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Abstract

An algorithm is developed for electrical impedance tomography (EIT) of three—
dimensional volumes using multi-planar electrode arrays. This algorithm is based
upon the method of least squares, and uses one step of Newton’s method to estimate
the conductivity distribution inside the volume using electrical measurements made
on the boundary.

An implementation of the algorithm for right cylindrical volumes is described.
This computer code, called N3D, permits reconstructions with up to 2016 degrees of
freedom. The code uses an initial guess consisting of a uniform conductivity, allowing
many of the computations to be done analytically.

Although the code does not reconstruct the conductivity distribution accurately
(unless it differs very little from a constant,) it does yield useful images at reasonable
computational cost. The algorithm is demonstrated using three-dimensional resistiv-
ity distributions reconstructed from experimental data.

Introduction

The inverse problem in Electrical Impedance Tomography (EIT) considers the reconstruc-
tion of the electrical characteristics inside the body from measurements made on the skin.
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I Material Resistivity
(p) ohm-cm
Urine 30
Plasma 63
Cerebrospinal fluid 65
Blood 150
Skeletal muscle 300
Cardiac muscle 750
Lung 1275
Fat 2500
Copper 1,724 x 1078

Table 1: Typical Tissue Resistivity Values

Although superficially similar, this task is fundamentally different from that encountered
in X-ray Computed Tomography(CT) or Positron Emission Tomography(PET), where the
photon paths through tissue are essentially straight lines. In contrast, the current paths in
EIT are functions of the unknown conductivity distribution, and the reconstruction prob-
lern is highly non-linear. We focus here on biomedical applications of EIT, but note that
the technique has been used in geophysical exploration and may have important uses in
non—destructive testing, and in the monitoring of industrial processes such as solidification
and multi-phase flow.

Biological Basis of the EIT Signal

Biological tissues contain free charge carriers that permit them to act as (relatively poor)
electrical conductors. This ability to conduct varies substantially among various types of tis-
sue: some typical values of resistivity for tissues of interest have been tabulated [Baker, 1989]
and are presented as Table 1. For reference, the resistivity of pure copper is included. The
goal of EIT is to compute and display the spatial distribution of the resistivity inside the
body.

Also present in tissue are bound charges. In the presence of an electromagnetic field, these
charges give rise to displacement currents that are manifested as phase shifts in the measured
voltages relative to the applied currents. Phase shifts that vary from about 7° for lung to
nearly 20° for cardiac muscle at an excitation frequency of 10 kHz have been reported
[Schwan and Kay, 1957]. This ability of a material to store charge is referred to as its
permittivity. Because the permittivity is related to the tissue type and is spatially variable,
we can also consider producing an image of the permittivity distribution inside the body.

Some work suggests that these electrical characteristics are substantially altered in a variety
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of pathological conditions. For instance, some investigators have demonstrated permittivity
changes in excised malignant breast tumor specimens compared to normal tissue surround-
ing the tumor [Surowiec, et al, 1988)]. Similarly, the non-invasive diagnosis and monitoring
of pulmonary edema represents an attractive goal, since differences in the bulk resistiv-
ity properties of the lung may be detectable even with crude reconstruction algorithms
[Isaacson, et al, 1990].

Biological Application of EIT

One of the first instruments designed to image the body’s resistivity distribution was the
“impedance camera” [Henderson and Webster, 1978]. This device consisted of one large
electrode, positioned on the back, and an array of 144 electrodes, in a 12 by 12 grid,
positioned on the chest, through which currents could be applied. In practice, measurements
were made using 100 electrodes in an inner 10 by 10 grid, and currents were established on
the outer “guard” electrodes in an attempt to “linearize” the current paths.

The authors monitored the current flow through each of the 100 measurement electrodes,
and displayed iso—admittance curves on the body surface. They then proposed that recon-
struction algorithms for the purpose of imaging the internal impedance should be developed.

Following this paper, many authors published descriptions of systems designed to recon-
struct the impedance inside the body from electrical measurements made on the skin. Re-
searchers began to apply mathematical tools developed for X-ray CT scanning to produce
images of the body’s internal impedance.

Investigators at the University of Sheflield [Barber, et al, 1983, Brown, et al, 1983] described
a back-projection technique that was based on pre-computed equipotential lines in a ho-
mogeneous medium. In this technique, current was injected on two adjacent electrodes,
and the resulting voltages were measured differentially on the remaining electrode pairs.
The ratio of measured to predicted voltage was used to update the resistivity estimate in a
strip between the isopotential lines ending on the measuring electrodes. This process was
continued, with each electrode pair serving as the current injection electrodes.

More recently, these investigators have presented modifications to their original back-
projection algorithm that uses a weighting system and logarithmic projection of the voltage
ratios [Brown, et al, 1985]. Although strictly two dimensional, this algorithm is the basis
for much of the in-vivo research in EIT.

In a 3-D body, current flow is not restricted to the plane of electrode placement, and the
resistivity of tissues outside this plane contributes to errors in the Barber-Brown recon-
struction scheme. Even in a 2-D body, current flow may be substantially perturbed by
objects of varying resistivity.

In an attempt to address the problem of 3-D equipotential line distortion, a technique
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that offers some improvement over the strictly 2-D algorithm has recently been described
[Ider and Gencer, 1989, Ider, ef al, 1990]. In this scheme, the authors compute an “equiv-
alent translationally uniform” object that has the same equipotential lines as the three di-
mensional resistivity distribution. They used finite element techniques to compute modified
2-D equipotential lines by assuming that the resistivities obtained in the plane of electrode
placement were translationally uniform. Other authors report experimental measurements
of the sensitivity of back—projection reconstructors in 3-D domains [Guardo, et al, 1991].

Searching for more efficient algorithms, investigators have extended these techniques to
the case of a cylinder with radial variations in conductivity [Andersen and Berntsen, 1988]
and more recently, to a general formulation for the problem applicable to two and three-
dimensional geometries [Berntsen, Andersen and Gross, 1991].

Other reconstruction techniques, including current path projection methods, “double con-
straint” techniques [Wexler, et al, 1985], and perturbation methods [Kim, et a/, 1983] and
[Tarassenko and Rolfe, 1984] have been applied to the EIT problem.

Tterative Newton’s Method Techniques

Another approach to the solution of the inverse problem (and the one taken in this work) is
the use of iterative linearization of the underlying nonlinear equations. This technique was
suggested as early as 1978 [Lytle and Dines, 1978].

Later, these authors suggested an improved algorithm, using Newton’s method to solve for
each resistor in a 7x7 2-D array. This algorithm performed well on simulated data, even

with the addition of 10 % additive noise [Dines and Lytle, 1981]. A patent [Bai, et al, 1984
appears to use a similar iterative technique.

Yorkey implemented an iterative algorithm using Newton’s method. In his thesis, he com-
pared the performance and computational costs associated with a variety of reconstruc-
tion algorithms of many reconstruction schemes, including the perturbation techniques
[Kim, et al, 1983, Tarassenko and Rolfe, 1984}, equi-potential back-projection techniques
reminiscent of CT algorithms [Barber, et al, 1983, Barber and Brown, 1984] and double-
constraint techniques {Wexler, et al, 1985). He concluded that his “modified Newton--
-Raphson” was always the most accurate, at least on certain simulated data with and
without added noise [Yorkey, 1986].

Simske implemented a two dimensional algorithm based on the Levenberg-Marquardt method

using an analytic forward solver [Simske, 1987, Cheney, et al, 1990]. This method forms the
basis for the extension of these concepts to three dimensions.

131



Mathematical Formulation of the Problem

Mathematically, the EIT problem can be formulated as follows:

Let u(p) denote the electric potential at an arbitrary point p in , a bounded domain in
R? and let o(p) = Rlﬁ denote the conductivity at p. Then we assume that u satisfies

V. e(p)Vu(p)=0 for p in Q. (1)
We choose to solve the Neurnann problem, so at the boundary, we have
du(p ,
o (P)% = j{p) on 09 (2)

where v denotes the unit outward normal and j denotes the current density applied on 91).
From conservation of charge , we require that

J i =0 3)

To select a unique solution, we choose our reference potential so that
Vip)=0 4
L v®=q, @)

where V(p) = u(p) for p on Q.

Notation for the 3—D Problem

Consider a right cylindrical volume with a three-dimensional electrode array on the surface,
and with boundary conditions as in Figure 1. Let M denote the number of electrode planes
and A denote the number of electrodes on any ring. Consequently, the total number of
electrodes is L = MA. We denote an individual electrode by ¢;, I = 1,2,3, ..., L.

Using external electronics, steady state patterns of current are established on the electrode
array and measurements resulting from L — 1 orthogonal current patterns over the L elec-
trodes are used to reconstruct the resistivity distribution within the object. Denote the k*
applied current pattern by the L-vector I* and the corresponding voltage measurement by
another L-vector V*, so that

[ 1} ] [ V]
I 4
I* = Ié‘ ; vk = V; (5)
L IE | VE
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Figure 1: Nomenclature for the 3-D Problem

We will require a “reference” electrode, in order to enforce equation 4 . We may designate
one electrode in the existing array, and simply measure all our voltages with respect to this
electrode. Alternatively, we may supply an additional electrode which is tied directly to
ground potential. We constrain each of the applied current patterns so that 35, I; = 0,
so that the current flowing through this ground electrode is negligible. To preserve this
symmetry, we normalize the measured voltages so that Elel Vit =0.

We define an operator R(p) that maps the applied current vector into the vector of measured
voltages. We define another L-vector U*

U*=U(p)= | U5 | = R(p)I* (6)

- o

which represents the predicted voltages on the electrodes due to some resistivity estimate p.
The forward problem consists of predicting the voltages on L electrodes from knowledge
(or an assumption) about the resistivity distribution inside the tank. In the case of a
homogeneous cylinder, we can analytically solve for the predicted voltages U* using a variety
of models for the boundary conditions [Cheng, et al, 1990]. The more general case requires
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use of finite difference or finite element techniques to solve the forward problem for an
arbitrary resistivity distribution.

The inverse problem consists of predicting p(p) throughout the body from knowledge of
the applied currents and measured voltages. Because the operator R(p) is self-adjoint, we
have at most

L(L-1)

Nma.z' = —2' (7)

degrees of freedom. Consequently, we subdivide the volume of interest into N < Npqq
voxels, or volume elements, on which the resistivity is assumed constant. Hence we will
compute a resistivity vector of length N such that

p(p) = D paxn(P) (8)

n=1

where PRI |
if p in voxel n
=10 w 9)

0 otherwise.

We use p to denote the resistivity solution vector

[ p1(p) ]
p2(p)
p= p3(p)

| pn(p) i

Figure 2 depicts the geometry of a typical voxel as used in our 3-D reconstructor.

Instrumentation Considerations

In this work, all experimental data was collected using ACT IIB , a 64 electrode system
whose general design features have been described by Gisser et al. in 1987. This system is
an improvement of the the original ACT I design to incorporate better voltmeter precision
and phase stability [Fuks, 1989]. This instrument, which has subsequently been extended
from 32 to 64 channel operation, can be used for 2-D or 3-D operation, depending on the
software.

In operation, ACT IT uses a Wein bridge one op—amp oscillator operating at about 15 kHz.
Its amplitude is stabilized to better than 0.1 % by a DC feedback loop, and serves as a
system-wide reference for amplitude and phase.

This primary frequency is fed simultaneously to 64 12 bit CMOS digital-to-analog con-
verters, which act as digitally controlled attenuators for the master oscillator. This voltage
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Figure 2: Geometry for the 3-D Resistivity Voxel

reference for each electrode is applied to op-amp voltage-to-current converters, and the
resulting current is applied on the skin through shielded cables to the electrode.

The voltage required to maintain this fixed current flow will vary, depending on the resis-
tivity of the object to be imaged. The voltage at the output of each current generator is fed
through a 64:1 multiplexer into two demodulators synchronized to the master oscillator.

The first of these devices is synchronized by a signal that is in phase with the applied
currents, and after rectification and low pass filtering, produces a DC signal proportional
to the in—phase voltages on the electrodes. The second demodulator is synchronized with a
signal that is 90° out of phase, producing a quadrature voltage related to the permittivity
of the object. The resulting DC voltages are fed to a commercially available 16 bit analog-
to-digital converter, a DT2801/5716 1. Table 2 is adapted from [Fuks, 1989].

A new instrument known as ACT III [Saulnier, et al, 1991] will incorporate a design philos-
ophy similar to previous instruments but will exhibit substantially improved performance.
Each electrode channel contains a digital signal processor (DSP), a current source, a volt-
meter and associated amplifiers and calibration circuitry. These improvements will permit
acquisition of all data, both in-phase and quadrature, with 16 bits of accuracy in 140 mSec.

1Data Translation, Inc., Marlborough, MA.
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[| Characteristic Specification |
Oscillator
Frequency 15.0 kHz
Frequency Stability < 2 Hz
Amplitude Stability <01%
Harmonic Distortion < -60 dB
Waveform Sinusoidal
Current Generators
Number 64
Maximum Current 5 mA
Amplitude Precision 12 bits or 2.4 uA
Phase Coherence 0.3°

Voltmeter
Type
Precision
Accuracy
Settling Time

Synch. Demodulation
16 bits (nominal)
10 ppm
1 ms for 12 bits
3 ms for 16 bits

System Speed

Write Time

32 electrodes

64 electrodes
Read Time

32 electrodes

64 electrodes
Total Image Time

20 averages

0.55s
0.95s

0.38s
0.80s

390s

Table 2: ACT II Operational Specifications
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A Least Squares 3—D Reconstruction Algorithm

The Plan

In our approach, the goal is to minimize the least square error functional E(p),

L-1 iz L-1 L . 2
E(p)= Y IIVE-UNPP= 323 (Vr-Ur). (10)
k=1 k=1 =1

Here, V* represents the voltages experimentally measured for the kt* current pattern and
U* represents the predicted voltages for the same pattern. U * is produced by the forward
solver. It should be apparent that even if we have a perfect forward solver, and our initial
estimate of the resistivity is uncannily correct, then our error function may not be equal to
zero since the measured voltages V¥ contain measurement errors. In fact, there may be no
resistivity distribution p(p) that produces the measured data!

We would like to improve our estimate p®. We use Newton’s method to compute a new
estimate p'. At a minimum,

aE L-1 L oUF
0= = F,(p) = -2 V- Uh =L, 11
apn (P) g;(l I)apn ( )
We then compute a new estimate,
ptt =o' = [F(p)) 7 F(p), (12)
where
OR . OF
" PN
Fl(p) = S (13)
dF oF
4] PN
and
. oF,, O*E
Fn,m(p) - apn - apnapm (14)
L-1 L aUk aUk L-1 L a2Uk
= 2 Lo 9 ViF — UF L 15
kz::l; apnapm ;;(l I)apnapm ( )

Regularization of F'

It would at first seem that finding p**! in equation 12 involves only inverting the known
matrix, F', applying it to the vector F, and subtracting this term from the old resistivity
estimate p*. Unfortunately, F” is ill-conditioned [Simske, 1987].
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Consider the first term of equation 13,

= (16)

We can think about this term as follows: If we apply the k** current pattern and calculate

k
the voltage on the [** electrode, then perturb the resistivity on the n** voxel, then %{"‘-

k
represents the voltage change. Similarly, % represents the voltage change associated with

a change in the resistivity on element m. If the m* and n'® voxels are in some sense “close”

to each other, then the voltage changes they produce will be similar. Consequently, the
au

k k
roduct oLy 9Uf will be large and positive.
p 8pn Opm g p

Following a similar line of reasoning, we might presume that if the m* and n** elements
k k
are quite remote, then the product %":g—i—% may likely be small. If the numbering of the

elements is such that nearby elements have indices that are close together, then the matrix
A, whose elements are described by equation 16, will have its largest, positive elements on
or near the diagonal.

The second term in equation 13,

IS EL: ke O°UF
B, =—2 Vi =Uf)—— (17)
el =il " 0pnOpm

has no simple interpretation. But notice that if our estimate p is close to the true p, then
this entire term will be close to zero. In this algorithm, we improve the condition of F' by
neglecting the term B entirely, replacing it with

Bn,m = 7An,m6n,m
where « is a regularization parameter and 8, , is the Kroenecker delta. So
Frm ™ A + 7Armbom- (18)

The regularization parameter + is chosen empirically to produce a balance between numer-
ical stability and image contrast and definition. This well known regularization is used in
the Levenberg-Marquardt method in, for example, [Press, et al, 1986].



Calculation of p°

We now consider the problem of computing an initial resistivity estimate p° that is needed
in equation 12. If we choose a uniform resistivity estimate, then we have

i 1]

p2 1

puz P3 = 1
| PN | 1]

where c is a scalar constant. We choose for the initial resistivity estimate p° the value that
minimizes the error between the measured voltage values and the values predicted by the
forward solver for a constant resistivity. Here, because the differential equation is linear, we
can simplify
Uk(c1) = eUf(1).
We would like to minimize
L-1 L

Elc)=)_3" [ —cUF(1 ]2 . (19)

k=1 I=1

Again, setting the derivative equal to zero, we have

L-1 L
B8 235 [ - ] Uk =0 (20)

k=1 I=1

Now, we can solve for ¢ to obtain

__ T ok MURQ) -

Tha T Uk ] :

Thus we choose our initial guess so that p° = c1, with ¢ defined as in equation 21.

Computing Uf(p?)

The next task is to predict the observed boundary voltages Uf for a homogeneous tank of
resistivity p°. We can solve this problem analytically. We have

Vu =0 (22)
in the interior. The Neumann boundary conditions are
Ou ou
HMiro.0)= 22 =
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on the top and bottom of the tank. On the sides of the tank,

g .
05 (ro,8,2) = §(69,2). (24)

We assume that the current on the i** electrode is equal to the area of the electrode mul-
tiplied by UU% evaluated at the center of the electrode. Similarly, we assume that Uf, the
voltage on the [* electrode, is just the potential u at the center of the I** electrode. These
assumptions we refer to as the “continuum model” [Cheng, et al, 1990, Cheney, et al, 1990].

We can use separation of variables to solve
u, U
Vi = Upr + = + —2 4 Uz = 0, (25)
rooor

for the potentials on the boundary. We discover two sets of solutions. For m = 0 we find
solutions that are constant in z:

Ur,8) = % (%)ncos(nﬁ) (26)
and
U(r,0) = % (:—D)nsin(nﬂ) (27)

For m s 0, we have solutions of the form:

o°h I (7F)

Ulr,0,z} = %W} cos(nd) cos (m—;'i) (28)
and
U(r,0,2z) = al L (T) sin(nd) cos ("‘,:"). (29)

L (25)
where h is the height of the cylinder and I,(z) denotes the n** “modified Bessel function.”

From these results, we can can write down characteristic current patterns for the 3-D
problem in the test tank. These current patterns T* satisfy Uf = p,, .TF, i.e., they are the
eigenvectors of the operator R(p®) when p° is a constant.

These characteristic current patterns are the values at the electrode centers of

C cos(n#f) cos (m:z), for m=0,1,...M-1;n=1,2, ,%
: A
C sin(nf) cos ("‘,’1”), for m=0,1,..,.M-1;n=1,2,.., 5~
Ceos (22), for m=1,2,...M = 1;n =0, (30)
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where C is the maximum amplitude available from our current generator electronics. We
denote these characteristic patterns by T*, k = 1,2,..., AM — 1. For instance, for a system
with 4 rows of 16 electrodes, this defines a total of 63 orthogonal current patterns over the
64 electrodes.

Computing ——Uﬂ”—l

. . k(0 . .
From equation 12, we require the vector %(:—l, and we can expand this vector in the

orthogonal basis of equation 30:

s 3uk Q
aUk(pO) — Lzl <T ’T}_l >Ts (31)
O0pn — <TTe >
We show in [Cheney, et al, 1990] that

oU*(p°) 1
R =<T, =P o
: dp (p%)?

where u® satisfies equations 22-24 and with the j of equation 24 corresponding to 1.

/ Vu® . Vuk, (32)
voxeln

Computation of these elements R} & Tequires most of the computer time for the reconstruc-
tion. From equation 32, we see that these quantities depend only on the mesh geometry and
can be precomputed. We demonstrate the computation for a typical 3-D integral below.

Typical R Matrix Calculation

We demonstrate a typical calculation for the R matrix elements. In total, there will be 25
such cases, related to the each type of current pattern from equation 30 with each of the
other types of current patterns. Fortunately, the calculations are highly degenerate. We use
the continuum model for all the derivative calculations. Consider the case where I is the
vector composed of

¢ cos(nf) cos (m,’;’) (33)
evaluated at the center of the electrodes, and I* corresponds in a similar way to
¢* cos(n#) cos (m;’z). (34)

The scalar ¢ has been chosen so that YF,(If)? = 1.

Using the “continuum” electrode model,

e o0k In (=)
m L (252)

U?(r,8,z) = cos(nf) cos (m"), (33)

h
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and U* is governed by a similar equation. From equation 32, we have
3 q
b 1
ok (P0)2 voxely

Vu® - Vutdv. (36)

Substituting our expression for the potential yields
5 _ o ck h2 (PO)Z

R
ok (p°)2memka? L, (Lgrm) Ia (m_"}:m)
menr o morz .
foa [ (577 ortrroreon (57
m* k
\Y% [Ink ( hﬂ') cos(n*d) cos (mhvrz)] (37)

after constants are factored and removed from beneath the integral. Now we use the fact
that in cylindrical coordinates,

/ f Vu-Vo = ] uevs j Urr + ] Uss. (38)

to carry out the integration in equation 37. The integral involving only the 8 derivatives is

m3rr m¥rr
In“( & )In"( A ) merz mFrz
COs COS
voxel,

T2 h h
n®n* sin(n®8) sin(n*0)rdrdddz, (39)
which is
k?r'f'

non* f’ oo (257) e (5 )dr /ﬁ * sin(n*0) sin(n*6)ds

1 r 1

22 morz mFrz
L cos( h )cos( 7 )dz. (40)

Undaunted, we continue with the term involving only r derivatives of equation 38, finding

k2 k

m*m*r memr memrr b2 N k
Tfn ! (T) ;k( z )rdr jﬂl cos(n®8) cos(n*9)do

22 merz mFrz
'/21 cos( z )oos( 7 )dz. (41)

Finally, we turn our attention to the term involving z derivatives:

k.2 k

m*m*z moTr mirr #2 o &
T-/n Ina( 7 )Ix( z )rdr ~/;1 cos(n®@) cos(n*4)dd

k

2z mSmzN mrmwz
/21 sm( 5 )sm( z )dz. (42)
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Computer Operating System | CPU Utilization
(seconds)
Sun 4/150 SunOS 285
IBM 3092 w/VF AIX 16.2
Cray Y/MP UNICOS 2.6

Table 3: Some Typical Run Times for N3D

We find that if both patterns are of the form of equation 33, then equations 40-42 provide
an expression for Ry ; for voxel b. We (or at least Mathematica®) can analytically integrate
the terms involving only sine and cosine, but terms containing the modified Bessel func-
tions I and their derivatives I’ must be evaluated numerically. Here, these integrations are
performed using Simpson’s rule.

Expressions similar to equations 40-42 can be worked out for other combinations of current
patterns.

Images from N3D

N3D has been implemented in FORTRAN for a cylindrical domain. In this section, we
demonstrate images from N3D using experimentally obtained voltage data. Typical execu-
tion times for several machines are displayed in Table 3 for a problem with 420 degrees of
freedom.

Figure 3 demonstrates a test configuration consisting of a tank, 30 cm in diameter and
26 cm high. This tank was filled with saline adjusted to approximately 900 @ — cm. The
cylinder’s wall was lined with 64 electrodes, arranged as 4 rows of 16 electrodes per row.
The electrodes consisted of stainless steel about 5 cm square, shaped to conform to the
tank inner surface. Also indicated in the figure is the discretization of the domain into 420
resistivity voxels.

Two objects were introduced into this volume. The first object consisted of a cylinder of
copper, 3.3 cm in diameter and 5 em high. It was placed at the level of the third electrode
plane. The second target was a teflon cylinder, 3.3 cm in diameter and 13 cm high, placed
so that it was confined to the topmost and second electrode planes.

Currents in several configurations were applied to the test tank. The first experiment was
designed to simulate two—dimensional acquisition in the three-dimensional volume. Here,
an orthogonal set of currents were applied on the third plane of electrodes, and the resulting

2Wolfram Research, Inc., Champaign, IL.
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Figure 3: Test Tank Configuration

ensselaer

Figure 4: NOSER Reconstruction (l.) and N3D Reconstruction (r.)
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voltages were used to reconstruct the resistivity distribution in the plane using a sixteen
electrode variation of the 2-D NOSER code [Cheney, et al, 1990]. The targets were removed
from the tank, an appropriate volume of saline added to replenish the displaced volume of
the targets, and a second set of voltages were acquired. This “background” data was also
reconstructed using the NOSER code. Resistivity reconstructions with and without the
targets were subtracted, and the resulting net resistivity vector was processed using 3-D
visualization software.

The resulting image, displayed on the left in Figure 4, clearly demonstrates the presence
of the conductive target. However, an artifact of increased resistivity also appears in the
image in an area that underlies the position of the resistive cylinder. The net resistivity
of this reconstruction ranges from -4.2 to +2.1 ¢ — em. The presence in the image of
resistivity perturbations outside the plane of the electrodes demonstrates the importance of
truly three-dimensional reconstruction algorithms.

To demonstrate the improved performance of N3D, the canonical current patterns T* were
scaled to 5 mA and established on the electrode array. Again, the resistivity vector resulting
from the N3D reconstruction and the “background” vector were subtracted to produce a net
resistivity image. This image, displayed as a three-dimensional cylinder cut away through
the plane of the targets to reveal the resistivity reconstruction in the interior, demonstrates
the ability of the algorithm to obtain information about the resistivity distribution along
the longitudinal axis of the cylinder. The net resistivity image displayed on the right in
Figure 4 ranges from -9.7 to +14.3 & — cm.
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