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ABSTRACT: A study of the determination of non-integer eigenvalues for ordinary differential
equations with transcendental solutions is presented. An algorithm based on expansion in terms
of Chebyshev polynomials and collocation is presented. The method is applied to the problem
of computing the electric field external to a biconical radiating structure. Eigenfunction solutions
for Legendre’s differential equation satisfying the boundary conditions of the problem considered
are presented.

1. INTRODUCTION

Canonical analysis of boundary value problems commonly produce series solutions of
transcendental functions, [1-3] where the index of summation is a set of eigenvalues (v)
determined by the boundary conditions of the problem. When considering perfectly conducting
boundaries, the eigenvalues are those values such that the transcendental function of order v, or
its derivative, is equal to zero at the boundaries. Unfortunately, the determination of the
eigenvalues that provide such results is usually limited to special cases, often when v is an
integer. Difficulty in determining the correct values for v, when v is not an integer, has limited
the use of canonical analysis for these problems.

This paper presents a generalized numerical approach for determining the eigenvalues of
transcendental functions subject to the Dirichlet and Neumann boundary conditions. The method
proposed is based upon expanding the unknown function in a series of Chebyshev polynomials
[4] and using the method of collocation [3] to obtain a well conditioned system of linear
homogeneous equations. The eigenvalues (v) are then found by using a bracketing and bisection

technique [5].
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This paper is organized as follows. Section 2 describes the mathematical formulation of
the problem. Section 3 presents the method for numerically computing the eigenvalues. Section
4 presents sample results for Legendre’s differential equation, which arises in the canonical

analysis of spherical based problems.

2. MATHEMATICAL FORMULATION

Assume that the physical problem under consideration is described by the function y (x),
which is defined on the closed region [a,b], and satisfies a second order ordinary differential

equation (ODE) of the following form:

2
d%y,(x) . B dy,(x)

A(x) P a

+ Cxv)yx =0 . 2.1

The functions A(x), B(x), and C(x,v) are taken to be continuous on the open region (a,b). The
sought solutions are subject to boundary conditions which can be separated into different types

according to the physical problem under consideration. Typical boundary conditions are:

ya) =y, (b) =0 (2.2)
y/(@=y/(b) =0 (2.3)
yJ(@) =y, (b) =0 (2.4)
/(@) =y, b) =0 (2.5)

where y,'(€) denotes the derivative of y,(x) with respect to x, evaluated at x = &.
Let y (x) be expressed by the following Chebyshev polynomial expansion:
y,@® =Y «, T,[0x)] asx<bh (2.6)
n=0

where T (z) is the nth Chebyshev polynomial of the first kind, and £(x) is a linear mapping which
maps the interval [a,b] to [-1,1]

T (2) = cos(nr cos™'(2)) -1<z<1 @7
| 2 _ 2a
ix) = [(b—a)] x b-3) 1 a<x<b . (2.8)

Since the set of Chebyshev polynomials are continuous on [-1,1], the first and second derivatives

of y,(x) may be expressed as follows:
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dy

" di(x)
2 " [0)] ~ (2.9)

dzy (x) (2.10)

u o’ II dﬂ(x)
X |

T.[0(x)] and T/ [¢(x)] are the first and second derivatives of T,[0(x)] with respect to £(x), and are

given by:
T:,(z) - [—nz T +n TH(z)] 2.11)
(1-z%)
T = 1 2 2
2@ = [ T, {(n2)* - nz*-n)
(1-z%?
T, @(-2n"2+3n2) + T, ,fn*-n) | . (2.12)

Substituting Egs. (2.9) and (2.10) in Eq. (2.1) and approximating the series expansion for y(x)
by the first N terms, yields the following linear homogeneous equation for the expansion

coefficients (a,):

N-1

Y M®ea =0 (2.13)

n=0
where,

M) (x) =A@ T[] fCEVTHE] . (214)

A0 o) 42

Enforcing Eq. (2.14) at N points, {x, i=1, N}, on the interval [a,b] leads to a system of N linear

homogeneous equations, which may be written as the following matrix equation:
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My(x) Mix) ... My )|[ay] [0
My(s) Mi(x) ... My,)|| ey | |

= |. 2.15)
My () Mi(xy) ... My, ()] |eyy| |0

Note that the matrix M is solely a function of v, the desired eigenvalues of the given
ODE. Since Eq. 2.13 is a homogeneous equation, it will have non-trivial solutions if and only
if the determinant of the matrix M is zero. However, taking the determinant of the matrix M in
its present form yields zero for any value of v. This is because solutions exist for any given
value of v due to the fact that the boundary conditions have not yet been imposed. Hence, it is
necessary to first impose the boundary conditions in order to obtain the desired values for v.

Boundary conditions are imposed by replacing the first and last rows of the matrix M with
the series representation for the boundary conditions. Thus if, y (a) = y(b) = 0 the first row of
the matrix M is replaced by

N-1

Y o, T[] =0 (2.16)
n=0
and the last row is replaced by

N-1

E a) T [KB)] =0 . (2.17)
n=0
The new matrix obtained will be denoted by M. Because the boundary conditions require the

function, or the derivative of the function, to be zero at the boundaries, the matrix equation

remains homogeneous; thus, non-trivial solutions still exist if and only if the determinant of the

matrix M is zero. Hence, the permissible values of v, subject to the given boundary conditions,
are obtained by requiring det(M) = 0.
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3. COMPUTER IMPLEMENTATION

Numerical estimation of the eigenvalues v, (p =1,....,P), 1s based on the fact that the
det(M) is an oscillatory function of v, with the det(d¥'”) = 0 (p = 1,..,P). Hence, over any
interval containing a single eigenvalue, det(M) will change sign. This behavior allows the
eigenvalues (v,) to be determined using a bracketing and bisection technique [5]. Scanning
det(M) for changes in sign over a given interval on the v axis, provides the bracketing intervals
for the eigenvalues. Care must be taken in selecting a maximum scan distance which is less than
the minimum distance between any two adjacent roots. Scan distances which are too large may
cause roots to be missed. Once the roots are bracketed the bisection technique may be
implemented to compute the particular eigenvalue to the desired degree of accuracy. Since the
bisection method requires only the computation of the sign of the determinant, the common

problem of numerical over-flow, associated with determinant calculations, is avoided.

4. ANALYSIS OF A BICONICAL RADIATING STRUCTURE

The technique developed in section 2. is now applied to Legendre’s differential equation
which describes the electromagnetic field external to a biconical radiating structure (shown in
figure 4.1). It can be shown that, under radiation conditions, the electric fields external to the

structure have series solutions of the following form:

E =Y ¢, H® ,(kn) L (cosb) (4.1)

v

where H),(kr) is a modified Hankel function of the second kind, and L,(cosd) is an odd

Legendre polynomial [6]. Boundary conditions require that L, (cos6,) = L, (cos6,) = 0. Thus,
it is necessary to determine the eigenvalues whose eigenfunctions satisfy the given boundary
conditions. For Legendre’s differential equation, A(x) = 1-x%, B(x) = -2x and C(x,V) = v(v+1).

Two different biconical radiating structures were chosen for analysis: Structure 1, 0, =
30° and 6, = 150°, Structure 2, 8, = 10° and 6, = 170°. Tables I and II provide the first four
eigenvalues for each structure and compares the calculated eigenvalues with the eigenvalues
estimated by Grimes using an asymptotic expansion technique [7]. Graphs of the corresponding
eigenfunctions are shown in figures 4.2 and 4.3. For both radiating structures under study,

coverage of the calculated eigenvalues occurred for matrix sizes on the order of N = 50 to 60.
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Figure 4.1 Geometry of the biconical radiating structure

TABLE 1
_ Structure 1 4, = 30°, §, = 150°
nigenvalue Calculated Value Grimes’ Result
nu-1 2.439211 2.439211
nu-2 5.466996 5.466996
nu-3 8.477510 8.477309
__nu—4 11.482784 -
TABLE II
Structure 2 4, =10°, 4, = 170°
Eigenvalue Calculated Value Grimes’ Result
nu-1 1.621407 1.620624
nu-2 3.916836 3.915488
nu-3 6.188799 6.187171
nu-4 ] 8.451585 8.450112
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5. CONCLUSIONS

A generalized technique for determining non-integer eigenvalues for ordinary differential
equations with transcendental solutions has been presented. To verify the technique, the method
was applied to a biconical radiating structure and the computed eigenvalues were compared with
results obtained by Grimes using an asymptotic method. Excellent agreement was established
between the two methods. The method proposed here is completely general and has the
advantages that only the sign of the determinant needs to be computed and that the matrix size

needed for convergence is small.
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