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1. Introduction 
 
The three basic computational approaches that are on the forefront of computational 
electromagnetics (CEM) are the finite element method (FEM), the finite difference time 
domain (FDTD) technique, and the method of moments (MoM). The first two techniques, 
based primarily on the partial differential equation (PDE) form of Maxwell’s equations 
are powerful, reliable, and versatile techniques that are in general use for a variety of EM 
problems. These are not discussed or summarized in this tutorial except to briefly 
mention distinctions from the MoM approach. 
 
MoM techniques are based on integral equation (IE) representation of fields and waves 
derived from Maxwell’s equations. These methods have also been in use for several 
decades now. Unlike FEM and FDTD techniques, which lead to sparse matrices and 
matrix-free time-stepping respectively, the MoM approach leads to dense matrices based 
on Green’s function interactions.  
 
The MoM is also distinct from the FEM and FDTD in other ways, which can make it 
particularly suitable for certain classes of EM problems. The MoM in surface 
formulations only requires discretization of and unknowns placed on surfaces of 
homogeneous scatterers. This is contrast to PDE based methods where all space including 
the interior and exterior of scatterers are modeled. Furthermore, these PDE techniques 
also require truncation of the resulting grids or meshes through artificial absorbing 
boundary conditions (ABCs). 
 
MoM techniques, in their complete generality, can be used with both volumetric IE 
formulations and surface IE formulations. This article concentrates on the use of MoM 
for surface IE formulations, wherein most of the advantages of the MoM are to be found. 
This tutorial is based on extensive work performed by several outstanding researchers 
over several decades, and no novelty of treatment is claimed in this article. One of the 
basic aim of the tutorial is to legitimize the use of surface-based techniques amongst 
simulation and design engineers who may be more attuned to volumetric techniques 
where conduction current is an easily understood physical quantity. 
 
We will start with a review of the surface equivalence principle, which is the basic EM 
principle that enables surface-based IE formulations and resulting MoM. The ideal case 
of perfect conductors will be discussed as a simple version of this principle. The problem 
of modeling materials will be then summarized, and extended to multiple finite scatterers. 
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The important case of lossy conductors, particularly relevant to the microelectronics and 
emerging nanoelectronics regimes, will be discussed. In addition, a discussion of surface 
impedance approximations will follow. Finally, results and a discussion will be 
presented. 
 
It should be pointed that no claim of completeness or wholeness of review is made. The 
article is based on the authors’ necessarily limited viewpoints and experiences, and only 
supporting and relevant references are provided. Many of the cited works in turn refer to 
other excellent papers that may not necessarily be cited in this work itself, in addition to 
other important papers that exist in the extant literature as well. 
 
The MoM formulations presented in this tutorial are implemented using the popular Rao-
Wilton-Glisson basis functions. While several advances have been made in higher-order, 
hierarchical, and other basis functions, these are not in the scope of this article.  
 
2. The Surface Equivalence Principle 
 
Surface MoM-based solution of IE forms of Maxwell’s Equations are typically based on 
the surface equivalence principle. This is an important mathematical principle, the 
existence of which is critical for the correct and exact formulation of MoMs. While this 
will be discussed again when discussing lossy conductors, it is important to note at the 
outset that the equivalent surface quantities produced by the application of this principle, 
and in particular the equivalent surface current, may not necessarily have a physical 
meaning such as current flowing on or near a surface. However, as will be shown, all 
relevant quantities including, if required, volumetric conduction current, can be 
accurately and exactly recovered, within mesh discretization and related solution error, 
from post-processing of the MoM system. 
 
We will start with the case of a single homogeneous object (Region 2, with constitutive 
parameters ε2 and µ2) in a (different) homogeneous object (Region 1, with constitutive 
parameters ε1 and µ1). Without loss of generality, it is assumed that the scatterer is 
excited by a source in Region 1, as shown in Figure 1. The source and its interaction with 
the scatterer leads to total fields E1 and H1 in Region 1, and E2 and H2 in Region 2. The 

application of the surface equivalence principle in this instance proceeds as follows.  
 
 
 

ε1 µ1  
H1 
E1 H2

E2 

Source
Figure 1: A homogeneous scatterer in a homogeneous medium, 

excited  by an exterior source. 

ε2 µ2  
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The original problem depicted in Figure 1 is replaced by two equivalent problems; the 
simultaneous solution of these two problems results in the same solution as that of the 
original problem, in the following sense. As shown in Figure 2, the equivalent exterior 
problem is constructed by replacing the scatterer by a mathematical surface of the same 
shape, shown with a dotted line. In addition, the entire space interior and exterior to the 
surface is filled with homogeneous material with constitutive parameters of the original 
background.  It is assumed that in this problem, the correct total fields are produced in the 
Region 1 exterior to the mathematical surface, and that zero fields are produced inside 
Region 2. Therefore, there are discontinuities of fields across the surface. In order to 
support this jump, there must exist non-zero electric and magnetic current densities, 
tangential to the surface, 1J and 1K . It is important to note that no physical meaning 
should be ascribed to these equivalent current densities; these are merely related to the 
tangential discontinuities of the fields produced by the mathematical specification of this 
equivalent problem, through the regular tangential boundary conditions for electric and 
magnetic fields. In Figure 2, n̂ represents the outward normal to the surface at any point. 
Note again that there is no object in this equivalent problem, only a mathematical surface 
on which exist equivalent current densities, which radiate into a completely homogeneous 
space. Also note that the original source is present. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second equivalent problem, depicted in Figure 3, is the interior problem. In this case, 
the entire space is filled with the constitutive parameters of the scatterer.  
 
 
 
 
 
 
 

Figure 2: Equivalent exterior problem, with equivalent sources producing
the correct total external fields and zero fields interior to the surface
bounding the original Region 1. 

ε1 µ1 ε1 µ1 

Source

H1 
E1 

nEK ˆ11 ×=

11 ˆ HnJ ×=
Null Fields

ε2 µ2 ε2 µ2 

Null Fields

H2 
E2 

nEK ˆ22 ×−=

22 ˆ HnJ ×−=

Figure 3: Equivalent interior problem, with equivalent sources producing
the correct total internal fields and zero fields exterior to the surface
bounding the original Region 1. 
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In this problem, it is assumed that equivalent current densities 2J and 2K which support a 
different discontinuity in the fields across the surface are produced. True fields are 
produced in the interior of the surface, and zero fields are produced outside. The original 
source no longer exists in this equivalent problem; however the current densities act as 
secondary sources producing non-zero fields inside the surface. Also note again that these 
are equivalent current densities only, not to be ascribed physical meaning, and that there 
is no object remaining in this problem, only a homogeneous medium. 
 
The two equivalent problems are linked by the fact that the two sets of equivalent 
currents, 1J , 1K and 2J , 2K are not independent. In Figure 1, if tangentially boundary 
conditions are enforced across the scatterer surface, one can see that since there are no 
explicit electric or current source densities, the tangential fields must be continuous. 
Therefore,  from the fact that each of the two equivalent problems generates the true 
fields on each side of the surface, that the two sets of currents must themselves be equal 
and opposite i.e. 1J =- 2J and 1K =- 2K so that the true boundary conditions 

( ) 0ˆ 21 =−× HHn and ( ) 0ˆ 21 =−× EEn  are enforced. Therefore the two equivalent 
problems need to be setup and solved simultaneously. 
  
In Figures 2 and 3, it can be seen that the equivalent current densities in the exterior 
problem are shown to be on the outer side of the equivalent surface, and those in the 
interior problem are shown to be on the inner side of the surface. These limits can, in 
terms of limits of singular Green’s function integrals as observation points approach the 
surface from either side, give rise to sign changes in formulations and are therefore 
important. Also, the fact that the equivalent currents produce null fields in the interior 
(for the equivalent exterior problem), and in the exterior (for the equivalent interior 
problem) can be used as a verification of correctness, or degree of accuracy, in MoM 
implementations. This fact (equivalent currents producing null fields) is termed the 
extinction theorem.  
 
For the special case of a perfect electric conductor (PEC), which is an ideality that proves 
to be a useful approximation in several scattering problems, the equivalent problem 
becomes simpler as shown in Figures 4-6. 
 
 
 
 
 
 
 
 
 
 
 
 
 

ε1 µ1  
PEC H1 

E1 

Source

Figure 4: A PEC scatterer

Null 
Fields

J 
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The original scattering situation is shown in Figure 4. There are no fields produced inside 
the PEC. Also, a true surface current J is induced by the source. This current is an actual 
surface conduction current that exists on an ideal PEC. In addition, the boundary 
condition that the tangential electric field vanishes on the surface of a PEC needs to be 
considered. The exterior problem is shown in Fig. 5. Note that all the fields produced by 
the equivalent source 1J are the same as the true fields in Figure 4, including the null 
fields inside the PEC object of Figure 4. This current radiates in a homogeneous medium 
with constitutive parameters of Region 1. In this case the equivalent current is identical to 
the original surface current density J; and the original problem is simply replaced by one 
where the PEC object is replaced by its surface on which resides the current to be found.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What about the interior equivalent problem ? This is shown in Figure 6. This is a don’t 
care problem; no current can radiate in a complete PEC background, and hence there is 
no associated equation to setup or solve. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Equivalent exterior problem. 

ε1 µ1 ε1 µ1 

Source

H1 
E1 

11 ˆ HnJ ×=

Null Fields

PEC PEC 

Null Fields

Null Fields

22 ˆ HnJ ×−=

Figure 6: Equivalent interior problem. No radiation occurs in a 
homogeneous PEC environment. 
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Note that there are also no equivalent magnetic currents; the fact that the electric field has 
zero tangential component on the surface of the PEC assures this in the non-trivial 
exterior problem. 
 
If the PEC is replaced by a finite conductivity metal structure, the exact equivalent 
problems are significantly different from the PEC case, and resemble the dielectric 
problem. Figure 7 shows the conductor of conductivity σ and the external source. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this case, in the exact formulation, both the exterior and interior problems, shown in 
Figures 8 and 9 are relevant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ε1 µ1  

σ 
H1 
E1 H2

E2 

Source

Figure 7: A homogeneous conducting scatterer in a homogeneous 
medium, excited  by an exterior source. 

Figure 8: Equivalent exterior problem. 

ε1 µ1 ε1 µ1 

Source

H1 
E1 

nEK ˆ11 ×=

11 ˆ HnJ ×=
Null Fields

Null Fields

H2 
E2 

nEK ˆ22 ×−=

22 ˆ HnJ ×−=

Figure 9: Equivalent interior problem. Currents radiate in a 
homogeneous region with the conducitivity of the original 
scatterer 

σ 
σ
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In the interior problem, the homogenous material has finite conductivity and is therefore 
lossy but permits some propagation of fields. As the conductivity increases, this 
propagation will reduce, and it can be shown that the magnitude of the magnetic current 
density will drop. The case of finite conductivity will be discussed in more detail later in 
this paper. Note that unlike the PEC case, the fields interior to the conductor are not 
assumed to be zero, and that both electric and magnetic current densities are assumed, 
with no physical properties assigned to these quantities. 
 
 
Finally, we will now generalize the discussion to an arbitrary number of material objects. 
If there are N such objects, there will be N+1 simultaneous equivalent problems. The four 
equivalent problems for this case are shown in Figures 10-14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

H2 
E2 

Figure 10: Original multibody problem. 

H3 
E3 

H4 
E4 

H1 
E1 

ε1 µ1 

ε2 µ2

ε3 µ3 

ε4 µ4
Source 

K1 

Figure 11: Equivalent problem for Region 1 
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K2 

Figure 12: Equivalent problem for Region 2 

J2 

Null 
fields 

ε2 µ2 

ε2 µ2

Figur
e 19. 

K3 

Figure 13: Equivalent problem for Region 3 

Null 
Fields 

J3 

ε3 µ3

ε3 µ3

H3 
E3 

K4 

Figure 14: Equivalent problem for Region 4 
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Null 
Fields 
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ε4 µ4

H4 
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From Figures 10-14, it is seen that the first equivalent problem includes all surfaces, and 
equivalent currents are placed on all of them. All the remaining equivalent problems have 
only one surface associated with them. As in the simpler cases, all these equivalent 
currents are not independent; they are equal and opposite to the equivalent currents in 
Figure 10 for each particular surface.  
 
If any of the objects are conducting, the discussion on modeling finite conductivity 
objects is immediately valid. If any object is a PEC, the interior problem for that object is 
trivial and can be removed, and no magnetic currents are associated with that surface 
either in its own equivalent problem or in the first equivalent problem. 
 
      
3. Surface Integral Equations for PEC Scatterers 
 
3.1 Electric Field Integral Equation (EFIE) 
 
The integral equations associated with a PEC scatterer are based on the exterior problem 
depicted in Figure 5. The total electric field in Region 1 satisfies the boundary condition 

( ) S∈= rrE ,0tan1                                                             (1) 
where S denotes the surface of the PEC scatterer, tan represents field quantities tangential 
to S, and r represents field observation points. If we split the field into an incident part 
created by the source and a scattered part created by the source interacting with the 
scatterer through the induced current J, we get the condition 

( ) ( ) 0
tan1tan1 =+ rErE incscat                                               (2) 

where the scattered field is represented in mixed potential form as  
( ) ( ) ( )rrArE 111 φω ∇−−= jscat                                               (3) 

whereω is the angular frequency, A and φ  are the magnetic vector potential and electric 
scalar potential respectively and are obtained by convolution of the Green’s function and 
sources, namely the surface current density J  and the surface charge density ρ . 

( ) ( ) sdG
S

′′′= ∫
′

rJrrrA 11
1

1 ,
4

)(
π
µ                                                 (4) 

( ) ( ) sdG
S

′′′= ∫
′

rrrr 11
1

1 ,
4

1)( ρ
πε

φ                                                     (5) 

The Green’s function is expressed  as follows 

( )
rr

rr
rr

′−
=′

′−− 1
,1

jkeG                                                             (6) 

where k is the wave number in the corresponding medium and r , r′are the observation 
and source points respectively. The surface charge density and the surface current density 
are related by the continuity equation given by  
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( ) 0)( =+⋅∇ rrJ ωρjS                                                          (7) 
Putting (7) in (5) we can write (3) as  

( ) ( ) ( ) ( )( ) ( )
tan1

tan
11

1
11

1 ,
4

,
4

rErJrrrJrr
rr

inc

SS
sdGjsdGj −=′′⋅∇′′∇−′′′− ∫∫

∈′∈′ ωπεπ
µ

ω (8) 

At this stage the unknown current density is discretized using basis functions ( )rfi  scaled 
by unknown coefficients  

( ) ( )rfrJ i
N

i
i∑

=
=

1
α                                                       (9) 

and we test (8) with a tangential testing function ( )rt  to obtain a system of linear 
equation given by                                                    

VIZ =                                                           (10) 
where , 

( ) ( ) ( )

( ) ( ) sdGj

sdGjZ

n
S

m

n
S

mmn

n

nn

′′⋅∇′′
⎭
⎬
⎫

⎩
⎨
⎧

⋅∇+

′′′
⎭
⎬
⎫

⎩
⎨
⎧−=

∫

∫

∈′

∈′

rfrrt

rfrrrt

r

r

,11
1

,11
1

,
4

,

,
4

,

ωπε

π
ωµ

                              (11) 

nnI α=                                                             (12) 
 

( ) ( )rErt inc
mmV 1, −=                                                 (13) 

Typically, Rao-Wilton-Glisson based linear functions are used as both basis and testing 
functions, though higher order and curvilinear counterparts and multiresolution versions 
are now becoming increasingly widespread.  
 
3.2 Magnetic Field Integral Equation (MFIE) 
 
 MFIE is an alternate approach for solving scattering problems where the boundary 
condition is enforced on the tangential magnetic field behavior across the PEC surface. 
The jump in the tangential magnetic field across the PEC boundary is supported by a 
surface current 

( ) ( ) ( ) ( ) ( )rJrHrnrHrn 121 ˆˆ =×−×                                       (14) 
The magnetic field vanishes inside the PEC scatterer, and just outside the scatterer the 
total field is decomposed into an incident and scattered field as in (2) 

( ) ( ) ( ) ( ) ( )rHrnrJrHrn scatinc
111 ˆˆ ×−=×                              (15) 

The scattered magnetic field is expressed in terms of magnetic vector potential as  

( ) ( )rArH 1
1

1
1

×∇=
µ

scat                                            (16) 

Using (4), (15) and (16), and rearranging the order of the differential operator we get 
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( ) ( ) ( ) ( ) ( ) ( ) sdG
S

inc ′′×′∇×+=× ∫
∈′

rJrrrnr
J

rHrn
r

11
1

1
1 ,

4
1ˆ

2
ˆ

πµ
           (17) 

Now expanding the unknown current density as in (9) and using the appropriate testing 
operation, we get a linear system similar to (10) , where the matrix elements are given by 

( )
( )

( ) ( ) ( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′′×′∇×+= ∫

∈′
sdGZ

nS
nm

n
mmn

r
rfrrrnrt

rf
rt ,11

1

,1 ,
4

1ˆ,
2

,
πµ

      (18) 

and the right hand side vector is  

( ) ( )rHnrt inc
mmV 1ˆ, ×−=                                               (19) 

MFIE is an integral equation of second kind, hence has much better spectral properties 
and is more suitable for iterative solution. However applicability of MFIE is limited to 
closed 3D objects owing to the jump condition in the tangential boundary condition.  
 
 
 
4. Surface Integral Equation for Penetrable Scatterers 
 
4.1 Two-region PMCHWT  
 
For non-PEC boundaries the tangential field components do not vanish on or inside the 
object enclosed by the surface.  In that case the boundary conditions on the E and H 
fields are  

tan2tan1 EE =                                                         (20a) 

tan2tan1 HH =                                                       (20b) 
To model such a problem, we use two equivalent problems, as discussed, the equivalent 
exterior problem (Fig. 8), and the interior equivalent problem (Fig. 9).  
Decomposing the total field into the incident and the scattered field like (2) , (15) we get 

tan21tan21
incincscatscat EEEE +−=−                                   (21a) 

 
tan21tan21

incincscatscat HHHH +−=−                                   (21b) 

Now we can express the field quantities in terms of the constituent potentials as follows 

( ) ( )

( ) ( )
( ) ( )

tan21

tan
22

2

2
222

11
1

1
111

,1,,

,1,,
rErE

KrFJrKrA

KrF
J

rJrA
incinc

j
j

j
j

+−=

×∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
⋅∇

∇+

+×∇−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
⋅∇

∇−−

εω
φω

εω
φω

 (22a) 
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( ) ( )

( ) ( )
( ) ( )

tan21

tan
22

2

2
222

11
1

1
111

,1,,

,1,,
rHrH

JrAKrKrF

JrA
K

rKrF
incinc

j
j

j
j

+−=

×∇−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
⋅∇

∇+

+×∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
⋅∇

∇−−

µω
ψω

µω
ψω

(22b) 

Here the additional potential quantities, namely the electric vector potential F, and the magnetic 
scalar potential ψ  are given in by the following expressions 

( ) ( ) ( ) sdG p
S

p
p

p ′′′= ∫
′∈

rKrrKrF
r

,
4

,
π

ε
                                    (23a) 

( )
( )

sd
j

G
j

p

S
p

p
p ′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

′⋅∇
′=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
⋅∇

∫
′∈ ωπµω

ψ
rK

rrKr
r

,
4

1,                          (23b) 

where the subscript p indicates the corresponding medium where the potential is computed. The 
source Kp is the equivalent surface magnetic current radiating in the region p as described in Fig. 
(8-9). The unknown electric and magnetic current densities in the interior and the exterior 
medium are related by a negative sign as discussed. Finally the unknown electric and magnetic 
surface current densities are expanded as     

 ( ) ( )rfrJ i
N

i
i∑

=
=

1
α                                                    (24a)                              

( ) ( )rfrK i
N

i
i∑

=
=

1
β                                                   (24b) 

Following the standard testing operation a linear system similar to (10) is constructed 
where  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

HKHJ

EKEJ
LM
ML

Z                                                     (25) 

The sub-blocks are linear operators given by  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

′′⋅∇′′+′′⋅∇′′⋅∇+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

′′′+′′−
=

∫∫

∫∫

∈′∈′

∈′∈′

sdGsdGj

sdGGjL

n
S

n
S

m

n
S

n
S

mmnEJ

nn

nnnn

rfrrrfrrt

rfrrrfrrrt

rr

rr

,12
2

,11
1

,122,111

,1,1,
4

,,,
4

εεπω

µµ
π
ω

(26a) 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) sdGsdGj

sdGGjL

n
S

n
S

m

n
S

n
S

mmnHK

nn

nnnn

′
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

′⋅∇′′+′′⋅∇′′⋅∇+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

′′′+′′−
=

∫∫

∫∫

∈′∈′

∈′∈′

rfrrrfrrt

rfrrrfrrrt

rr

rr

,12
2

,11
1

,122,111

,1,1,
4

,,,
4

µµπω

εε
π
ω

(26b) 
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( ) ( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

′′×′∇+′′×′∇−= ∫∫
∈′∈′

sdGsdGM
nn S

n
S

n
m

mnEK
rr

rfrrrfrr
rt

,11
2

,11
1

,1,1,
4 εεπ

(26c) 

( ) ( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

′′×′∇+′′×′∇= ∫∫
∈′∈′

sdGsdGM
nn S

n
S

n
m

mnHJ
rr

rfrrrfrrrt
,11

2
,11

1

,1,1,
4 µµπ

(26d) 

 
The vector of unknowns is given as  

Nn
n

n ...1, =⎥
⎦

⎤
⎢
⎣

⎡
=

β
α

I                                                      (27) 

,and the right hand side vector is  

( ) ( ) ( ){ }
( ) ( ) ( ){ } Nm

incinc
m

incinc
m

...1,
,

,

21

21
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−

+−
=

rHrHrt

rErErt
V                            (28) 

Note that the size of the linear system doubles compared to the PEC problems, as the 
boundary conditions are on both the electric and the magnetic fields, and the unknowns 
are the electric and magnetic surface current densities.  
 

4.2 Multi-region PMCHWT  
 
The most general configuration consists of an arbitrary number of regions of materials, 
embedded in a background or free-space. These regions can intersect or touch in general. 
The approach is to use M+1 surface equivalent problems for M regions (and 1 
background region). Then, appropriate boundary conditions (tangential E and H fields), 
and appropriate identification of independent currents are used to set up the overall 
equation. The following conditions are used to set up the equations: 
 
•For an interface between a dielectric and a PEC region, the tangential electric field is 
zero, no equation is present for the tangential magnetic field, the exterior of the PEC has 
only electric current, and the interior of the PEC does not have any associated unknowns 
 
•For an interface (regions i and j) between two dielectrics or poor conductors, Ji =- Jj , 
Ki =-Kj ,  Ei =Ej , and  Hi = Hj  
•For an interface between a dielectric and conductor, or between two dissimilar 
conductors,  Ji =- Jj , and Ei =Ej 
• Boundary conditions and dependence of the basis functions as described above 
enforced by a sparse, bipolar matrix NM ×P , where M is the number of independent basis 
functions and N is the number of all basis functions combining individual regions. 
 
The system of linear equations thus obtained is presented by  

N
T

NMMMNNN
T

NM VPIPZP ×××× =                                       (29) 
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Where Z is a region by region PMCHWT matrix similar to (25), except that the entries 
correspond only to a single region rather than the sum of the contributions from two 
regions. 

 
 
Pictorially, the matrix equation can be represented as: 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: Pictorial representation of the multiregion PMCHWT system matrix 
 
 
The Green elements are 1’s or –1’s, the rest of the rectangular matrix contains zeroes, the 
blue dense portion of the MoM matrix represents interactions within each region, using 
the Green’s function for that region. The red vector is the set of independent electric and 
magnetic currents, and the long black vector is the set of incident fields. 
 
It is important to take care of the junction problem while handling more than two 
touching dielectric regions. This is achieved by identify the independent basis function(s) 
corresponding to the junction and also to set up the corresponding P matrix entries for 
the associated dependent basis functions. We do not discuss junctions in any detail here. 
 
5. Surface Integral Equation for Lossy Scatterers 
 
For boundary enclosing a region with finite conductivity, the tangential electric field does 
not vanish on the surface, hence there exists a magnetic current on the boundary and the 
problem can in general be modeled using PMCHWT equations as described in section 4. 
The wave number for a conducting medium is given by  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

0
0 1

ωε
σµεω

j
k                                                     (30) 

where σ  is the conductivity of the region.  For highly conducting regions, the wave 
number has a strongly negative imaginary part, so the corresponding Green’s function (6) 
is associated with a very sharp decay which corresponds to the loss in the medium. When 
the decay becomes very sharp, i.e. for the case of very high conductivity and very high 
frequency the interior medium Green’s function looks like a delta function, and in the 
limiting case the electric field contribution of the current in the interior medium can be 
represented locally by a linear term as   

N 

M 

N N 

N

N 

M
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( ) 222 2
1 JJE

σ
µωjZS +==                                             (31) 

SZ  has been described in the literature as the surface impedance, and can be used to 
simplify the PMCHWT formulation using an impedance boundary condition (IBC) for 
the restricted case of high conductivity and high frequency. The IBC imposes a local 
relationship between the surface electric and magnetic current as 

JK ×−= nZS ˆ                                                    (32) 
However, as mentioned before the IBC is a simplification that is applied only to the cases 
involving high frequency and high conductivity. Whereas a complete two region 
PMCHWT formulation is general in terms of it applicability to lower frequencies  and 
conductivities, and automatically reduces to IBC at higher frequencies. The Green’s 
function convolution involving highly decaying kernels for conducting media can be 
handled using specially designed semi-analytic quadrature routines using polar 
coordinate system.  
The surface based technique for modeling loss in conducting structures is useful to 
evaluate the actual volumetric current flow through the conductor cross-section. The 
system of linear equations as described in (25-28) is solved to obtain the distribution of 
equivalent electric and magnetic current on the conductor surface. The surface currents 
can be post-processed to find the true electric field distribution in the interior of the 
conductor using the interior medium Green’s function as depicted in figure 9. Finally the 
true volumetric current  inside the conducting region volJ  is obtained as  

( ) ( )rErJ 2σ=vol                                                        (33) 
where 2E  is the interior medium electric field, computed using the interior medium 
material properties and the equivalent surface electric and magnetic current in the interior 
region.  
 
The overall impact of such an approach is a purely surface formulation that correctly 
captures the volumetric effects including conduction current distribution. 
 
6. Sample Results 
 
Several excellent papers in the literature present exhaustive results using surface based 
PEC and dielectric MoM formulations. Here, we present some results related to the use of 
the surface MoM for conducting media, an approach that is occasionally misunderstood 
with the assumption that some surface approximation to the true conduction current is 
being enforced. As discussed in the previous sections, this is of course not true as 
explained through the surface equivalence principle, but this will also be shown through 
some examples. 
 
Also, all examples shown here are produced using the PILOT code suite, an MoM-based 
code developed at the Applied Computational Electromagnetics Lab, University of 
Washington. This integrated code suite includes both surface and hybrid surface-volume 
formulations, special quadrature for lossy media, circuit interconnectivity and SPICE 
models, fast frequency sweeps, fast multilevel multipole and rank-compression 
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algorithms, and multi-stage loop-tree and approximate inverse preconditioners, with 
algorithms parallelized for multi-processor and workstation clusters.  
 
The first example, in Figure 16 shows a Copper inductor of dimensions 

mm µµ 200200 × and metal width mµ20 over a substrate of height mµ100 . The substrate 
has a conductivity of 5101× S/m. The MoM code with lossy conductor modeling is used 
to obtain the quality factor of the inductor. The extremely low peak value of Q is typical 
of non-optimized on-chip inductors over lossy substrates, although the low Q is 
exaggerated here because of the high conductivity substrate. 
 
The second example, in Figures 17 and 18, shows the extracted inductance and resistance 
of a Copper bar of dimension mm50.5mmmm5.0 ×× , and conductivity 17 Sm108.5 −× . 
The limiting values of inductance at low and high frequency match against commercial 
solver, and the expected “S” shaped curve for inductance is obtained with the lossy 
medium, but not with a simplistic surface impedance approximation. For simple 
structures like a single bar, the quasi-static resistance can be computed analytically from 
the skin depth at a given frequency. The analytic resistance exhibits (Figure 18) a close 
match with the simulation result including the low frequency level-off to the DC 
resistance, from a surface-only formulation. For higher frequencies, the surface 
impedance results match with the PMCHWT results. However for lower frequencies, the 
surface impedance based model fails to capture the level-off of the resistance and the 
inductance curves, that arise due to uniform current flow through the conductor cross-
section. The true lossy medium surface formulation captures all relevant resistance 
effects including near DC. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: Quality factor of an on-chip spiral inductor on a conducting 
substrate. 
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The next example examines the volumetric current density within a metallic square cross 
section conductor, captured by post-processing fields obtained from a surface-only 
formulation. Increasing skin effect in a conductor can happen by changing frequency or 
conductivity. The case of changing conductivity is shown; as conductivity is increased, 
the volumetric current attempts to flow near the surface. The same effect can also be 
shown by plotting, on a log-scale, the fall off of volumetric current away from the surface 
of the conductor. The numerical value obtained from the surface formulation compares 

Figure 17: Frequency variation of inductance of a Copper bar using a lossy medium 
PMCHWT surface formulation 

Figure 18: Frequency variation of resistance of a Copper bar using a lossy medium 
PMCHWT surface formulation. 
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favorably to the drop-off predicted by an analytic skin-depth approximation, as shown in 
Figure 20. 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)

(c) (d)

Figure 19. Current distribution in the cross section of a square conductor, 
with the following ratios of minimum to maximum volumetric current for 

given conductivities 

(a) 4
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Figure 20.  Variation of volumetric current density with the distance from the surface 
( mmx 5.0−= ) of a copper conductor with uniform cross section of mmmm 11 × . The rate 
of decay is compared against the rate computed from the analytic expression of skin 
depth for a given frequency and conductivity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: Top: Analog circuit layout, including details of vias and lumped circuit 
approximations, and current density obtained at 1GHz. Bottom: S-parameters and 
comparison to measurement. 
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Finally, the complete power of a surface-based, accelerated MoM solver (PILOT in this  
case) is shown as in the case of a 4 layer analog sub-circuit that includes a multi-layer 
inductor, vias, capacitor, coplanar waveguides, and waveguide tees. The entire 
simulation, completed over the entire frequency band shown in the results, required 15 
minutes on a single PC.  
 
7. Discussion 
 
This article presented a review of surface-only MoM formulations starting with a 
summary of surface equivalence principle examples. The case of conducting media was 
also discussed in particular. Several critical parts of a real-world, powerful MoM code 
such as PILOT, such as fast multilevel solvers and frequency sweeps, low-frequency 
conditioning and preconditioning, numerical quadrature, and parallelization have not 
been discussed in this article. The main aim was to summarize the power, generalization 
and completeness of surface formulations as developed by a host of excellent researchers. 
It should be pointed out that there are certainly instances where hybrid surface-volume 
formulations, or FEM/FDTD formulations, are better suited owing to conditioning issues. 
In the final analysis, a truly adaptive hybrid code with all these features as well as time 
and frequency versions, functioning seamlessly with other multi-physics engines, would 
be a desirable goal within CEM! 
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