P,

are called the self-propagator, inside-out propaga-

By expressing the fields separately in each non-PEQor, and outside-in propagator and the current solver,
domain with (1) and by applying the EM boundary respectively. Here, the first lower index indicates
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Fig. 1. Reformulation of a scattering problem. Left: original scattering problem. Right: reformulated problem
with the scattering and translation operators and new unknowns.

the surface of the observation point, the second ond3. Translation operators

indicates the surface of the source point, and the Let us next consider the EM problem consisting of
upper index indicates the domain whose Green'stwo separate bricksandk with surfacesk; and R,.
function is used in (1). The actual form of the The direct scattering from the bricks is described with
operators depends on both the nature of the obthe scattering operatoS; and S, as in (6). The
ject and the adopted formulation [3, 4]. For ex- scattering operators, however, do not model the inter-
ample, in the case of homogeneous penetrable obactions (multiple scattering) between the bricks. The
jects modeled with the PMCHWT (Poggio-Miller- multiple scattering between the bricks are particularly
Chang-Harrington-Wu-Tsai) formulation the propa- important if the bricks are close to each other.

gators have the following expressions The field scattered by brick, i.e., the field due
to secondary currenlV; = Sy, UL, produces new

n(@ £ _icld _ . : o
(d) ij ij fields toR;. These fields can be interpreted as incident
Py = i@ 1 LD ’ ®)  currents onRk; and can be expressed via a translation
g nd Y] operator7 i, | # k, as

wherei,j = [, k, or p and tan denotes the tangential
component. Also the current solvép,,,, can be ex-
pressed with the same propagation operators as

Ul = T Si UL (12)

The translation operator can be defined using the same
Pop = 7’}3) + 7’})’;), (9)  self and outside-in propagators as the scattering oper-

ator
where( stands for the background apdor the ob-

0)y—1 0
ject. For the PEC objects modeled with the EFIE T = (Pl(l)) Pl(k)7 (13)
(electric field integral equation), the inside-out and

outside-in propagators have to be modified as Note that the form of the translation operators do not

depend on the nature of the scatterers nor the applied
0 _ £ 40 T 10 integral equation formulation. The secondary current
Py [770 lp lp La ’ (10) on R; is now given by
0) _ 0 0
Ppl o |: 770 ‘C*’E)l) _’C;E)l) :|tan ’ (11) S 7 )
U = SuU;+SuTuSuUy
andP,, = no(ﬁz(:%))tan is the EFIE operator o). = Sy (U +TuU;). (14)
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Fig. 2. Scattering and translation operators seen by the br{el single brick, (b) two bricks.

The procedure can be generalized fobricks as The matrix on the left hand side of (18) can be inter-
preted as a total inverse scattering operator [4].
, L The benefit of (18) over (16) is that only the diago-
Ui =8u U+ Z TuUj |, (15) nal entriessl‘ll,conveyinformation about the objects
k=1,k7l comprising the structure. In contrast, the off-diagonal
entries,—7 ., which tell how the bricks interact, do
not depend on the bricks content, but solely on their
- T ~SuT ... —SuTiL [ U relative position in the sf[ructu_re. This means that if,
we allow for a change either in the EM properties or
in the shape of the objects within each brick, only the
diagonal t(—:‘rmsSl‘l1 have to be re-computed.
The tangential equivalence principle algorithm
L —SceTr r JLU ] (TEPA) [3] is based on (16) and the linear embed-
I S1U: T ding with Green’s operators (LEGO) [4] uses (18).
. For more details we refer to [3] and [4].
S»Usj

= . ; (16)

l=1,...,L. This can be expressed by a matrix

—522T21 T ... —SQQTQL Ug

IV. NUMERICAL DISCRETIZATION

S U% In the previous section, the original scattering prob-
) ) lem was reformulated as a new problem by utiliz-
whereZ is the identity operator. Next, we reformulate ing the generalized scattering and translation opera-
matrix (16) by solving equations (15) with respect to tors and the unknowns are the secondary equivalent
U; surface current densities on the surfaces of the bricks.

; s L . The next step is to convert the operator equations
=S, Ul - Z Tu U, (17)  into discretized matrix equations. We will apply stan-

k=1,k#l dard MoM with Galerkin’s method and Rao-Wilton-
giving Glisson (RWG) functions defined on planar triangular
) ) - elements.
Si ~Tw ... —Tu |[Ui] 1 First, the unknown secondary currents on the sur-
T S T s i faces of the bricks are expanded with the RWG func-
21 22 cee 2L 2 2 .
— ) tions f, as

) N Nt

-1 S 7

T Sy |LUL _UL(iS) Ti~Y Vg, and M;~Y 80 f. (19
n=1 n=1
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Then these approximations are substituted into thegroups (blocks). The matrix equation fér groups
equations, i.e., either to (16) or to (18). Next, we can be expressed as

discretize the scattering and translation operators,

S;; andT ;.. Since these operators are defined by the A - Awr U, b

standard surface integral operatd@tsand/C, they are _ : (23)
discretized similarly as the traditional surface integral S

formulations. As a result, we may write (6) and (13) A ... Arp U; br,
where A;;, denotes a matrix block due to the interac-
[Su] = [Pz(zo)]_l [pro)] [Ppp) ™" [P;S) ), (20)  tion of thelth andkth group,U; are the unknowns of
thelth group andy, is the excitation vector due to the
and o 0 Ith group. Assume next that the bricks and the CBFM
7] = (PR k£ (21)  groups coincide.

where the matrices on the right hand sides denote the 1h€ CBFs of the groups can be determined with
matrices due to the propagators and the current solvefitérnative ways. In [9], So called prlmary and sec-

The right hand side of equation (16) is consideredondary CBFs of the blockst|” and £\", are defined
as follows. Letb? and b/’ denote the usual excita- as follows

tion vectors due to the incident electric and magnetic f(l) _ Ay (24)
fields onR; tested with the RWG functions. Then, the LT fAu T
incident currents ok; are replaced with f(z) _AGD < Alkf ) 14k (25)
ko= A ko) ’
i1 _ pO=1 B 1T

[ =[Py b7, 0] (22)  forall l,k=1,...,L. By applying this to (16) gives
Once all operators are discretized and the continuous f(l) = SyUe (26)
operator equations are converted into a matrix equa- : ’
tion, the matrix equation can be solved either with a f,(f) — Sy T f](f), 14 k. 27)

direct or an iterative method. This gives us the coef-

ficients of the secondary currents on the surfaces otience, the CBFs for system (16) can be obtained
the bricks. Thereafter, the scattered fields can be calwithout need to invert any matrix.

culated outside the bricks using the surface integral Later in [10], an alternative method to find the

representations (1). CBFs was presented. In this approach each group
is illuminated with a sufficiently large number of
V. MACRO BASIS FUNCTIONS planewaves incident from different angles. The most

In many cases, the procedure introduced above caﬁ'(‘:]mﬂcant planewave based CBFs

lead to savings on the number of unknowns and im- o 5 _ _ TPW

provements on the condition number of the matrix Finb=t.olok=1,. . NT, (28)
compared to the traditional MoM formulations. How- are found via the use of SVD [10] and used as CBFs
ever, the method still produces dense matrix equatiorof the groups, i.e., the bricks.

and the computational cost increases with the same In both approaches, the unknowns of each brick are
rate as in the conventional MoM formulation. To ef- expanded with these new basis functions, CBFs, as
ficiently solve large scale problems, next we discuss

two macro basis function methods, to further reduce U =Y of £, foralli=1,...,L. (29)

the number of degrees of freedom (DoF).

Once the coefficients of the CBFs are found, the coef-
A. Characteristic basis functions ficients of the original subdomain basis functions can
Consider first, the characteristic basis functionbe obtained from (29). These methods are denoted
method (CBFM) [9-13]. CBFM is a generic tech- by TEPA-CBFM and TEPA-CBFM-pw, respectively,
nique to reduce the size of the discretized matrix equasince they are based on the TEPA formulation of [3]
tion. In CBFM, the object (or objects) are divided into and equation (16).
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Table 1: Geometrical data and the humbers triangles and eolgasingle dipole and brick: the second column
gives the data for the first example (single cross dipole), and the last two for the second one (double cross dipole)

H ‘ Single dipoIeH Double dipole (first caseb Double dipole (second cas«H)

Dipole arm width 2 mm 2mm 2mm

Dipole arm length 12 mm 12 mm 12 mm
Vertical distance between dipoles - 2mm 2mm
Triangles on dipole 88 420 420
Edges on dipole 108 552 552

Brick shorter edge 5mm 4 mm 4 mm

Brick longer edge 16 mm 16 mm 20 mm

Distance between brick centers 32 mm 22.5mm 22.5mm
Triangles on brick 256 256 360
Edges on brick 384 384 540
B. Eigencurrent expansions eigenvalues 0ofS;;| decrease; ii) the entries {ifj; | be-

Next, we consider another technique to find the come smaller and smaller when the distance between
macro basis functions of the bricks. The method isbricks/ andk increases [14].
called the eigencurrent expansion method (EEM) and
used with the LEGO in [4]. The EEM uses the eigen-
functions of Sy, called eigencurrents, to expand the VI. NUMERICAL RESULTS
unknowns on the surfaces of the bricks. The resulting Next, the developed methods are verified with nu-
method is denoted by LEGO-EEM. merical examples and their properties are investigated.

We form a basis out of the eigenvectors|§f] and As a first numerical example, we consider the scat-
we practically implement the EEM as a basis changetering by a5 x 5 array of thin PEC cross dipoles ar-
from the set of RWG functions [4]. We separate theranged in aregular lattice parallel to the plane. The
eigencurrents into two groups: coupled and uncou-dipoles are embedded into rectangular bricks, so that
pled. The coupled eigencurrents, associated with theach brick contains only a single dipole. Figure 3 (a)
larger, lower-order eigenvalues [, substantially — shows the dipoles and Figure 3 (b) shows the bricks.
depart from the true eigencurrents [&f], the total Incident wave is a linearly polarized planewave propa-
scattering matrix, and contribute to the multiple scat-gating toward the negativedirection. The derivation
tering occurring among the bricks. By contrast, theof the methods does not set any requirements for the
uncoupled eigencurrents, associated with the smalleipcident fields and, e.g., oblique incidence can be con-
higher-order eigenvalues 8], represent better and sidered without any modifications to the algorithms.
better approximations to the true eigencurrentsSpf ~ The detailed geometrical data is given in the second
and do not interact with one another. column of Table 1.

These observations enabled us to reduce the sys- The scattering problem is formulated using the
tem matrix[S]~! (in the basis of the eigencurrents) methods described in the previous sections and with
to block-diagonal form with just two blocks. In par- the EFIE. The bricks are divided tbx 4 x 2 small
ticular, the block arising from the interaction of the rectangles and each rectangle is divided into four tri-
coupled eigencurrents is usually far smaller than theangles. The numbers of triangles and (interior) edges
whole system matrix, so it can be easily stored andon the dipoles and brick’'s surface are shown in the
inverted with direct methods. The other block, pos-second column of Table 1. The results are verified
sibly huge, is just diagonal, hence it can effortlesslyby solving the same problem with the conventional
be stored and (formally) inverted. The order reduc-MoM using EFIE and 2700 RWGs. Figure 4 shows
tion we have just described is actually a consequencéhe monostatic RCS as a function of frequency. In the
of two concurring, though independent, facts: i) the TEPA-CBFM, we consider the primary CBFs of the
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bricks and all secondary ones, hence, the total num- %0

ber of CBFs for all frequencies &5? = 625. In the

TEPA-CBFM-pw method, the planewave based CBFs
are found by first using 360 initial planewave excita-

tions from different directions. Then, SVD with the
tolerancel0~? is used to determine the most impor-

tant directions that are used to generate the CBFs of
the bricks. The total DoF in CBF-pw depends on the
frequency and varies from 275 at 7 GHz (11 CBFs
for each brick) to 425 at 17 GHz (17 CBFs for each

brick).
In LEGO-EEM, the tolerance for defining the last
coupled eigenvalue is set 1®~°. Accordingly (see

ACES JOURNAL, VOL. 25, NO. 12, DECEMBER 2010
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—6— LEGO-EEM
TEPA-CBFM
- & - TEPA-CBFM-pw/|
®  MoM-EFIE

7 8 9 10 11 12 13 14 15 16 17
Frequency [GHz]

[14]), the expected accuracy of computed currents

(over bricks) is no larget0~—2 (as the bricks are not

Fig. 4. Monostatic RCS in dB for the geometry of

adjacent). With this criterion, the number of coupled Figure 3 as a function of frequency.
eigencurrents is 30 for each brick and the same for all

frequencies. The total number of DoF in LEGO-EEM
is thus 750.

X

>
>

x [m]

(b)

Fig. 3. An array of cross dipoles: (a) original structure
(dipoles), (b) bricks.

are arranged in a similar regular lattice parallel to the
xy plane as in the previous example. Figure 5 shows
the geometry and discretization of a single element
and Figure 6 shows the full geometry.

Fig. 5. A double cross dipole.

Figure 7 shows the monostatic RCS as a function
of frequency. We have used two different brick sizes.
The detailed geometrical data is given in the last two
columns of table 1. The bricks are discretized so that
first each face of a brick is divided intbx 4 x 2 (first
case) ob x 5 x 2 (second case) planar rectangles and
then each rectangle is divided into four triangles. A di-
rect discretization of (16) with MoM (without CBFM
and EEM) would lead to 19200 (first case) and 27000

As a second example, a larger problem is consid{second case) unknowns, respectively.
ered. We, also, study the effect of changing the size Figure 8 shows the required DoF of the TEPA-

of the bricks. Consider & x 5 array of double cross

CBFM-pw method. The CBFs are found using a simi-

dipoles by putting two similar dipoles as used in the lar procedure as in the first example. As the frequency
first example on the top of each other. The dipolesor the brick size is increased, the number of required
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size and the relative distance among the bricks mod-
eling the structure. In case 2, the spectrun&gfde-
cays faster than in case 1, because the brick’s bound-
ary is set farther away from the crosses. Nonetheless,
since in case 2 the bricks are closer than in case 1, a
stronger coupling is expected and, accordingly, more
coupled eigencurrents are necessary. In the limiting
case, when the bricks touch one another — which is
the worst case scenario — a criterion has been devel-
oped to relate the error on the computed scattered cur-
rents (i.e., the near fields) to the number of coupled
eigencurrents [14, 15]. Such a criterion can be used to
control the error a priori. In situations when the bricks
are separated (as discussed here), given that the cou-
pling decreases with increasing bricks’ distance, the
aforesaid criterion most certainly yields a convenient
upper bound to the error.

Fig. 6. An array of double cross dipoles.

40

35
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251
600

Monostatic RCS [dB]

550

15 —e— TEPA-CBFM-pw 1
—&— TEPA-CBFM-pw 2| 500
=+ -LEGO-EEM 1
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T T
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Fig. 7. Monostatic RCS in dB for the geometry of

Figure 6 as a function of frequency for two brick sizes. o ]

1 = brick sizel6 x 16 x 4mm and 2 = brick siz€0 x
300 L L L

20 X 4mm 6 8 1 16 18

0 12 14
Frequency [GHZz]

planewave based CBFs increases too. This can be e¥ig. 8. The number of DoF of the TEPA-CBFM-pw
plained by the facts that for higher frequencies, theasa function of frequency for two brick sizes.
current distribution on the bricks’ surfaces become
more complicated, and that as the bricks’ distance be-
comes smaller, the coupling between the bricks be- VIl. CONCLUSIONS
comes stronger. In this example, the CBFM based on In this paper, two algorithms, the tangential equiv-
the primary and secondary basis functions was not apalence principle algorithm (TEPA) [3] and the linear
plied. embedding via Green’s operators (LEGO) [4], are re-
In LEGO-EEM, the DoF were set t80 x 25 = viewed for solving EM scattering problems. A gen-
1750 and100 x 25 = 2500 for the cases 1 and 2, re- eral framework of the methods is presented and the
spectively, 70 and 100 being the number of coupledmethods are shown to be based on the same princi-
eigencurrents contributed by each brick [4]. The tol- ples and operators. The major difference is on the
erances for the coupled eigencurrentsidre? for the  form of the matrix equation to be solved. In addition,
first case and 0~ for the second one. As the spec- two macro basis function methods, the characteristic
trum of Sy; is insensitive to frequency to a large ex- basis function method (CBFM) and the eigencurrent
tent [14], the required number of DoF does not changeexpansion method (EEM), are applied to reduce the
with frequency either. On the other hand, the numbemumber of unknowns. The developed hybrid methods,
of coupled eigencurrents is affected by both a bricksTEPA-CBFM and LEGO-EEM, are shown to lead to
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dramatic reduction on the size of the matrix equation[8] A. M. van de Water, B. P. de Hon, M. C. van
and hence, allow efficient solutions of large problems
with reduced computer resources.

The numerical results show that the planewave
based CBFM may be the most efficient method to re-
duce the number of degrees of freedom. However[9] V. V. S. Prakash and R. Mittra, “Characteristic
the number of the required CBFs depends on the fre-
guency, and the bricks’ size and distance. In EEM, on

the other hand, the number of degrees of freedom can

be controlled a priori.

Beurden, A. G. Tijhuis, and P. de Maagt, “Lin-
ear embedding via Green’s operators: A model-
ing technique for finite electromagnetic band-gap
structures,Phys. Rev. E, vol. 72, pp. 1-11, 2005.

basis function method: A new technique for effi-
cient solution of method of moments matrix equa-
tions,” Microw. Optical Techn. Letters, vol. 36,
no. 2, pp. 95-100, Jan. 2002.

[10] E. Lucente, A. Monorchio and R. Mittra, “An
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