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Numerical analysis of reflector antennas uses a discrete approximation of the radi-
ation integral. The calculation replaces the actual reflector surface with a triangular
facet representation. The physical optics current is then approximated within each
facet. This paper provides analytical details of the method based on the assump-
tion of a constant magnitude and linear-phase approximation of the physical optics
current. Example calculations are provided for parabolic, elliptical, and shaped
subreflectors. The computed results are compared with calculations made using a
constant-phase approximation. These results show that the linear-phase approxi-
mation is a significant improvement over the constant-phase approximation in that
the solution converges over a larger angular region of space. This improvement can
significantly reduce storage requirements and possibly execution speed.

I. Introduction

One of the simplest numerical techniques for electromagnetic scattering analysis is based on a discrete
approximation of the physical optics (PO} radiation integral. The general modeling technique is similar to
that employed by Rao et al. [1] for the moment method solution of electromagnetic scattering by surfaces
of arbitrary shape. In this paper, we apply the methodology to the problem of shaped reflector antenna
analysts. This calculation comprises two distinct approximations. First, the actual reflector surface is
replaced by a triangular facet representation so that the reflector resembles a geodesic dome. One then
makes an analytic approximation of the PO current within each of the facets. Upon evaluating the PO
integral locally over each facet, the radiation integral reduces to a summation over the collection facets that
represent the surface.

Several years ago, a computer program was developed at the Jet Propulsion Laboratory (JPL) utilizing
the assumption of constant magnitude and phase of the PO current within each facet. This program has
proven to be surprisingly robust and useful for the analysis of relatively small shaped reflectors, particularly
when the near field is desired and surface derivatives are not known. It is natural to inquire whether a more
sophisticated approximation of the PQ surface current will yield more accurate results or permit the use
of larger facets. In this paper, a linear-phase approximation of the surface currents is made. Within each
triangular region, the resulting integral is written as the two-dimensional Fourier transform of the projected
triangle. This triangular shape function can be integrated in closed form [2] and the complete PO integral is
then a summation of these transforms. Significantly, other authors have developed more general techniques
for performing the required integration {3,4,5], which could be very useful for future refinements.

In what follows, the explicit details of the analysis are provided along with example calculations of
scattering from parabolic, elliptical, and shaped reflector surfaces. For a given size of triangular facet, two
general trends emerge from the calculations. First, the linear-phase approximation takes about three times
longer to compute a field point than does the constant-phase approximation. Second, there is an angular
region of space over which the solution is valid, and this angular region is significantly larger with the linear-
phase approximation than with the constant-phase approximation. Clearly, a trade-off situation exists here.
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Since the surface geometry and PO currents must be stored in memory, the linear-phase approximation
offers an advantage in terms of storage because fewer triangular facets are needed to reach convergence over
a specified angular region. On the other hand, to claim a speed advantage, this method must reduce the
required number of facets by at least one-third. This reduction will only be possible for reflectors in which
relatively large regions can be adequately approximated by a uniformly illuminated planar surface. It has
been found that this is the case for relatively large reflector antennas.

Il. Analytical Details

The PO radiation integral over the reflector surface £ can be expressed [6]

1 . e=ikR
H(r) = (Jk+ R) R x J, ()

ds’ 1
r s (1)

in which r designates the field point, r’ the source point, B = |[r— 1’| is the distance between them, and R =
(r — r')/R is a unit vector. The PO surface current on the subrefiector surface J, is expressed

J,(r") = 26 x H,(r") (2)

For the purpose of analysis, the true surface I is replaced by a contiguous set of N-plane triangular facets.
These facets, denoted A;, are chosen to be roughly equal in size with their vertices on the surface E. Figure
1 shows a typical facet and its projection onto the x-y plane, Let {&;, 3, z;) represent the centroid of each
triangle where the subscript ¢ = 1, .- -, NV is associated with a triangle. Then, the field obtained by replacing
the true surface ¥ by the triangular facet approximation is

—jkR

H(r) = ——Ef (ch+ )R x J(r')iR—ds' (3)

i=1

In Eq. (3), J is now the equivalent surface current evaluated on the triangular facets. Since the triangles
are small, it is expected that R and R do not vary appreciably over the area of a given facet. Thus, let R;
and R; be the value obtained at the centroid (=, y;,2;) of each facet and approximate Eq. (3} by

N
H(r) = —%Z (;k+ ) R; x Ty(r) (4)

T,—(r)_/ ,(r) T (5)

Assume that the necessary transformations have been performed so that the incident field H, is given in
terms of the reflector coordinate system. Then

J:(r') = 28, x H,(r") (6)
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Next, assume that the incident field can be represented by a function of the form

e_jkrs

Ay, (™)

H, = h, (l",’)

where r, is the distance to the source point. Also, r; and r,; denote the vectors r’ and r, evaliated at the
centroid of the ith triangular facet and are regarded as constants. Then, Eq. (5) can be written

T(r) = 22X DelT) et gy (8)

To simplify the form of the integration, the surface Jacobian is introduced within each triangular facet A;.
For a planar surface z; = fi(x,y), a normal is given by

Ni=—Xfoi —¥foi + & (9)

where

-=% -=g’;
fm—am fyz—a

and a unit normal is given by

i = 1N_.| (10)

This permits the explicit evaluation of the Jacobian as

1/2
Ja, =N |= [f . 1] (11)

Making use of the Jacobian then allows Eq. (8) to be rewritten as

fl,‘ x h,(r’,')

L) = =

Ta, /A , e IERET) gl gyt (12)

in which Aj represents the area of the ith triangular facet projected onto the z = 0 plane. Now, make a
Taylor-series expansion of the exponent in Eq. (12). Retaining only the first-order terms, one can formally
write

(a;: — wiz ~ 1) {13)

| =

R(m,y)+ ra(z,y) =

in which a;, u;, and v; are constants. This approximation corresponds to a far-field approximation on the
ith triangle. With this approximation, Eq. (12) reduces to

fi; x b (r';) . T ;
Ti(r) = ——2llJ, 7188 Juiz' foay") 1ot gt 14
(r) 27|'R1'7'.1i JA‘B /Are Tay ( )
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1t may now be observed that this integral is the two-dimensional Fourier transform of the ith projected
triangle A}, expressed as

S(u,v) = / T+ g gy - (15)
a

L
%

Tn order to explicitly evaluate the constants in Eq. (13), note that the equation of a plane can be expressed
as

z=(x—z)fei+(W—W)fyi+ =

This can be used to obtain

a; = kR(z;, 1) + kry(®s, 45) + wizi + vid (16)
ui  (xp— @)+ (2p — zi)fai | (%5 — %) + (2 —2i) fai
k- - R(m,;-') * rs(zi, ¥i) (n
v (=) + (5p — zMfys | (s —wi) + (20 = 2) fys
ko R(zi, ui) * s (i, yi) (a9

Placing the result of Eq. (16) into Eq. (14), and recalling Eqs. (6) and (7), yields

. e~ kR
T,‘(r) = Ji(’"i)JA,—B—J(u’x"*'u‘y")S(u,f, vg_)

(19)

This is the final form of the linear-phase approximation over each triangular facet. This expression can be
used in Eq. (4) to compute the radiation integral once the Fourier transform of a triangular shape function
S(u,v) is known. Fortunately, this transform can be computed in closed form [2] from the expression

3
S{u,v) = e.‘f(ﬂivn+vy,.) Pn—1—Pn 20
o) ; (2 + pn—1v){(t + prv) (20)

in which (2,,yn) are the coordinates of the triangle vertices numbered in a clockwise direction. The slope
of the nth side (between corners n and n + 1) is given by

pp = Dntl " Un (21)
Tntl — In

Some attention must be given to the following special cases. First, if w = v = 0, the transform reduces to
the formula for the area of a triangle

5(0,0) = —-;— [:cl(yz —y3)+ za{ys —w1) + 23(y1 — yz)] (22)
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Next, if u/v — —py,, then

lim

S(u ’U) — Pn+1 — Pr-1 x [ej(urn_1+uyn_1) _ ej(uz‘,,+vyn) + @T_ﬂtl______lj_ﬁlej(ua:,,+vy,,)
ufv——pa ' v2(pn+1 - pn)(pﬂ.——l - pﬂ)

jv
(23)

lIl. Numerical Results

A FORTRAN subroutine was written to perform the linear-phase calculations indicated above. Test cases
were run for parabolas, ellipses, and shaped subreflectors, and the results were compared with calculations
that use a constant magmtude and phase approximation on the triangular facets. A focused parabola is
neither an interesting nor a challenging case for the algorithm, since the phase variation over the facet is
small. As a simple test case, the far-field pattern and gain of a 1, 000A-diameter parabolic reflector with a
focal length of F7 = 400X was caleulated. The reflector 1s illuminated by a linearly polarized horn with a cos @
pattern funclion. Figure 2 compares the linear- and constant-phase approximation for a roughly equally
spaced 80-by-80 rectangular grid of points divided into triangles over the reflector surface (approximately
10,000 triangles). The running time on a Cray X-MP/18 was less than one minutc. Convergence was
checked by increasing the number of triangles until the computed solution did not change appreciably over
the angular region of interest. It has been previously demonstrated [7,8,9] that, once sufficient triangles
to converge the solution have been utilized, the results of the constant-phase algorithm are valid, so only
comparisons of the two techniques are presented.

A more interesting example is the ellipse shown in Fig. 3. The projected aperture of the ellipse is about
3 m, illumination function is a cos*?@ pattern function (22.3-dB gain), and the frequency is 314 Gllz.
The cllipse is about 350A along the major axis. Figure 4 compares the constant-phase approximation for
different grid densities of approximately 4,000, 10,000, and 23,000 triangles, and illustrates a general trend
of the mcthod, i.e., depending on the size of the triangles, there is an angular limit over which the solution
is valid. Figure 5 compares the linear-phase approximation with the constant-phase approximation for the
4,000-triangle case and demonstrates that the angular range is larger with the linear-phase approximalion.

A third example is the shaped subreflector shown in Fig. 6. The diameter is 3.42 m (135 in.), and it is
fed with a cos®™ @ pattern function (29.7-dB gain). Figure 7 compares the results of a 4,000- and 10,000-
triangle grid constant-phase approximation with a 4,000-triangle linear-phase approximation. The frequency
of vperation is 2.3 GHz, hence, the subreflector is about 26 in diameter. The 10,000-triangle constant phase
is the converged result and the 4,000-triangle linear case gives the same result. A very good approximation
is also obtained with a 1,400-triangle grid for the linear case, but no meaningful results are obtained with
the constant-phase case. Figure 8 gives the linear-phase result for 31.4 GHz (360X subreflector) using 23,000
triangles. No meaningful result 1s obtained for the equivalent constant-phase case.

One final example 1s given by a beam-waveguide system that has recently been built at JPL. The measure-
ment setup consists of a 22-dB-gain feedhorn that is used to illuminate a beam-waveguide system consisting
of a pair of parabolic reflectors. The mirrors are arranged to replicate the input feed pattern at the focal
poinl of the second dish. Details of the geometry are given elsewhere [10]. A calculation of this system
was made using the triangular facet PO technique by first computing the near-field scattering from the first
reflector and using these values to compute the PO current on the second reflector. Subsequently, the tri-
angular facet program is used a second time to compute the field radiated by the second parabolic reflector.
lu Fig. 9, the results of this calculation are compared with experimeutal measured data taken at X-band.
As can be seen, the computed results compare favorably with the measured data.

Most of the cxamples given are for large reflectors to illustrate the robust character of the technique.
For smaller reflectors (<< 100A), meaningful results can be obtained on a typical desktop computer in a
reasonable time.
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IV. Conclusions

The triangular facet approximation technique provides a simple and flexible method of analysis for re-
flector antennas. We have found that the linear-phase approximation is valid over a larger angular region
than is the constant-phase approximation. In applying this method to fairly large (100 to 1000)) reflectors,
the linear-phase approximation provides a significant reduction in the computer storage requirements and
can reduce computation time in some cases.
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Fig. 4. Ellipse example: constant-phase approximation for offset plane.
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