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Introduction

The surface impedance techniques have been discussed with moderate
interest over the past fifteen years [1-6]. They are approached as a means to
express sinusoidal fields by yielding a Neuman condition on the surface of
conductors. They are generally applied when the skin depth is much less than
the thickness characterizing conductor thicknesses within the problem. Some
discussion has been given to their utilization near corners and slots [31.
They are not generally used as a means of approaching transient problems.
The main focus of this work is in their utilization both in steady state and
transient problems, primarily for shell type structures.

The first mention of the use of surface impedances with shell structures
was given by E. M. Deeley [6]. Using Faraday's law, the idea is to relate the
normal derivative of the magnetic scalar potential on a conducting surface to
the values of the scalar potentials above and below that surface. The formu-
lations are expressed generically using transfer relations in this paper.
That is, the normal derivative of magnetic scalar potential is expressed as a
combination of potentials on either side of a conducting shell structure.

The use of such expressions allows one to formulate an eddy current
problem, modeling only the nonconducting regions. This produces a tremendous
savings and reduction in complexity for modeling both two and three dimen-
sional eddy curreat problems. This in itself produces a threefold reduction
in the order of unknowns representing the problem. The formulation 1is
applicable to finite element, finite difference, and boundary integral
techniques. As shown below, it is useful to know a priori the nature of
tangential field dependence on the interface of the conductor. For many
problems, especially those in nondestructive evaluation and testing, this
dependence is built in to the experimental set-up of the NDE procedure itself.
When the characteristic problem skin depth is comparable to the thickness of
the conducting structures in question, the rate of change of the magnetic
field tangential to the conducting structure is negligible compared to its
variation in the normal direction. In both of the above cases, the exact
field is determined using the surface impedance approach without iterating at
all. When no a priori knowledge of the interfacial field change is known, it
is necessary to iterate the solution procedure once or twice., This 1is
especially true in a transient problem when one is interested in the extended
decay behavior of the field; in a transient field problem, the equivalent skin
depth becomes infinite near the tail of the transient. Fortunately for most
problems, the spatial rate of change in the field on the interface does not
change drastically during the transient.

The technique fostered here is especially useful in nondestructive
evaluation and testing (NDT and NDE). Consider, for instance, the problem of
materials characterization for pipes. Among the parameters of interest are
changes in thickness of the pipe, conductivity, and the pinpointing of flaws
within the pipe. It is prohibitively expensive using volume discretization
procedures to re-characterize a grid to reflect a thickness change in the
material. Using the surface impedance technique, however, is relatively
straight forward to make a slight change in the position of the interface;
indeed, the interfacial thickness is an easily adjustable parameter built into
the transfer relations. With the use of appropriate linear programming and
optimization techniques, one can predict the most likely material change which
best describes the search coil signature being registered.
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Theoretical Approach

The surface impedance technique offers speed and flexibility at little
cost in accuracy and it is applicable to both steady state and transient

problems. In the transient problem, the Laplace transform of all field
quantities must be taken, and the inverse transform applied at the end of the
analysis. The inverse transform can be approached using Gauss-Laguerre
quadrature formulas. The approach is the same for all geometries. For

pedagogical reasons, we choose to outline the approach appropriate for
Cartesian slabs. -The problem is shown in the insert of Table 1 where we have
a slab of conductivity o and permeability u, of thickness A. The field above
and below the slab in the nonconducting regions can be represented as the
gradient of a scalar. The question being addressed then is, "How is the
normal derivative of the scalar potential at the upper and lower portions of
the slab related to the value of the scalar potential itself on both

surfaces?" The approach begins by writing Faraday's law and taking the curl
of it. R 5 ¥ 2%
VxVXE-=-~- SE-(u)V x f = -uo == (1)
Expanding this and noting that no charges exist in the problem of interest
gives R 95 8%
V(V*E) - V'E = -uo 3T (2)

We next take the Laplace transform of the equation which yields
2> >
Ve + uo(se(s) - E(t=0)) =0 (3)

(where lower case "e" is used for the transformed quantity). For the purposes
of this problem, we assume that the electric field in any direction can be
represented as
- j(k_y+k_z)
e=e(x)e 7 7 (4)

where x is the normal component and y and z are the tangential components (see
insert, Table I).

Note that this implies some sort of periodicity in the y and 2z directions.
We can, in fact, for the purposes of NDE, choose a priori what k_ and k, are
without any loss of generality [6]. Expanding, Eq. (3) becomes

2° ~ -~ ~
d7e 120 % + pose(s) = +uok(t = 0) (5)
dx2 y z

which after substitution is

— - Yze = uok(t = 0) (6)

where

Yy = /-uos + ki + ki
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For the purposes of this paper, we shall focus on problems where the
particular solution is zero at time t = 0. Ignoring its contribution does not
effect the prediction of the characteristic response of the system. As shown
in the first example to follow, the total field to any excitation is e3311y
found by convolution once the characteristic step or 1mpulse field response is
known. gpe general solution of Eq. (6) is written in terms of a particular
solution e, and the value of electric field of the a and B surfaces as

~

S o oo simyx eB s1nY(A—x) 2 (7)
sinyA sinyA ]

The particular solution can be jgnored in most realistic problems. It is
definitely easier to account for e_after the homogeneous solution is in hand;
we will account for it when we ar® predicting the total solution in the last
section of this paper. We now return to Faraday's law and represent it in
terms of its equivalent Laplace transform as

> auH
VxE=-35— (8a)
Vxes= -u(sh(s) - H(0)) (8b)
The tangential components of this equation are
0
de de
3;1 - = —u(shz(s) - Hz(o)) (9
0
aez aeg
TR Y = ‘u(shy(s) - Hy(o)) (10)

/

The tangential derivatives of e, must be zero on the interface as must e, to
insure current continuity. We next substitute Eq. (9) for the express1on
derived in (7) and write the results at both x = 0 and x = A to give

AB
o - Y B
Y{eycot(YA) - 31nYA} = u(shz Hz(o)) (11)
‘a
Y{51nyb - egcot(YA)} = -u(shg - Hz(o)) (12)

It is convenient to represent (9) and (10) in transfer relation form as

fa ~a
cotyA s1nYA shz Hz(o) (13)
-1 ] ~B
T cotyA sh, Hz(o)

Inverting this equation yields the result

26



We now return to Faraday's equation

the normal component of which is.

Aa —
tYA
ey u coty
ey sinyA
-)
V xxE
de de
oy )Y 4

To utilize (16), we must repeat the

electric field.

i

-<|'r.'.‘

Upon doing this, we

cotyA

s1nYA

1 ‘o ~a
sinyA sh, ~ Hz(O) (14)
-cotyA s B _ HB(o)
z z
__38 =
=-3B (15)
-u(sh - Hx(o)) (16)

above process for the z component of the
find

— l ~
sinyA

w

>
@ < R

ﬁa(o)
y (17)

~cotyA s Hs(o)

With a definition of a generic impedance matrix Z as

we can write Eq.

11z

21z

wa
-Vy).

where
(1 =

12z

22z

and wB

N

< |~

1

cotyYA

sinyA

- 1
sinyA

(18)
-cotyA

(16) in transfer relation form

zlly

21y

are the

Z

a2 o

~

an>

L (¢ = 0)

12y

1
s 9y

22y

3H
0)

vy
s 3y (t

(19)

82;8

oH

322

magnetic

s+l 2 @w=0
s 9z

scalar potentials on the a/B surface
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The subscripts on the impedance refer to variations of the y or z components
of the electric field, respectively. For most problems, this dependence is
the same for both components. Note that we now have the result desired; that
is, we have related the normal component of the scalar potential to its
tangential derivatives on the upper and lower surfaces. We can, in fact,
control the tangential derivative behavior by the nature of the excitation we
choose in many NDE problems. Thus, this relationship, summarized in Table 1,
gives us a very unique and time saving linkage which allows us to model only
the scalar potential region. We have commonly chosen to represent that region
using the integral formulation since it is ideal for handling unbounded space.
The integral technique simply states that the scalar potential at any point in
a region can be related to the normal derivative and the value itself on the
surface interface which bounds the volume of interest. When the field point
in question falls on the interface itself, the value of the potential is
modified to be one-half (¢ = 1/2)

y(r ) aG(r ,r )
ep = [ (——332— G(rp,rq) - w(rq)-——jﬁi;iLﬂ dsq (20)

The process can be repeated for a number of geometries. In each case, the
procedure is as follows:

(1) solve Eq. (1) for the region of interest,
(2) Use the tangential component of Faraday's law to relate E and H
across the interface.

(3) Use the normal component of Faraday's law to relate the scalar
normal derivative to its value on both sides of the shell.

For a cylindrical geometry, i.e., a cylindrical shell of inner radius B, outer
radius @, the above procedure 1is followed to yield the set of transfer
relations summarized in Table 2. For a spherical shell with only ¢ directed
currents, the same procedure yields the transfer relations of Table 3.

Confirmation of the Theory

The technique is tested in both cylindrical and spherical geometries.
The hollow cylinder shown in Figure 1 is stressed by a homogeneous external
field decaying with characteristic time of 40 ms. This is the so-called FELIX
cylinder experiment and is discussed in [7]. We choose to treat the problem
as a two dimensional one, examining the fields at the midsection plane of the
cylinder. It is easily shown [8] that the scalar potential, both inside and
outside the hollow cylinder, has a cosinusoidal dependence.

A

¥ = P(r)cosb (21)

The defining integral equation for the problem is

G oy N
¥ =6 (—d¢-g¢ 26
2 (rp) $ (3¢ vy =) ds (22)

where
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en|T -t |
¢=-—b2—. (23)
2n
The term 3y/9n in (22) is replaced everywhere by its equivalent surface
impedance representation in Table 2. After making that substitution, the pair
of equations, both on the inner surface and outer surface of the cylinder, are
as follows

= - i
cos(9 ) . r}a 3G oss + r}a Gcosﬁ(LFz(B,a)) o ! [ Gcosquz(a,B) . ~ out
2 an q o2 q | aB qf (r=a)
‘ {
=R GZ(B,a) | cosb r=8 3G ~in
/ Gcoseq oE dsq : -—75JE + f Ea-cosequq + GFZ(G,B) coseq dsd ¥ =g)
. o B o
r=o le(B,a) 8H9(t=0) Gz(a,B) BHe(t=0) Hr(t=0)
I Gds sa a8 * SO 90 - s
r=8 [GZ(B,a) aﬂg 1 ang(t=0) Hz(t=0)
[ cds [Fmg—55 * s F0B) T T s (24)
Observe that the impressed external field is represented as
9Hg (£=0)
H (t=0) = = J cosb (25)
r 38 o

The complete solution can be pursued by one of two routes. The first is
to determine those values of the Laplace transform variable s for which the
determinant of the LHS of Eq. (24) goes to zero. Then, use the residue
theorem to numerically realize the inverse transform of the scalar potentials
from Eq. (24). For this problem, it is a bit easier to simply seek those
values of the Laplace transform variable s for which determinant goes to zero,
and then to form a convolution of this step function response with the actual
40 ms decay field [8]. The total and induced predicted field following the
second procedure is shown in Figure 2. This result differs from the exact
response by less than 0.0l%. The characteristic transient decay time for the
exact two dimensional step response is 56.56, while that found from the
sur face impedance procedure is 56.58.

The second test problem is shown in Figure 3. Here, a hollow conducting
sphere is placed in a uni form external magnetic field of 1 tesla which is
turned on at time t = 0, The integral equations are again written on both the
outer surface and inner surface of the sphere, substituting where appropriate
for the normal derivative of the scalar potential. The result is
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cosd £ (a,B8) I -g (a,8)2 -
—_—L 3_G __l_____Z_ [ S out
7 + ff n cosequq * = DT 32 ff Gcosequq " DeT af ff Gcosﬂquq ¢(r=b
i
gl(B,a) 2 | cos® £ .(B,a) ~s
2 —2 L1 - in
DeT aB If Gcosequq: 7t /I Tn cosequq 37 per 2 [[ Gcos® dsq (r=a)
|
(26)
where
G "———-—-—_1__
4u(x -r )
P 4

The right-hand side of Eq. (26) has been set to zero since we are interested
in the step function response; this is found by determining those values of
the Laplace transform variable s for which the determinant of (26) is zero.

For .purposes of comparison, we set up the exact field in terms of the ¢
component of the vector potential A. For this problem, it is appropriate to
assign the vector potential in each of the three regions (outside, conducting,
and interior region) as follows

C
A (r>b) = B rsind + L ging (27)

] o r2
A¢(a<r<b) = {Czjl(kr) + C3y1(kr)) sind (28)
A (r<a) = C,rsind (29)

) 4
The solution follows by requiring that the tangential component of H and the
normal component of B be continuous across the outer and inner interfaces.
The result is

0 jl(ka) -a yl(ka) ¢, 0
1 .
- b_2 Jl(kb) 0 yl(kb) c, bB
(30)
. 1. 1 =
0 kJo(ka) a Jl(ka) 2 kyo(ka) P yl(ka) Cy 0
1 kj (kb) - i (xb) 0 ky (kb) - L (kb) c B
b3 Jo b J1 Yo b Y1 4 o




The characteristic decay time following the exact procedure is 19.86, whereas
for the surface impedance procedure, it is 19.87. The predicted step function
induced field is shown in Figure 4. These predicted field values differ from
the exact values by no more than 0.0l17%.

Computing the Transient

In general, it is difficult to compute the exact field after calculating
the general transient dependence, 1i.e., the elgegvalues A = -5, In the
development of the procedure, it was stated that the E field was to be ignored
at t = 0. For most trans1ent eddy current problems, it is the B field which
remains fixed at t = 0%, currents being induced instantaneously to preserve
flux. By experienge we bave found that it is easiest to ignore all initial
field values; both E and H at t = 0. The procedure is as follows:

(1) Set all initial fields to zero at t = 0.

(2) Compute the eigenvalues of the matrix defining the unknowns using
either the integral, finite difference, or finite element approach.
For the last example worked, this means finding those values of k
for which the determinant of the matrix defined in (26) is zero.
This is a nonlinear procedure and will result in several (actually
an infinite number) eigenvalues Sy» 82, S3, ces o

> >
(3) Express the H or B field in terms of the interfacial values of the E
field for all eigenvalues (eigenfunction expansion).

(4) Solve for the unknown interfacial E fields by writing the Hor B
field from Step (3) at several points in the conductor at t = 0 (the
number of points being equal to twice the number of eigenvalues kept
from Step (2)) (each eigenvalue involves one unknown for the upper
sur face and one for the lower).

(5) Write the ﬁ field both 1inside and outside the conductor from
Fargday's law (an alternative is to relate interfacial values of ¥
to E using the relations given in Tables 1 through 3).

. > , .
Consider the example of the sphere. The E field internal to the sphere
for the case of "N" eigenvalues can be written as

2

“ jl(kir)yl(kiB) J (k. B)yl(k r) ALt

ep(t) = sine ] ei{jl(ki@yl(kis) = _‘]l(k By, (k; e

i=1

j , . =\,

) eB{Jl(klr)yl(klcz) J (k, a)y (k, r)Ie it a1
i Jl(kiB)yl(kia) - J (k a)yl(k B)
The radial component of the induced H field is from Faraday's law
11 3 2 cosd %
Hr uk r sinf 30 (e¢s1n9) = r HA (32)
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This component of # must be -H, at t = 0, ® = 0 for our test problem.

For the sphere, the first three eigenvalues (A.) were computed in
Step (2) to be 19.06, 666, 255l. Keeping the first two e%genvalues only means
that there are 4 unknowns in (31). We choose 4 arbitrary points internal to
i, e;, eg using (31) and (32). The predicted
induced field was found to be off by 0.885% using only the first eigenvalue
and by 0.533% using the first two eigenvalues.

the shell and solve for e?, e

Conclusion

A procedure has been outlined for solving shell type structures using a
sur face impedance technique. If some a priori knowledge of the tangential
character of the field exists, no iteration is necessary. The technique 1is
applicable to integral, finite element, and finite difference procedures.
Extremely accurate solutions have been obtained for two test problems using
matrices of only size 2 x 2. Among the more outstanding questions yet to be
addressed in the procedure are the following:

(1) How can the method be generalized to account for corners of various
internal angles?

(2) How can the procedure be generalized for problems where the internal
electric field at time t = 0 is not equal to zero as assumed in this

work?

(3) Can the generalized inverse transform be per formed efficiently using
a Causs-Laguerre procedure?

Certainly, for the simpler transient and sinusoidal problems involving shell-
like structures, the procedure seems to be both efficient and useful.
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Table 1 Planar Slab

+> BE
SOIVGVXVXE=‘UGE : of
/.’ -
A~ ‘t
Laplace transform &) » o ey

s N, Ry Jk oz ? -
Assume e = e(x)e Y e conductivity o

2

Y = ¥Y-uogs + ki + kz permeability u

~Q 1 ~Q ~a
L cot YA - sin YA shz Hz(O)
~8 Y 1 ~8 _ ~B
e | Y cot YA shz Hz(O)
- 2~ AH (t=0) 1
z z z z 3y , 1 _y
11z 122 lly 12y 8y2 ) dy
g 238 ﬁz(t=0)
. . 2 . 32';68 +l 8Hy(t=0) kS + —
21z 22z 21y 22y 3y2 s 3y - ﬁs(t=0)
- X
+
2~a A (e=0)| L%% $
LR + 1_ =
3:2 s 9z
~B
2~ 3H_(t=0)
3%y +l z
-322 s iz ]
where
t A - —1__
; =L]F Y Tshava
=u Y 1 _ ’
sin YA cot YA

the spatial wavelengths k_ , k_ are applied to the u (z and y component of the electric
field); (;y =z, for many probfems)
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Table 2 Cylindrical Shell

Vit - uo (s;(s) - E(:-o))
2 2

37e 3e 3e

9 (1 9 1 0 2 r 6 . _
F(?-b—!—_(ree)) 4——2-—-2—'0—2'-53‘-* 7 uo (see Ee(o))

r 98 r 9z

2 2

13(aez) p de, Be, ( ©)
= {1 =] 4 = + = yo (se_ - E_(0
r ar ar r2 an az2 z z

j(me+kz)

Assume T = e(r)e
2

conductivity ©
permeability u

9% de 2
—2—e + %ﬂ-e— - (k2 + B ;1 + uos) eg = —uoEe(o) Y= Yyos + k
or r
ale, | de, . .
-—2£+?57—-(k + 55+ vos) e, = -uoE_(0) n=vm +1
or T
4 1 ~a ~ ~
fn(B,u) + < gn(a,B) eg o shz - Hz(O)
(8,a) £ (a,8) +=| |8 * sht - #(0)
Lgn ! n? B [:} z z 3
[£.(8,0) g (@,8)| | i si‘;-'ﬁ‘;(o)l
~B ~8 _~B
|-gm(B,u) fm(u,B) e, shy - HO(O)
t - '
o = v (v, (ry)3; Grx) Jz(Yy)Yl(Yx))
g Xy Jl(yx)YL(vy)—Yl(vy)J!(Yx)
(x,y) = 2
81 Y) T (3, G0Y, y) =3, (ry)Y, (vx)]
z z ~Q -
F (8,0) G (0,8) S ~) o) ’l 20 . lauﬁ(t-o)
a a n'P® n'%s a aez s 86
~0
H (t=0)
z z - TP (em éig. —_
Gi(B,0)  Fia,B) o L %P ) A (e=0) ¥,
5 g G (B,a) F (a,B) = + = - -
n n [} ae2 8 20 ~8
3$B Hr(t'O)
~0
32';& . 1 3Hz(0) r &
azZ 8 9z
248 it (0)
37y . 1 'z
azz 8 3z
where )
- (31 _(ry) - YL0I (1Y) 1 2
) = ¥ GIGT Gy - anTLan) b Y T wE [amTam - L amTay))

1
fn(y,x) -~
DeT

gn(y,x)

]
’ Gn(x’y) DeT

F:(x,y) =

DeT = (£ (8,0) + 3)(£, (@,8) +3) - g, (B,a)g (@,8) 5 n = vmd + 1




¢ directed current, 03¢ only

vZe - wo(se(s) - $(0)) = 0

Table 3 Spherical Shell

2
1 ] 29 1 ] . 9 1 3
F G E N i g+ 5, 5= 7~ uo(se-E(®)) = 0
r r siné T 8in" 6 3¢ r sin" 6
- jmd
Assume e = e‘(r)e *(8)
2
¢ = p::m * 1 (cos)
£,.08.0) g @] |5 ; shy - Hy (t=0)
(8.0 £ 0| [EF st ~ Hg(c=0) |
£ (xry) = & {jr"(ky)yn(kx) - jn(kx)yl'\(ky)} L1,
n {Jn(ky)yn(kx) - Jn(kx)yn(ky)} y
g (x,y) = = 1
n K2 [J“(ky)yn(kx) - Jn(kx)yn(kﬁ)
k = Y-pos
- - r T mn) |
fn(a,B) cotefn(a,B) gn(u,B) cotegn(a,ﬂ) s aziu . aﬂe(t 0)
1 a a a a a 362 30
DeT ~
- 83 ~0
‘zn(ﬁ,a) cotegn(B.G) fn(B.a) cotefn(B.‘!) s 97 0y |2 | 0T + H_(£=0)
[} B [ ] a 98 (] ~8
~8 S+ B0
. 32"!8 . 3H, (e=0)
B ae2 EX)
s 39 ~8
B 36 + He(t'O) J
where
DeT = fn(ﬂ ,a)fn(u,B) - gn(B,u)gn(a,B)




Figure 1. Felix Cylinder stressed by a vertical B field; inner radius

a, outer radius b
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