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Abstract

Finite element computation of electric and magnetic fields induced in the body by noninvasive
electromagnetic sources is discussed. Attention is focussed on three-dimensional calculations for
full-scale body models with significant levels of internal anatomical structure. The finite element
solution strategy including the sparse matrix approach which allows computation of over 100K
degrees-of-freedom on standard reduced instruction set computer (RISC) workstation platforms is
outlined. The finite element mesh generation problem is also described. Representative examples
of the level of meshing detail and the type of 3D bioelectromagnetic solutions that can be achieved
using finite elements in the workstation computing environment are shown.

I. Introduction

The need to quantify induced electromagnetic (EM) field distributions in biological bodies arises
in numerous medical and health-related contexts, for example, in microwave imaging for diagnosis
[Larson and Jacobi,1986; Jofre et. al., 1990}, and in hyperthermia cancer therapy [Hand, 1990;
Int. J. Hyperthermia, Special Issue, 1988], among others. Of primary concern has typically been
the nature of the detailed EM field distributions created inside the body, knowledge of which is
required to quantify dose delivery or characterize tissue. The large electrical contrast between many
tissues in the frequency ranges of interest [Stuchly and Stuchly, 1980] and the complex geometry of
the human anatomy has made determination of internal field distributions a challenging problem
requiring state-of-the-art computational methods.

While a variety of approaches are proving successful in the bioelectromagnetics context (e.g. see
[Gandhi, 1990; Paulsen, 1990]), the finite element method (FEM) is a natural choice because of
its inherent ability to treat highly heterogeneous, irregularly-shaped computational domains. For
example, in hyperthermia treatment planning for cancer therapy, 2D FEM modeling has proven
to be quite informative [Strohbehn ei. al. 1986]. Detailed EM field distributions and concomitant
specific absorption rate (SAR) profiles have been calculated in 2D anatomical models derived from
planar CT-scans of actual cancer patients. Comparisons have been made between various competing
therapy devices [Paulsen et. al., 1985] as well as with actual clinical data [Strohbehn ei. al., 1986;
Paulsen and Ross, 1990] and the general trends predicted by these analyses have been borne out
in clinical trials [Sapozink ef. al., 1985]. The success of this type of 2D modeling has provided a
strong rationale for extending the computational capabilities to 3D for potential use in planning
the treatments of individual patients [Sullivan, 1990; Piket-May et. al, 1991]. Likewise, in other
biomedical contexts the induced EM field distributions are essentially three-dimensional [Chen and
Gandhi, 1989; Caorsi ef. al. 1989]; thus, the need for 3D computational methods and algorithms
is critical to the understanding of the interactions of EM fields with biological bodies and the
advancement of biomedical applications of EM energy.

In this paper, we report on our progress in computing 3D EM field distributions in full-body
models with the finite element method. While the specific examples we present are of primary
interest in hyperthermic treatment of cancer, the methods and approaches we utilize are relevant
to bioelectromagnetic computing in general. We begin by reviewing our basic FEM formulation
for calculating EM fields in biological tissue; we discuss our iterative solution strategy, our sparse
matrix storage structure and the problem sizes/run-times that we can achieve on a typical reduced
instruction set computer (RISC) workstation. We also discuss the grid generation techniques we



employ and show examples of the type of meshes we can create. We conclude by showing some EM
field calculations in full-body models with noninvasive current excitations which are of importance
in hyperthermia treatment of cancer.

II. FEM Formulation

In this section we briefly recount our finite element approach [Paulsen and Lynch, 1991; Lynch
and Paulsen, 1991; Boyse et. al., 1992]. We use an “extended weak form” that produces a special
Helmholtz structure on homogeneous subregions with component coupling occurring only at media
interfaces and boundaries where boundary integrals arise in terms of naturally specifiable quan-
tities. The advantages of this approach are (1) the ability to use conventional FEM scalar bases
as expansion functions while simultaneously eliminating the parasitic behavior that can occur in
the discrete form of the double-curl operator [Lynch and Paulsen, 1991; Boyse et. al. 1992] and
(2) the enhanced sparsity of the system matrix as a by-product of the decoupling of interior field
components [Paulsen and Lynch, 1991].

In contrast to most of our earlier work where we solve directly for the electric field E, herein, we
compute the magnetic field H and subsequently determine E from the V x H if and when it s
needed. For the problems of interest in many biomedical applications, the magnetic permeability
of tissue, s , can be considered constant whereas the permittivity, ¢, and conductivity, ¢, both vary
with tissue type and frequency. Under these assumptions, all components of H are continuous in
source-free regions (i.e. inside the body) and the strong enforcement of EM jump conditions [Yuan
et. al., 1991] can be delayed until the subsequent calculation of E.

The “extended weak form” for H can be obtained from the weighted residual statement
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where €* = e+1i0/w is the complex permittivity, < > indicates volume integration over the problem
domain, ¢; is the locally-defined linearly-varying weighting function associated with each finite
element nodal position, and an e™** time-variation is implied. Use of standard vector identities
and integral theorems allows ome to remove the second order differentiation in favor of relevant
boundary integrals
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A symmetric linear algebraic system of equations Ax = b is generated by expanding H =

ijl H;¢; in the usual Galerkin fashion which leads to A being composed of the complex subma-
trices
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Boundary conditions are handled through the surface integrals appearing on the right-side of (2).
When tangential E is specified, the first boundary integral is computed as the driving term for
the tangential components of (2) while the normal component of (2) is discarded in favor of the
known value of H, (i.e. n-H = ;w—#n V % E). For boundaries where tangential H is specified, the
tangential components of (2) are removed in favor of the known information whereas the normal
component of (2) is enforced with homogeneous conditions (i.e. the second boundary integral in
(2) vanishes). Finally, we implement current sources, if present, through strong enforcement of a

jump condition on the tangential components of H at a current-carrying boundary:

ﬁX(Hl—Hg):J (4)

At such nodal locations, H has two computed values whose appropriate components are made to
be discontinuous by the known amount of J.

III. Sparse Matrix Solution

We solve the sparse set of algebraic equations generated by our FEM procedure with a symmetric,
preconditioned form§ of the Biconjugate Gradient Method (BCG)[Freund 1992]. Whenever i or jin
(3) are not on a boundary or interface we save only 3 memory locations for the diagonal elements
(all others vanishing on the elements we employ [Paulsen and Lynch, 1991]). For (i,j) combinations
where both are on the boundary/interface, space is reserved for the full 3 x 3 submatrix in (3).
With this memory economization, we have been able to compute solutions on meshes with more
than 100K degrees-of-freedom using an IBM RS6000 series platform. Run-times have been on the
order of 3-8 hours depending on the number of iterations consumed during a given solution. We
monitor the equation residual, ||ri||z = ||b — Axl|2, for each iteration ¢ = 1,2..., and use this
information as a measure of convergence. Typically, we normalize the initial equation residual
(using an initial guess equal to the right-hand-side forcing vector) to unity and iterate until the
initial equation residual has been reduced 3-4 orders of magnitude. In some of our longer runs
(i.e. 8 hrs) we have used the stopping criterion of 2500 total iterations rather than terminating the
solution when the equation residual has reached a prescribed value.

Because the equation residual for the BCG is not monotonic in its decent [Freund, 1992], choosing a
definitive stopping rule has not been obvious. For problems with analytic solutions we have tracked
both the equation residual and the solution residual (i.e. ||ri|lz = [|Xi — Xanatytic|lz) and found
a strong correspondence between the two. Figures la-b show the equation and solution residuals
as functions of iteration for small homogeneous sphere problems (= 9-28K degrees-of-freedom)
where we have imposed boundary conditions on tangential H at the outer sphere surface, namely

§ We use right ILU preconditioning [Langtangen, 1989] with matrix reordering [George and Liu,
1981)
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Figure la: Normalized solution and equation residuals as functions of iteration for a small sphere
problem of 3144 nodes where an analytic solution exists.
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H = szn(ﬁ)qb The radius of the sphere used in these figures was 0.2 meters and its electrical

properties were ¢, = 20, ¢ = 0.01 2 m~! The frequency of excitation was 70MHz. Note that
the normalized solution residual does not decrease below 10™* because only 4 significant figures
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from the analytic solution were used in the comparisons. The behavior displayed in these plots is
characteristic of the numerous sphere calculations we have made of this type. We find the solution
accuracy is excellent for an equation residual which has been reduced 3-4 orders of magnitude
from its initial value. Figure lc shows that the computed H is essentially indistinguishable from
the analytic solution for this level of convergence. Further, in nonanalytic cases (i.e. full-body
models of the type we present in Section V) we have used a “converged” iterative solution} as the
“analytic” solution needed to compute the solution residual and have studied the behavior of the
equation residual relative to this solution residual as a function of iteration count.
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Figure lc: Tterative H calculations with normalized equation residuals reduced to 10~* and 108
compared to the analytic solution. Curves show magnitude as a function of radius for 2 homo-
geneous sphere with €, = 20 and 0 = 0.1 Q2 'm~L.

A sample result is displayed in Figure 1d. Again, we found a strong correspondence between the two
with the caveat that some early dips (within the first 100 iterations) in the equation residual often
do not relate to decreases in the solution residual. Based on our experiences we believe a 3-4 orders
of magnitude decrease in the initial equation residual is a reliable stopping criterion; however, as
a conservative measure the solutions we report below have been iterated a fixed number (2500) of
times and have equation residuals near 107°.

IV. Mesh Generation

One of the more challenging problems in using finite element analysis in 3D bioelectromagnetic
applications is the generation of the FEM mesh. This is especially true if one wishes to take advan-
tage of the real power of the method by using variable element sizes and faithful representations
of the anatomical geometry of interest. Since in many biomedical contexts anatomical structure

1 One with a normalized equation residual reduced to 1073
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is available through serial CT-scans (this is certainly the case in hyperthermia cancer therapy),
we begin the process of mesh generation by identifying the organs and tissues of interest on each
CT-scan. The individual contours on each CT-slice are then linearly interpolated in the third di-
mension which produces a boundary element description of the anatomical model. Figure 2 shows
a sample boundary description of a typical full-body anatomy which is to be meshed. We do not
require that the actual nodes and surface elements shown in Figure 2 be part of the final FEM
mesh, but only that the boundaries of the final FEM mesh conform to those displayed in the figure.

Equation residue
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Figure 1d: Normalized solution and equation residuals as functions of iteration for a large full-body
model (= 135K degrees-of-freedom).

To generate the tetrahedral elements which are to fill the volume specified while simultaneously
conforming to the boundaries delineated we use the nodal-pulling algorithm of Sullivan and Charron
(1991). This is essentially the 3D version of a 2D mesh generator we have used successfully in the
past [Lynch et. al., 1987]. The strategy is to initially deploy the nodes and elements on a uniform
lattice and to distort this lattice near the boundaries by pulling the nodes nearest to the predefined
boundaries onto those boundaries. Localized refinements are possible over selected portions of the
domain and result in a reduction in the characteristic nodal spacing by a factor of two for each
refinement. Hence, the user specifies the largest mesh spacing that is to exist within the mesh
as a starting gauge and subsequently refines the mesh in the appropriate areas until the desired
resolution is achieved. During the entire process the nodal placement is continually altered near
the boundaries such that the boundaries of the final mesh conform to those of the initially defined
geometry. Figure 3 shows a sample mesh generated in this fashion. For ease of viewing and
comparison with the initial boundary description (Figure 2} only the boundaries of the final mesh
are displayed. It is clear from Figure 3 that several refinements have taken place in the areas of
the most significant geometric detail. The final volume mesh for Figure 3 has 45K nodes (135K
degrees-of-freedom) and 251K tetrahedral elements. To compute a solution on this mesh using a
RISC workstation, our sparse matrix method (including auxiliary arrays and the preconditioner
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Figure 2: Boundary description of the anatomy to be meshed including internal organs and tissues
which are electrically distinct. Geometry is derived from serial CT-scan data.

matrix) consumes 150 Mbytes of memory and run-times} increase by 11 Sec per BCG iteration.

It is important to note that the anatomical model in Figs 2-3 does not yet contain a realistic
representation of the body’s skeleton. Reliable meshing of detailed skeletal structures has proved

t Processing the input data and performing the matrix and preconditioner assembly for a mesh
of this size requires 30 minutes of CPU time
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Figure 3: Actual boundary element mesh derived from the final volume element mesh generated
to represent the anatomy specified in Fig 2. The boundaries produced conform to those of the
original description given in Fig 2. Note the increased resolution of the body surface and internal
organs relative to the original discretization in Fig 2.

to be beyond our present grid generation capabilities. Nonetheless, bony structures are important
in many bioelectromagnetic applications because of their high electrical contrast relative to other
soft tissues. Hence, it is imperative that we develop the ability to include relevant skeletal features
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within our models in the future. Efforts along this dimension are currently underway.
V. Results

In this section we show some sample results of computed H and E distributions induced in the
body model of Figure 3 by various noninvasive current source excitations. For convenience we
enclose the body in a fictitious cylindrical boundary as shown in Figure 4 and enforce known
current distributions over selected portions of the cylindrical surface which represent idealizations
of physical devices used in hyperthermia treatment delivery. We handle the radiation fields away
from the body by enclosing the model in 3 x 3 X 4 meter region of equivalent dimensions to the
shielded room in which most treatments of this type take place. On the outer boundary we require
tangential E and normal H to vanish consistent with the nearly perfectly conducting nature of the
walls of the treatment room. These conditions are implemented through the boundary integrals

i

Specifically, we express (2) in a local normal/tangential coordinate system at nodes located on the
walls. The first boundary integral in (2) vanishes identically since fi X E is assumed zero. The
normal component of (2) is then discarded and the condition H, = 0, consistent with n x E =0,
is enforced in its place as a Dirichlet condition on the primary field variable, H. The finite element
grid is generated by meshing the exterior region and body simultaneously so that the tetrahedral
elements which fill both the body and the space between the body and the treatment room walls
conform to their common surface. In meshing the exterior region and body as a composite object,
we begin with a 0.18m mesh spacing (= 20 nodes per wavelength in air}) and refine 4 times such
that the internal organs have a 0.01125m characteristic nodal spacing. The electrical properties we
use to simulate the various tissues and organs in our model are listed in Table 1.

In the first simulation example, we apply a uniform circumferential current which has a sinusoidal
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dependence along a 100 cm length of the excitation surface described mathematically as

=g [ (R ©

where 2; and z; are the top and bottom heights of the excitation source surface. This excitation
is representative of magnetic induction hyperthermia [Sapozink et. al., 1985, 1990] where the
body section to be heated is placed inside a current-carrying concentric sheath. The frequency of
excitation is T0MHz.

| TABLE I: Tissue Electrical Properties |

€r o (@ 1m-1)
Heart 72 0.89
Kidney 72 0.89
Liver 72 0.89
Lung 40 0.35
Muscle 66 0.593
Spine 10 0.20
Stomach 84 0.80
Tumor 72 0.89

Figure 5 shows the computed magnetic field distribution where the expected circulation of H
around the current source is evident. In this figure the vector lengths as well as their gray level are
proportional to their strength. Figure 6 displays the electric field derived by taking the curl of the
numerical H. We achieve nodal values of E by performing a Galerkin treatment of E = ;- V x H
where we use nodal quadrature to avoid the inversion of an additional matrix as described elsewhere
[Lynch ef. al., 1986]. The E solution circulates as anticipated and is largely confined to 2D
cross-sections suggesting that simpler 2D analysis of this type of excitation may be sufficient for

hyperthermia purposes.

The second simulation example shows computed H and E solutions for a current excitation polarized
along the long axis of the body. Specifically, we select J to have the same sinusoidal dependence
along the 100 cm length of the excitation surface as before, but also vary the circumferential
magnitude sinusoidally such that

J= i [1 + cos (”(223:12: 22))] (1 + cos%) P (6)

This idealization is representative of annular array applicators operating in the TOMHz range which
are presently under investigation for noninvasive EM hyperthermia delivery [Sapozink et. al., 1985,
1990]. The magnetic field is displayed in Figure 7 and its corresponding electric field in Figure 8.
In this casc the orientations of H and E are essentially reversed relative to the former simulation
with H now circulating largely in cross-sectional planes and E oriented perpendicular to these
cross-sections, but parallel to the long dimension of the body. The penetration of E within the
body is greatly enhanced with this current source relative to the previous case. In Figure 9 we
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Figure 5. Computed H for the excitation given by equation (5) in the body model of Fig 4. Left:
Re(H), Right: Im(H), Top: & = 0 plane, Bottom: y = 0 plane. Vector length and grey level
are proportional to strength.
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Figure 6: E solution computed from H in Fig 5

display only a subset of the overall vector solution in an attempt to highlight various features of
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Figure 7. Computed H in the midplane of the current excitation given by equation (6) in the body
model of Fig 4. Left: Re(H), Right: Im(H), Top: Front view, Bottom: End view. Vector length
and grey level are proportional to strength.
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Figure 8. E solution computed from H in Fig 7. Top: # = 0 plane, Bottom: y = 0 plane.

the solution that one might be interested in. For example, it is interesting to note the phase change
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in the E solution between the internal organs and the surrounding muscle tissue.

VI. Conclusions

We have demonstrated bioelectromagnetic computations on full-scale finite element man-models
with significant levels of anatomical structure. Meshing is performed semi-automatically by devel-
oping a 3D boundary geometry of the region of interest from serial CT-scan data which is used as a
template for guiding the creation of the final FEM grid. Irregular geometries and variable element
sizes are possible such that the strength of the FEM is utilized in terms of providing flexibility in
representing large computational domains. Sparse iterative matrix solution techniques allow prob-
lem sizes in excess of 100K degrees-of-freedom to be solved with run-times on the order of hours in
the standard workstation computing environment.
P 7 4 : 2 5%

. M
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e
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the internal organs and the surrounding muscle tissue is evident.

Sample calculations in the hyperthermia cancer therapy context show that detailed H and E
solutions are possible which highlight the salient features of EM interactions with electrically and
geometrically distinct tissues and organs. Display of 3D vector data in an intelligible format is
nontrivial and requires post-processing graphical routines which can plot solutions on subsets of
the overall model (i.e. on arbitrarily-angled cutting planes through the geometry) or subsets of
the overall collection of computed vectors (i.e. vectors within a prespecified magnitude range).
In hyperthermia treatment planning, the ability to visualize specific anatomical structures and
examine field phase and magnitude variations aids in the selection of source excitations which
hopefully will lead to improved clinical hyperthermia delivery.
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