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Abstract- The theoretical properties of a
composite chiral-plasma medium are devel-
oped. Using the reaction theorem, we obtain
the proof of nonreciprocity based upon the
constitutive relationships between the elec-
tromagnetic vectors E, B, H, D. Using the
Maxwell’s equations and the proposed consti-
tutive relations for a chiral-plasma medium,
we derive the E and H vector equations and
from these equations, dispersion relations and
E-field polarizations are found.
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INTRODUCTION.

Chiral medium [1,2] and ferrite medium (3] have
been studied over the last decade for many applica-
tions. Chiral-medium have been examined as coating
for reducing radar cross section, for antennas and ar-
rays, for antenna radomes in waveguides and for mi-
crostrip substrate. Here, we examine a chiral-plasma
medium, where the plasma part of the composite
medium is non-reciprocal due to the external mag-
netic field. To find the general dispersion relation giv-
ing w against & behavior, the vector phasor Helmholtz
based equations are derived. We determine the modal
eigenvalue properties in the chiral-plasma medium,
which is doubly anisotropic. For the case of waves
which propagate parallel to the magnetic field it is
a cold magnetized chiro-plasma. We compare our
results with the typical results obtained for a cold
plasma [4]. Also we obtain the chiral-Faraday rota-
tion which can be compared with the typical Faraday
rotation for a pair of right- and left-handed circularly
polarized waves.

14

THEORETICAL FOUNDATIONS.

We propose the following constitutive relations for
chiral-plasma medium

D = € E+uA (1)
B = ;J.I? +1,E (2)
Plasma medium constitutive relations are [4]
ﬁp = ?P ’Ep (3)
p = HoHp (4)
where
€1 1€ 0
€p=| —iea € 0 (3)
0 0 €3

where ¢ and t1,2 represent the permittivity tensor
and chirality parameters of the composite medium,
respectively. The lossless character of the magnetized
cold plasma medium is implied by the Hermitian na-
ture of the tensor (?;)T =¢,. The superscripts *
and 7 denote complex conjugate and transpose, re-
spectively.

In the search for new medium, which displays non-
reciprocal properties, it is essential to establish the

nature of the chirality parameters ¢; and #;. The
anisotropic reaction theorem [5] is
[ By Judv = f B - Fydv (6)

Here, we see thaE source currents J_'; and f; produce
fields E,, and E}, respectively, and the tilde over
the fields indicates a new medium altered from the
original medium, thus, we obtain 6 x 6 constitutive
tensors

A= {7

&I T ‘

T ﬁT



and

€ -t
-t b

(8)

with  and # being the optical activity 3 x 3 tensors.
Reciprocity occurs only if

fﬁb-.ﬂdv:/Ea-.ﬂdv

that is, by (6) it requires that

A=A (9)
For chiral medium we must obtain
e=0, f=t1, #—t], G=0 (10)
To obtain reciprocity, (9) imposes
—toIT =131, —t,IF =tal (11)
that is,
t) = ~t (12)
For plasma medium (3) and (4) hold leading to
é=¢, f=F=0, p=po=1 (13)

Then for the propesed constitutive relations ((1) and
(2)) we have

(14)
(15)

bty O

i E + tl.ﬁ
uoﬁ +t2E

VECTOR HELMHOLTZ EQUATIONS

The E-field vector Helmholtz equation is derived
by inserting the constitutive relation (14) and (15)
into Maxwell’s equations

VxE = —iwB (16)
VxH = wD+J (17)
S0
V x E = —iwpoH — iwty E (18)
VxH=iwe -E+ivtiH (19)
Solving for H, {(18) gives
. 1 [ . -
H=— (—v x E— th) (20)
Ho \W
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and putting this into (19} we obtain
- 14 - 1o =
VxH=——(VxVxE)y—=VxE (21)
How Mo

Then the E-field vector equation is given by

VXVXE+iw(ty,—t;)VxE

T tyt -
—w? poeo —_212Y F_o
€a  Hoto
Here, the plasma current is included in the permit-

tivity tensor €. =
Similarly the H-field equation is given by

(22)

-l - -1 -
Ux € VxH4iw(tae VxH-4

1 — —_—1 -
xH)—ung(I—%he )H:O (23)
1]

VX ¢

The inverse permittivity tensor is given by

€1 —562 0

=1 .

e =|t2 «a 0 (24)
0 o0 =2

DisPERSION RELATION.

Dispersion relation for the propagation vector k
against w can be obtained from E- or H-vector equa-
tion. We start with the E-field relation which is sim-

pler than the H-equation.

Defining E as
E = Epe~iF (25)
We obtain

-k x k x Eg+w(t2—t1)§x E,

—w? oo (i - -tﬁ) Ey=0 (26)
€  Hofo

Putting Ep into rectangular coordinates

Eo= E;é+ Eyjj+ E.2 (27)

we obtain a three component system of equations
which determine the eigenvector, and the determi-
nant of the coeflicient component matrix M will
determine the eigenvalues, thereby yielding the w
against k dispersion diagram in phase-space. Writ-
ing Det(M;) = 0, with k; = 0 and with symmetry
about the z-axis we obtain



€] _ Nt ) _ deg  cosf(ts — 1) sin Bftg —t1)
L n ey (1 Ho€1 n’eg LN /oo
1€ cos#(ta — 11 9 € ( 11 ) o _
?ﬁ’;+ /T cos 9-——;2];5 1—--3‘»—2-;1061 sin & cos # =0 (28)
_Sinﬁtz—ﬁ e . 9n € ( _ it )
ﬁﬁl sin & cos ¢ sin’g E’%{; 1 -1—1€3 &
. . t2¢
Here, the refractive index n is defined as as = pdut [53 (2 —€) (1 — _6;9.) (35)

1
N/

Ifpo = 1, 0 = 1, ¢t = tz = 0 we obtain
the same results given by Krall and Trivelpiece for a
magneto-plasma [4].

For a lossless chiroplasma, i.e., t; = it\/g€q and
ty = —it,/poco, the non-trivial solution of this system
comnes from setting the determinant of the coefficients
equal to zero, giving

ck
n=—, where c¢=
W

f(O) = F(nz,u,q,ez,t,e3, k) (29)
Equation {29) is then the general dispersion relation
for waves propagating in a cold coliisionless homoge-
neous chiroplasma in a uniform magnetic fieid. For
given plasma frequency w,, cyclotron frequency w,,
wave frequency w and direction of propagation ¢, (29)
can be solved for the index of refraction », having as
parameter the chirality ¢.

In terms of k, the dispersion relation is given by

alk4 + agks + a3k2 +ask+as=0 (30)
where
t2
a; = — [w2€1ﬂ0 (1— TEO—) Siﬂze (31)
1
2
~w2esptg (1 - t—ﬂ) cosgﬁ]
€3
a = 0 (32)
[ t? t
a3 = wiplleaes (1 - ﬂ) (1 - ﬁ)} (33)
1 €1 €3
F 2 tz
w*}-% €1€3 (1 + 3t EO) (1 - ﬂ)] cosf
1 €1 €3
[ tzfa 2 P
‘w4[.l(2) L(El (1 —+ —?)) — €5 — 4€§t4 Sfﬂzg
2 5 e
ag = —4pg/Hocow’ lezez |l —~ “é_) cost (34)
3
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+2€012€1 (63 — 6012) - th4 (63 - €0t2)]

Here, there are four different eigenmodes for k as im-
plied by (30). The components of the permittivity
tensor are obtained using the constitutive equations
(14) and (15), and are given by:

2
6 = 1-t2— L4 (36)
w? —wd,
2
Wee Wy
€2 = 37)
w w?—wi, (
2
w
€3 = l—tz—-—;-, (38)

where w, is the plasma frequency and we. is the elec-
tron gyrofrequency given by:

4xng€

w: = o (39)
eBy

Wee = et (40)

We can observe that for ¢ = 0 we obtain the same
expressions given by Krall and Trivelpiece [4] for a
plasma medium.

HigH-FREQUENCY WAVES WITH k || By AND
k L By.

Setting § = 0, it is possible to find circularly po-
larized waves from (28) by writing the E-field vector
equation in the form

(n2 —¢r}ER 0,
(n2 —e)Er = 0,
t?
€3 (1—‘-—-) E, = 0 (41)
€3
where
t2
€R,L = €1 (1 - ""—) + e (1 - %) (42)
€1 €2



and
Epr = E;+1iEy. (43)

It is useful to explore these solutions in terms of the
wavenumbers kg and ky given by

¢
kg = —‘ci + %\/e1 s (44)
and
t
kr = ——‘:— + §\/E1 Tes {45)

where kg is the wave number for a circularly polar-
ized wave which drives electrons in the direction of
their cyclotron motion, i.e., right circularly polarized
waves and kg is the wave number for a circularly po-
larized wave which drives electrons in the direction
opposite to their cyclotron motion, i.e., left circularly
polarized waves. The ¢ parameter modifies the typical
plot of w(k) shown by Kral and Trivelpiece, where the
cutoff frequencies are shifted. In Figure 1 we present
the modifications introduced by the parameter ¢ in
the dispersion relations of the right and left polar-
ized waves. In this Figure the dispersion relations of
the right and left circularly polarized waves are indi-
cated by circles and stars, respectively. When ¢ # 0,
¢, and ¢z depend on ¢ and kg and k; have a linear
term, tw/e, as can be seen in (44) and (45). In this
way, rather than to modify the curves that exist for
t = 0, the parameter ¢ permits that the wave prop-
agates in a region of frequencies that is forbidden in
the case £ = 0. Another effect caused by the presence
of the parameter ¢ is a conversion of modes. We can
observe in Figure 1 that for ¢ = 0, there is no in-
tersection of the dispersion relations of the right and
left circularly polarized waves. When ¢ # 0 we can
observe that there is an intersection of these curves,
indicating that the presence of the ¢ parameter per-
mits that a wave changes its polarization.

In Figure 1 for ¢ = 0 we can also observe that
there is a region where only right circularly polarized
waves propagate, a region where only left circularly
polarized waves propagate and a region where both
propagate. If their amplitudes are equal, the effect of
the superposition of a left and right circularly polar-
ized wave is to produce a plane wave with a particular
plane of polarization. Because the two polarizations
propagate at different velocities, the plane of polar-
ization rotates as the wave propagates along the mag-
netic field. This effect is called Faraday rotation.

The global rotation of the plane of polarization as
a function of distance in the direction of propagation

is given by
% = cot (EL—;E) z (46)
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which means that the presence of the ¢ parameter af-
fects also the Faraday rotation. The chiral-Faraday
rotation can be used as a plasma probe. In a lab-
oratory experiment this would be done by launch-
ing a planewave along the magnetic field in a chiro-
plasma. Considering that the plane of polarization
of this wave can be determined by an antenna and
that we know the magnetic field, the density of the
plasma and the frequency of the launched wave, the
measurement of the plane of polarization away from
the source can determine the value of the parame-
ter t. For instance, considering for the plasma fre-
quency, w, = 5s~!, for the electron gyrofrequency,
wee = 257, and for the launched wave, w = 6.55~1,
the value of the plane of polarization 10 mm away
from the source is E./E, = 85.76, E./E, = 118.17
and E;/E, = 186.11fort =0, ¢ = 0.05 and t = 0.1,
respectively.

Setting 8§ = 7/2, we obtain the following dispersion
relations:

VA-VB

ky =+ ——— 47
T ol - ) 7)
and
ko = i___wg (48)
v/ 2(51 - tz) ’
where
w2
== [ef - eg +e1ea+ tz(q —€3)— 2t4] (49)
and
|'.l.4*4 2 2 2
8 = ;w&r%ﬂ-ﬁ%)+

£2(6€3 — 6e163 — 2¢1€5 + 12¢5e3 — 263¢3) +
t4(—15¢2 + 82 — 18163 + e2) +
Sts(fl + 63)]

It should be pointed out that the eletric field of
the extraordinary wave, kx is perpendicular to the
magnetic field and the eletric field of the ordinary
wave, ko, is parallel to the magnetic field.

In Figure 2 we present the effect of the parameter
t on the dispersion relations for the case ¢ = #/2. In
this Figure the ordinary and extraordinary waves are
indicated by circles and stars, respectively. Whent =
0.05, for § = n/2, the effect of the parameter is very
small. We can observe that the dispersion relations
are a little modified, but the parameter is not able to
break up the forbidden regions that exist when ¢ =
0. When ¢t = 0.5, the dispersion relations show very
different curves with respect to the curves for { = 0,
and there is no more bands of forbidden frequencies.

(50)



The difference in the way the ¢ parameter acts in the
parallel and perpendicular directions is due to the
kind of equations we have. In (44) and (45) the ¢
parameter appears as a linear term and in (47) and
(48) the ¢t parameter appears just inside a square root.
We observe also that for §# = /2 the parameter £ does
not lead to the conversion of modes, as it happens for
8=0.
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Figure 1: Dispersion relations for various values
of the parameter ¢ when the direction of propagation
is parallel to the magnetic field (# = 0). W is the an-
gular frequency normalized to hte plasma frequency.
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Figure 2: Dispersion relations for various values
of the parameter ¢ when the direction of propagation
is perpendicular to the magnetic field (6 = n/2).



