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1. Introduction

The purpose of this paper is to analyze the diffraction phenomenon introduced by perfectly
conducting convex surfaces with dielectric coating, resulting from an interaction of these structures
with an electromagnetic radiation created essentially by sources which are set on these objects at
high frequencies, in other words for characteristic dimensions of the structures large in terms of
wave-length.

When the object is perfectly conducting and of simple shape (sphere, cylinder, ellipsoid),
analytic solutions can be obtained. These are eigenfunction series which converge slowly when the
dimensions of the object become large in terms of wave-length. It is then necessary to develop
asymptotic expressions from these exact solutions. A well known approach uses the Geometrical
Theory of Diffraction (G.T.D.) and its extensions such as the Uniform Theory of Diffraction. We
shall apply these methods to conducting structures with dielectric coating on which one or several
sources like apertures or microstrip antennas are placed. We will primarily focus on the fields in the
shadow region.

The case of cylinders with dielectric coating or surface impedance has received attention in the
1950's (for example Wait [12], Fock [2], Logan [7]). The purpose was to analyze the propagation
of radio waves around the earth. In 1980, Rao and Hamid have given a geometrical interpretation
of the diffraction phenomenon by a dielectric coated circular cylinder [10]. From the exact solution
in the case of an infinite line source in presence of a circular cylinder with dielectric coating, the
reflection and transmission coefficients are developed and a ray-optical approach is presented. It is
essentially a qualitative analysis. As to Wang [13], he obtains the roots of the characteristic
equation which describes the modes likely to propagate in the shadow region. Paknys [8] studies
the surface field created by a magnetic or electric line set on a perfectly conducting circular cylinder
with a dielectric coating. He develops the exact solution in the form of Hankel functions series and,
by Watson's transformation and application of residues theorem, gives an asymptotic solution in
form of residues. In 1986, Kim [5] completes the study by analysing the diffracted field due to an
infinite line source in front of an infinite perfectly conducting cylinder with a dielectric coating. He
studies the problem of a perfectly conducting circular cylinder with dielectric coating or impedance
surface and develops the exact solution given as Hankel functions' series. From this solution, an
asymptotic expansion is deduced in the lit region, the shadow region and the transition region.
Pearson, in 1987, studies the 3 dimensional problem : radiation of an electric or a magnetic dipole
in front of or on an infinite circular cylinder with dielectric coating [9]. Few experimental results are
presented in the above contributions. In the present work, we first present the case of a source
placed on a coated circular cylinder. The source is either a slot or a patch, and in the former case we
compare the infinite line and the magnetic dipole models of the slot. This comparison shows how
useful a 2D model can be in the analysis of a 3D problem. In a second step, we extend the circular
cylinder solution to the case of a smooth convex surface. Here, at each point along a ray-path we
approximate the convex surface by a circular cylinder having the same radius of curvature. The
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theoritical results are established and applied to the cases of an elliptical cylinder and of a truncated
cone. Since exact solutions are difficult to obtain in most cases, we checked our numerical results
by comparing them to measured values of the radiated far-field, the surface field and the coupling
coefficient of two slots.

In the following, the time dependance is assumed to be exp( jot).
2. Radiation

2.1 Circular cylinder with dielectric coating
a) Dipole

The geometry of the problem is given in (Figure 1). The perfectly conducting infinite circular
cylinder of radius a is coated by a homogeneous dielectric of relative complex permittivity €; (€; =

€' — j€'1). The thickness of the dielectric is d=b-a with b the outer radius of the coated cylinder. We
note ko the free-space wave number.
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Figure 1 : dielectric coated cylinder

Cylindrical coordinates (p,$,z) are used. At the point O, the source is a magnetic or electric
dipole arbitrarily oriented with respect to the circular cylinder (3 dimensional problem). The

position of the source is determined by 5(; (po,90,Zo) and that of the observation point P by 6
(p,9,2). The electric and magnetic fields are given by :

E=- é grad(I- gradG) — jop(I-G) + KagradG

H=- Elﬁ grad(K-gradG) — joe(K-G) + IngradG
where K and I are respectively the magnetic and the electric current densities and G a scalar
Green's function.

When the source O and the field point P are outside the dielectric, the scalar Green's function
in the TE case is given by the integral expression (5.1) in the appendix (for more complete
theoretical developments see [1] ). This Green's function is modified by Watson's transformation
and then, approximated by application of the residues theorem. This leads to asymptotic
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expressions valid only in the shadow region as defined by geometrical optic. The asymptotic
expression of the Green's function takes the following form :

1 OO
=g 2
n=1

+o00 + oo :
2 j Ra(h) HP(vp) H2(vpo) € - italé - b0l + 21) ¢ - ihCz - 20) dh

& 2.1)
(1’ s 1)
where R, (h) = Ii‘Y'n (vb) -] Ch(’Yn;I‘ﬂm (vb) and v2 = k2 — h2
(aH%) (vb) - j Ch(Y)HP(vb) ,
oY Y=7Yn

The complex value 7, is the nth root of the characteristic equation :

2y : @) =
H'Yn (vb) -] Ch(Yn)HYn (vb) =0 (2.2)
The integral with respect to h is then approximated by replacing the Hankel functions by their
Debye expansions which are valid for I <<1 and T << 1[5]:

o]

L

HS,Zn)(vp) = /mpsiin(a) e ~Ivpsin(@) - ot -9

(2)(\’90) = [ 2 2 e—j(VPoSiH(B)—BYn—%)
Tvposin(B)

where a and B are such that Y, = vp cos(a) = vpg cos(B).
We then introduce the effective radius of the cylinder called an slightly superior to b :

Yn = Van —janon .
. n a Tn a
So o and P are now writtenas: . =cos" ! (<) =cos- 1 (&) B=cos-1(—)=cos-1 (L)
P g’p Y P (Vpo Po
This permits to consider the parameter Gp =| d— 0o ! +27np —cos — 1 (%“) —cos —1 (;—") as an

0
angular distance. Therefore, (2.1) reduces to :

j 400  +4oo +eo
=1y ¥ Rn(h) \/
4n n=lp=-o | V“v/P - anV'\/Po an
& - i(h(z-20) + Yaon + VWp -a2 + Wpo a2 ) dh 2.3)

98



The exponential term of the scalar Green's function is now written as : e ~J1(zZo) = JVln - andnOn

where 1 = v p2 - :11,2l + pé— a,21 +a,0p, in order to apply the stationary phase method to the
integral with respect to h. We set

6n=tan‘1(zl_‘_“zo) andL,,:'\/I%Jr(z—zo)2

1 = Lsin(8y) and (z — zo) = Lycos(Bn) h=k,cos T and v =kosin T
This method of approximation is presented in [9] and leads to :

“+o0 40

G = Go(Qu) n% pzzm DH(Q1) e~ ¥Cnsinén , /Lsné : DI(Qy) & - KoS2 i

where

v p3—a% = S1sinBy and V p? — a2 = Sysinfy,

Go(Q) = Eé— 93)—;?—5—1 is the free-space Green's function

sinfp JHD (kobsindy) - j ch(y)}ﬁ%)(kobsine,,)])
oY Y="n (2.5

. : M’k heinBo) Dk bsi
2_ 27 HY. (kobsin®p) — j Ch(¥n)Hy; (Kobsin®n)
[Dh@]*=—1—4/5 ( D

e— J¥nOnsinén caracterizes the creeping wave attenuation on the dielectric coating.

Referring to the studies in the case of a perfectly conducting convex surface, we consider
two points on the dielectric surface called Qp and Q3. The incident ray (OQy) hits the dielectric
surface tangentially at Qy, creating a creeping wave which propagates along an arc of geodesic on
the dielectric surface (Q;Q7). This type of waves propagates with an exponential attenuation.
(Figure 2) gives a geometrical interpretation of this problem. Sy is the distance OQq, S7 the
distance Q7P.

The complex number Yy represents the propagation constant of the creeping waves on the
dielectric coating. The index p defines the number of encirclements done by the creeping ray on the
coating. In general, one mode of the creeping waves (n=1) and two associated rays (p=0 and p=-1)

are sufficient to describe the phenomenon if the dielectric thickness is <0.1 A.

When the source is inside the dielectric, the scalar Green's function is given by (5.3)
presented in the appendix. This function is approximated by application of the residues theorem and
the Watson's transformation. Unlike the case of a source located outside the dielectric, the Debye
developments of the Hankel functions cannot be used. So, we must define new coefficients
homogeneous to the classic diffraction coefficients developed in the first part.

99



~ - EXPERIMENT. — - EXPERIHENT,

— THEGRY — THEORY

'm“ ||Hl ﬁ {
H‘
| g
) St
= = U
z £
- B4
- Ly
|
l B
- | |
| |
-” . - - v v v T T 1 '4% T T T T T T T 1
ST T ST S IR N | NN - RGO O R T T O TS
AELE (9 AGLE (3"
Figure 4 : slot modelled by a dipole Figure 5 : slot modelled by a line
2.2 Smooth convex surface with dielectric coating
a) Theory

For a dielectric coated convex surface of arbitrary shape and one infinite radius of curvature,
the paths of the rays are obtained by assuming that at each point, the surface behaves like a coated
circular cylinder whose radius of curvature is equal to that of the surface at this point. In the
following, we present very briefly the main points in the process of extending the results of the
circular cylinder to a convex surface.

The radius p; denotes the curvature in a direction defined by the vector multiplication of the
principal vector following the generating lines with the vector supported by the normal.

Then, the Green's function is obtained from the one relative to the circular cylinder :

d
G(P) = Go(Q1) Th A / ——‘3—2—- e - koS2
S2 (Pz + 52) (2.8)

Q

N — FYn()sinOpdt’
Th=2 Bp@e JQI P da:EQz@ )j Dj Q)
p:
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Figure 2 : creeping waves on the dielectric surface

b) Line

A simplified model of the slot is realized by means of a magnetic longitudinal infinite line
parallel to the generating lines of the circular cylinder. The problem becomes bidimensionnal and is
solved as in the 3 dimensional case (dipole source). According to [1], the asymptotic expression of
the Green's function is given by (using the same notations as in the 3D case) :

oo

= .
G = Go(Q1) z Z (DH(QI) e~ 'nOn Dg((b)} e~ koS2

n=] p=—oo S (2.6)

where G = et/ e ikoS1 (free-space Green's function),
olQ Wom TKS, p

7 HY (kob) - j ChrHP kob)
{D{{(Q)F:J —k? ( 8{ vy (o) =) Chlin)hy defines the diffraction coefficient at

H® (ko) - ] ChHD(kob)
oy Y="n

Qi1and Q2,

S1 and S, represent respectively the distances source point O- diffraction point Q; and diffraction
point Q - field point P, On is the angular distance separating the two diffraction points and Y, the
nth root of the characteristic equation :

H2 (kob) - j Chy HL (kob) = 0 @7

The roots of the characteristic equations (2.2) and (2.7) are determined with an accuracy of
10-3. For errors up to 10-2, there is no noticeable change in the accuracy of the final result.
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c) Patch on a dielectic coated circular cylinder

The microstrip patch is set on the perfectly conducting surface of a circular or elliptic cylinder
with dielectric coating. Simple models like the transmission line or the cavity ones give satisfactory
results for the far-field radiation pattern from a microstrip patch antenna set on a planar surface or
on a perfectly conducting circular cylinder [11]. Recently, the theoretical radiation pattern of a
square patch tilted by 45° with respect to the generating lines of the perfectly conducting circular
cylinder has been compared with the experimental one [4]. We apply the cavity model to a tilted
microstrip patch placed on a coated circular cylinder.

According to the cavity model, the patch can be replaced by four slots. Two slots (1 and 2)
are excited by a constant current and two slots (3 and 4) by a simple cosine distribution (Figure 3).
The length of the slot is equal to the side length of the square (a = 9.36 mm) and this width to the
dielectric thickness (d = 3mm). So, the total radiation field is the vector sum of the fields radiated
by each slot. The working frequency is 8 GH,.

dielectric

conducting plane

Figure 3 : patch and its equivalent slots

d) Experimentation

The first results present the radiation pattern of a slot on a cylinder. An X-band slot is set on
the conducting surface of a perfectly conducting circular cylinder of radius a=95mm, with a

dielectric coating of thickness d=3mm and permittivity & = (2.59,-0.02). The results are given at a
frequency of 10 GH,. (Figure 4) shows the equatorial radiation far-field pattern of the slot
modelled by a dipole whereas those related to the infinite magnetic line are reported on (Figure 5).

The thickness of the dielectric is equal to 0.1A : one mode and the two associated rays are sufficient
for the computation of the far-field.

Whatever the source model, the oscillations of the theoretical field are in agreement with the
ones observed in the experimentation except in the vicinity of the source. In the shadow region, the
relative levels are correct. The modelization of the slot by a line source gives good results, this is an
interesting model because it is a 2 dimensional one, easy to use and which gives a good
interpretation of the physical phenomenons.

The radiation pattern of a microstrip patch (with the same €, as above) is given in (Figure 6).
By comparison with the case of an uncoated perfectly conducting cylinder [4], the presence of a
dielectric modifies the far-field radiation patterns : the Eg component is much less attenuated than in
the case of a perfectly conducting cylinder. The creeping waves are guided on the dielectric surface.
Consequently, the losses relative to the radius of curvature are reduced. The experimental and

theoretical results of the component Eg compare favorably for ¢< 120°.
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Q1 and Qy are the diffraction points on the dielectric surface. Sy is the distance diffraction point Q;
- field point P.

Diffraction coefficients :

So, the diffraction coefficient is given by :

D] 2= i /28 __Hg (opisinéu - j Ca(tn) Hy cop1sindy)
n = — . -
Sinen ko (4[‘1&2) (koplSUlen) —-J Ch(’Y) }g)(koplsulen)_j

oY Y= (2.9)

The angle 6;, is defined as in the case of a circular cylinder with the help of the paths introduced for
each ray. And ¥y is the nth root of the modified characteristic equation :

H(Yz)'(koplsinen) — j Ch(y) H (kop1sindy) = 0 (2.10)

When the surface is convex, the radius of curvature at Q; and Q are different. Consequently,
the roots of the characteristic equation (or the poles-residues) depend on the radius of curvature and
must be calculated for each point of diffraction.

Creeping wave attenuation :

Before, the exponential term associated with the creeping wave has been decomposed in two
terms : a term of phase given by the arc length and a term of attenuation. Now, the pole-residue
depend on the radius of curvature of each point of diffraction. Thus, we shall write the

Q
j - j'YnSinendt,
exponentional term as : €/Q: where dt' is an elementary arc length.

Divergence factor :

The convex surface considered here are developable, thus the divergence factors 4/ % 21;

d
and , / 722—) are computed similarly to those in the case of uncoated perfectly conducting
$21P2+ 82

convex surfaces [1].
b) Experimentation

At mid-height of a perfectly conducting truncated circular cone of half-angle 7.76° and height
h=300mm (radius of the larger base rmax=129.65mm and that of the smaller base rpin=70.35mm),
an X-band slot is set on the conducting surface. The coating has a dielectric thickness d=3mm and

permittivity & = (3.4,-0.1). The radiation pattern lEq;! is computed at 10GH;. (Figure 7) shows
the equatorial far-field radiation pattern (6=90°) of the slot modelled by a magnetic dipole. The

thickness of the dielectric is 0.1A : one mode and the two associated creeping waves are
considered.
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Figure 6 : tilted microstrip patch Figure 7 : slot on a truncated coated

cone

The results are in good agreement. The introduction of a dielectric increases the levels of the
oscillations in the shadow region : the creeping waves on the dielectric surface are guided and much
less attenuated.

3 Coupling

3.1 Surface field

a) Theory

In the case of a circular cylinder, when the source O is at (pg =a, ¢g, Zo) and the field point P

at (p where a < p £ b,0,z), the scalar Green's function G is given by the integral expression (5.2)
given in the appendix.

The residue method leads to the following expression of the Green's function :

+o00 + oo
G(p, Eo) z 2 Rn) e —ihz-20) e-jva (¢ - 00) +27pl gh
2ma D=0 p= o J_co Vi
3.1)
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kigg (HE vipHD wip) - KD (vip)HY (v1b)) HP(vb)
koft (HD (vib)HDv12) - HD(viaHD v1b)) (B (vb) - j ChpHD(vb)
Y Y
Y=Yn

R(fa) = 4
(BP9 HDw1b) - B 1) HDv1a) Hig (vb)
(B v ibyHDv12) - EDvi2)HD (vib) (a[H%z"Wb) - Ch<7>fﬁ?)<vb>])
aY | T="n

where v2=k3-h?and vi =v Vg ,

and Y, is the nth pole, root of the characteristic equation H.g)'(vb) -j Ch(yn)H%)(vb) =0
. . _{vb\l/3
We introduce the parameter : ¥, = Vb + myT, where my = (7) . We note

b I (- 90) +21tp‘ = sp cosy and z — z, = sp siny

h =k, sina and v = kg cosa

So, the Green's function is written as :

G(P Po) =

+ oo
mg 2 R(tn) Z I e~ Jkospeos(@ - W)da e ~jmyTn| - o) +2m

P e (3.2)

Then, the stationnary phase method is applied to the integral. The first derivative of the
exponential term is equal to zero for a5 = g . Consequently,

. 400 400
G(_. 2 2 R(Yn‘\/ nj e ~JkoSp ¢ -imytq| (@ - ¢0) +2mp]

27ta€r

Introducing the following parameters :

Voo \1/3
&= ™Y and m, = (2]

Pg 2

where Pg = 5 is the radius of curvature in the principal plane (si,N,T) defined by the direction

cosy?
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of the incident ray, the normal and the binormal at the diffraction point and the Green's function

G(B, 60) takes the following form :

Cp. P = 3 - R E)
p= o P (3.3)
- /3 cer
where v = e-jﬁ/‘*( )]/2 1 ]27!: z ( ) e ~3&n
2m k3 (3.4)

Then, it is easy to extend the asymptotic expressions to the case of a general convex surface.

We introduce the radius of curvature defined in the principal plane (pg, pv) (pt = o for the objects
considered here) and we set :

e __v___d§=f myft)
0)

op 2m2(s) p Pg(t)

The characteristic equation is modified : we introduce the principal radius of curvature pj

(and p2 if py is finite) as in the case of radiated fields. The poles-residues are roots of the modified
characteristic equation :

HP (kop15inn) — j Ch(¥) BP (kop15inbyn) = 0 (3.5)

When the surface is convex, the radius of curvature at O and P are different. Consequently, the
roots of the characteristic equation (or poles-residues) depend on the radius of curvature and must
be calculated at each diffraction point. And (3.4) takes the following form :

V) = e (g) L = A (4Pg R A

naefn=o

(3.6)

Ynand T, are determined from the introduction of a 'mean’ radius of curvature

p1= (Pl(O)Pl(P))U2

b) Experimentation

An X-band slot is set on the perfectly conducting surface of the circular cylinder given in
section 2.1,d. The results are obtained at 10GH;. (Figure 8) shows the surface field of the slot

modelled by an infinite magnetic line source in the equatorial plane (6=90°). The dielectric thickness

is £0.1A : one mode and the two associated creeping waves are considered. The surface field is
measured by mean of a probe moving very close to the surface, at a distance of about 3mm.
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In the vicinity of the source, the differences between theory and experimentation are
important. They are accentuated when the cylinder is coated by a dielectric : the creeping wave is
guided on the dielectric surface and the differences between line and source are accentuated. In the
shadow region, they are reduced. Consequently, the line model is interesting because of its
simplicity as a tool in a first analysis of the phenomenon.

Since the dielectric thickness is < 0.14, it is possible to model the coated circular cylinder by
a circular cylinder with a surface impedance [1] : the choosen surface impedance is the relative
modal impedance of the first creeping wave propagation mode. (Figure 9) shows the validity of this
theory. For a dielectric with thickness > 0.1A, more than one mode is necessary to describe the
propagation. So, it is impossible to define a surface impedance from these modes.

3.2 Coupling
a) Theory

The coupling between apertures set on a perfectly conducting surface with dielectric coating
or not is an application of the surface field computation. So, longitudinal X-band slots are set on
the conducting surface of a dielectric coated elliptic cylinder or truncated cone. We model these
apertures by longitudinal magnetic dipoles. The mutual impedances or admittances are determined
by means of the reaction theorem. The mutual admittance is determined considering only one mode
of creeping waves and the two associated rays. The computation of the self admittance requires a
particular development.
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Figure 8 : surface field due to a magnetic Figure 9 : surface impedance/dielectric
line source on a coated circular cylinder
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The expression for the self and mutual amittance of two arbitrarily located slots is derived from the
reaction concept [2] and is given by

(EJ A Hi) ds;

Yij = —_—
ViV;j

5

We call : s the aperture (i), s the aperture (j), Hi the magnetic field when slot (i) is excited

by a voltage V; and the slot (j) is short circuited, EJ the electric field when slot (j) is excited by a
voltage Vj and the slot (i) is short circuited. The aperture (1) dimensions are called [aj, bj] and those
of aperturc () [aj, bj] (Figure 10). The principal excitation mode is the TEjp mode. The

longitudinal slots are in the equatorial plane (6=90°).
Then, the mutual admittance is given by :
Yij = - & /abiajbj C(bising) C(bjsiné)
T

S(ajsinB) S(a;jsin) g; (3.7)

with 5(x) = S8 KeX/2) ;g ¢(x) = £08 KoX/2).

(koX/2) 1 - (koX/m)>
gz =G (kos) D v(§) G(kos) = k3Yg ¢~ jkos
27!:] kQS

D is the divergence factor defined in (2.2). The Fock function has been defined before.

The determination of the self admittance is not straightforward. The integral giving the self
admittance is divergent. As in [5], in the vicinity of the source point, it is necessary to decompose
the Green's function into two terms : a term giving the Green's function of an aperture set on the
conducting surface of a coated perfectly conducting planar surface and a term which is the
difference between the divergent term and the one relative to the plane. We use only the term
corresponding to the plane, the surface being replaced by its tangent plane. When the conducting
surface is coated with a dielectric, it is considered as a perfectly conducting one located in a medium

with propagation constant kq = koY&;.
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The coupling coefficient Sjj is given by :

Sii = - 2Y(;Yij
Y7 (Yo + Yii + Yi) (Yo + Yii— Yj) (3.8)

where Y is the characteristic admittance of the slot.
b) Exprimentation

Computations and measurements have been done at a frequency of 10 GH; in the case of an
elliptic cylinder (Figure 11) and a truncated cone (Figure 12) which are perfectly conducting and
coated by a dielectric. The dielectric permittivity is (3.4,-0.1) and the tickness d=3 mm. The
truncated cone has been described in 2.2.b, the X-band slots are set on the truncated cone at mid-
height and separated by an angle of 45, 90, 135, 180°. The elliptic cylinder is defined by the half-
length of its great axis A=150mm and the half-length of its small axis B=100mm. The slot (i) is set
on the conducting surface at a distance A from the center of the cylinder and the slot (j) at a point on
the surface making an angle of 45, 90, 135, 180° with respect to the great axis. One propagation
mode and the two associated rays are sufficients because of the value of the dielectric thickness.
The theoretical result agrees with the experimental ones. The introduction of a dielectric increases
significantly the coupling between the apertures when the angular difference between apertures is >
45° (increase of 30 DB).
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Figure 11 : coupling -elliptic cylinder- Figure 12 : coupling -truncated cone-

4 Conclusion

The numerical and experimental studies which have been presented, show the capabilities
offered by the asymptotic methods to describe the radiation and the coupling between apertures set
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on dielectric coated convex surfaces. We showed the utility of a simplified modelization for the
slots (line source) as a first approach to analyze a difficult problem. Finally, the surface impedance
approximation is introduced in a natural way when their coatings are considered. The methods can
be generalizated to convex surfaces with finite radius of curvature and so permit to consider other
surface singularities like edges or tips.

The method presented here does not require a large memory since there is no matrix needed
and the computation of the fields requires the storage of few parameters. On the other hand, most
part of the computer time is devoted to the computation of the roots of the characteristic equation
which was done practically in real time. The computer was an IBM 3090.

5 Appendix

The transverse electric mode, called TE, is defined with respect to the z-axis, the generating
line of the circular cylinder. We call G the Green's function which satisfies the Neumann's
boundary condition on the conducting surface of the dielectric coated cylinder (TE). The electric or
magnetic fields are obtained from the scalar Green's function.

dipole source and field points outside the dielectric :

+ oo

G(p.po) = %f e —jh(z - zp)

- OO

N= +o0 ’ .
’ Z Hr(lz)(VP>) (Jn(VP<)— ;ri(Vb)_J Ch(n)Jn(:b) ng)(vp<) c-jn(¢—¢o)l dh
n= s H{ (vb) - j Ch(mHP(vb) | 5.1)
with \/2 = kg — h2
Relative modal impedance for the TE case :
Ch(my=—j 2L HY viH® via) - BP viDHP via) i vy =v e
Zo HOwiHP v12) - HOWinED (via)
Dipole source and field points inside the dielectric :
G(B,Bo) -l f N e-jh(z—zo)n=2+w J“(V1p<)Y;1(V1a) - J;l("la)Yn(VIPd
8 | ., ne e Ja(V1D)Yo(vV1a) — Jo(V12)Yn(V1b)
’ ’ HP b
I%(Jn(\’lb)Yn(leﬁ—Jn(le>)Yn(V1b)) o n (vb) o
1 Hy™ (vb) - j Cp(mHy"(Vb) |
HP (vb e - in(® - 90) dh
\ ‘*‘(Jn(vlp>)Yn(Vlb)—Jn(Vlb)Yn(le>)) a2y n. (vb) o [
Hy™ (vb) — j Ch(n)Hy”(vb)

(5.2)

with  a<pc,p><b and po=pcandp=p,ifpo<p py=p,andp=p.ifpo=pand
vi =VvYe
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dipole source and fields points in different media :

+oo Nn= +o0

G(B,Eo)=;_j f e-ih(z-z0) 2 ng)(v 03) Jn(V1P<)Y?(V1a)—JP(Vla)Yn(V1p<)
" — Tn(V1B)Y 5(V12) — Jo(v12) Ya(v1ib)

2y - @ n
HP (vb) - j Cn(m)H{P (vb) (5.3)

with

a<pc <band p>2b andpo=p<cand p=p,if po<p ,po=p>andp=pcifpg2p
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