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Abstract — In this work a modified formulation of the
transverse resonance technique (TRT) is presented.
The difference between the usual TRT and the formu-
lation presented here, MTRT, is the equivalent net-
work comnsidered. With the MTRT proposed formu-
lation, mode solution identification requires less ar-
duous work. The complete equation set is described.
Numerical results are presented for dispersion charac-
teristics of microstrip lines, coupled microstrip lines
and conductor-backed coplanar wavegnides (CBCW).
When compared to resuits obtained by other meth-
ods, a good agreement is observed.

L INTRODUCTION

The recent developments made in microwave
and millimeter-wave circuits (MIC), especially in the
monolithic form (MMIC) where it is very difficult
to tune the circuits once they are fabricated, have
required extremely accurate computer aided design
(CAD) programs [1]. Along with this, the consid-
erable advances in computers have allowed & rapid
evolution of the usual numerical techniques. In this
sense, a modified formulation of the transverse reso-
nance technique (MTRT) is presented in this work.
One of the advantages of the MTRT, when com-
pared to the usual TRT, is the possibility of ana-
lyzing open side structures exactly, without the use
of auxiliary geometry, which permits considerable
reduction in the work for mode solutions identifi-
cation. Numerical results are presented for disper-
sion characteristics of microstrip lines, coupled mi-
crostrip lines and conductor-backed coplanar waveg-
uides (CBCW). When compared to results obtained
by other methods, a good agreement is observed.

II. THEORY

In the conventional formulation of the TRT, a suit-
able equivalent network is established, represent-
ing discontinuity planes and boundary conditions,
to compute the cutoff frequencies and possibly some
additional characteristics of the structures [2]. The
difference between the conventional and the modified
TRT is the equivalent network adopted. In the TRT,
the discontinuity planes are parallel {o the conductor
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strips (Fig. 1), whereas in the MTRT they are per-
pendicular (Fig. 2). Figures 1 and 2 present equiva-
lent networks and respective matrix admittances for
a microstrip. Mode coupling, that occurs at each dis-
continuity, is represented by generic voltage sources.
The different transmission line sections repre-
sent the different waveguide sections (in
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Figure 1: TRT

the MTRT case, two homogeneous waveguides (a
and b) and one inhomogeneous (cd) ). The admit-



tances (Y 5,04) represent the boundary conditions.

symmetry plane

W
L/

discontinuity plane

To-T|

Yb

W/2

Ya

J‘-JaT__

b
[Yal+ [Y3q] [Yeq ]

b
[Yb]+ [Y cd ]

Figure 2: MTRT

The matrix admittance [Y] is obtained by the use
of Kirchhoff’s laws and it is deduced in the following
way:

[Fa] = [J'] = [YallEd] (1)
73] — [7'] = [V3]1Es] (2)
[7] = [Yed)([Ea] + [Ea]) (3)
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Substituing (3) into (1) and (2) yields

[Ta] = ([Yeal ([Ea) + {Ea])) = [Ya][Ea)  (4)

[75] — ([Yea([Ea] + [B6]) = [Va](Es]  (5)

The equations (4) and (5) can be rewritten as

[Ja] = {[Ya] + [Yed)[Eo] + [Yed][Ee] (6)
(78] = [YeallEo] + ([Y3] + [Yea] ) E] Q)
or in the mafrix form

[Ja] | _
[ {] ] B

(8)

l: ([Ya]+ [ch]) [ch] :l [ [Ea] ]
[Yed W)+ [¥.d) | L E

If it is assumed that suitable inner products ({ | })
can be determined, equation (8) may be written as
[Ja]

[mdz
| |

(HY(Ye] + Yed) () (1) [Yed) (1)
(1) Yead( 1) (1Y (V] + [YeaD (1)
[[e,,]
9

fea] ]
Note that when { | }[¥].q{ | } involves only testing

function in the region a(b) the notation { | )[ch(b)]( 1}
is adopted. The notation { | }[Y2|{ 1), or
{ | Y[¥E2)( | }, is adopted to indicate that testing
functions in regions @ and & are used in the inner
products. In Fig. 2, the inner product symbol, { | ),
is omitted. Matrix terms are detailed in the follow-
ing equations.

[Y ] znyl [Yyibﬂ(?y)] [Yh,n(yz)]
1 = n=0
[Yyl,ﬂ(zy)] [Yyl,n(zz)]
(10)
[Yiinn)] = (@5 1F) ) Yorn (i ml6yY) (1)



Yo ne)] = (832 ) Yo n(F0l62)  (12)
Vo neny] = @2 120 Vn(fnley' (13)
[Yu1,n(zz)] = (¢:l I.f;/,1n>YV1,ﬂ( ;,;Iqszl) (14)
with vy = a,b
[Y'c?i,n(yy)] [Ycat'i,n{yz)]
ch En—ﬂ
[ch n(zy)] [ cd n(zx)]
(15)
[Yc?i,n{yg)] = (¢;|f;,ﬂ)YCdv“(f;,n’¢;) (16)
[Yhaen] = G215 ) eanlfEaleD) ()
[Yeinon) = GV N etnlfale)  (18)
[Voinn] = G212 ornlfonle2) (19)
[Ycz,n(yy)] [}fcﬁi,n(yz)]
[ d] = n_ﬂ
[ch ﬂ(zy)] [ ed. ﬂ(zz)]
_ (20)
Y::d n(yy) (qﬁ; If:,n)ch,n (f:,nl¢:) (21)
:Y:I:i,n(yz)i = (¢Z[ ;,:-;)Y::d,n (ff,nwg) (22)
Y2 o) = (BN Yean (16} (29)
[Yoinen)] = (BN ean(fal))  (29)
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V2

£

ra.n

v

[Yc?ifﬂ(w)] [Yc%l:ﬂ(w}]

ab] =

n...-O
[ dn(zy)] [cdu(zz)]
(25)
Y8 = G215 ) Yean (Fial®))  (26)
Y] = G315 ) ean(FalY) (@D)
-ch m(zy) | (¢g If.:,u)YCd,ﬂ (f:,n i¢;) (28)
ch n(zz) (¢g If;,n)ycd,ﬂ (f;t.-’,n |¢g) (29)
. [Y;zfn{yy)] [Ycifn(w)]
chda] = Zn_ﬂ
ba
[ch n(zy)] [ dn(zz)]
(30)
[Y3n] = B TEa)Yean (Faldl) (3D
(¥3yy] = BV eanlfZale?)  (32)
[Yiinan)] = (LW ean(Fiales)  39)
Vonon)] = (U VeanlFZaléD)  (3)

where:

1

3

4

are testing functions that satisfy boundary
conditions in the discontinuity planes, in region
vi(11 = a,b), on the axis vp(vs =y, 2).

is the n'® basis function, which describe the
electric and magnetic fields in the region »s, on
the axis ro(ve = ¥, 2).

is the admittance, that represents the boundary
conditions of the transmission line section,
shifted to the discontinuity plare, in the region
va(vy = a, b, cd).



The adopted testing functions are:

ot = \/Ca/ W cos (nmy/ /h) (35)

2 = \/Ca/W sin (nxy/ [H') (36)

ha a

= for (37)
(H —h), b

7y = n.w/h’ (38)
Y, a

= { for {39)
(H-y) b
1, n even

(n= for (40)
2, n odd

As the regions a and b correspond to homogeneous
waveguides, the basis functions are TE and TM elec-
tric field equations, on the axis y and z.

TE modes,

] k!
f;}’f‘ —_ e;:i _ (__‘Y.‘Z_Cﬂ_/.._) COS("fy yf)e—'y,z

ki(x2 + 77}

(41)
hl’
= el = _wVnlk sin(v, 3 )e""**
K1(kz +77)
(42)
TM modes,

$n/W
foh=egn= (in—ﬂ/——

cos(yyy')e”"*
Tz (Jr1(k2 +7F)

(43)

4= (—J——————V /W ) sin(yy)e ™™
/malm2 +75)
(49

For the regions ¢ and d that correspond to inho-
mogeneous waveguides, the basis functions are 1SE

and LSM electric current density (J = —, /-‘Eiolff X iz )
field equations [2], on the axis y and z.
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LSE modes,
on=Tin =
(%) (%{‘2) (%) cosh(&y 1y)e7=*
fin=Jdin=
(snexat) (542 sinb(e, e
ta= =

(%&) (%) cosh(€y 2(H — y))e7*
fl.=0d, =
€2 J+K3

(—}?}?) sinh(é, 2(H — y))e™*
LSM modes,
fen=din=
*‘/m (%) cosh(gy,ly)e'm
2=, =0

g _ 3d _—
fy,"_Jy,n“

—+/ ito/ €0 cosh(§y 2(H — y))e™=*

ff,n = J:,n =0
with,
hu = (H _ h)

eter = g=(reztTe2)

Ky = e~ T (e F)"
K2 = 7:-(7:)"
Ko = wy/poer

‘Y:,a(b) = '“Ktzifr,a(b) -+ 73

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)
(54)
(85)
(56)
(57)

(58)



and &, 1 and &, 2 are obtained from the solution of
the following equation system:

{ £y 1 coth(£y 1 k) + &y 2 coth(Ey 2R") =0
(59)
&£, + 53,2 = Ki(l-e)
{ 73,::& = —(Kier+72 +§3,1)
(60)
= —(KZ+7I+6&2)

The admittances are defined as functions of the
boundary conditions and are given by:

Electric symmetry

Yopya(e = W/2) = Y2 coth(vz oy W/2)  (61)
Magnetic symmetry

Yapyn(z = W/2) = Y20 tanh(,, a0y W/2)  (62)

with

(3 _ _Toe
Y = JTOI;%)“—), TE rmodes (63)
v = ’——(-lffr“"“ 5 TM modes (64)
r,a{d)
For electric side walls
Y = N coth (1z,.4(L — W)/2) {(65)
with magnetic side walls
Y¥ = Ni tanh vz .a(L — W)/2) (66)
and for open sides structures
1
ed _ _—
Y= D (67)
where 1/N* = 1/(&]7) is defined in [3], and given by:
LSE modes

+

)

_ sinh (26,.1h) A [
N = ”1( 7 v 5) (E}Lz)
(68)
" (sinhgzez,,h"g _ ;,_") (E‘ z
2 44,2 2 ) \Ey,2

LSM modes

N

" (sinh (2£y,2h) +

[}
LTI 2

(69)

N +

V4 (sinh (264.20")

ht.r
48,2 3

+
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where

*

(si;:i (Egg;‘z:i’:'l c':r,‘) .
(stes () =)
Vo = (63-_2 + K"z._) eves (€75 )*
iKove
) e""*)“e .

h (€., h") .
(V“"/ B )

=

(70)

£ a+K3
jKﬂ‘Y:

(1)

£2 2 +K3
Jweotryz

(cosh (€y,2R")

V3= Sk (Ey,15)

(72)

53’2 + Kg Yrs ) Y.
= (W e vV #0/60 € (73)
Equations (9)-(73) are detailed in [4]. Equations
for the coupled microstrip lines and CBCW are sim-
ilar to these presented here and are also detailed in
[4].
III. NUMERICAL RESULTS

Numerical results presented in this section were ob-
tained by a computer program on a personal com-
puter. In Fig. 3 the dispersive characteristics for
a shielded microtrip are presented. Along with de
quasi-TEM mode, higher order modes are consid-
ered. When compared to results of [5], a good agree-
ment is observed.

In Fig. 4 the dispersive characteristics are pre-
sented for open coupled microstrip lines. For the
cases considered {e,=2.35 and ¢,=9.7), the results
obtained are in accordance with the ones obtained
in [6].

In Fig. 5 results are presented for a boxed CBCW.
The dispersive characteristics for the quasi-TEM
mode are presented for two different strips spacing
(5=0.10mm and $S=0.40mm). When compared to
results of [7], obtained by the usual TRT, a good
agreement is observed.

IV. CONCLUSIONS

In this work, a modified formulation of the transverse
resonance technique (MTRT) is presented, which is a
versatile technique to compute dispersive character-
istics of transmission structures. With the MTRT
proposed formulation, mode solution identification
requires less  work, especially when higher or-
der modes are considered. The complete equation
set is described. Numerical results are presented for
dispersive characteristics of microstrip lines, coupled
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Figure 3: €,5; x frequency (GHz)
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Figure 4: ¢.55 x frequency (GHz)

24

a) H=L=2.5mm, h=0.20mm, S=W=0.10mm,
=129

b) H=L=2.5mm, h=0.20mm, S=4W=0.40mm,
€-=12.9

Figure 5: €.55 X frequency (GHz)




microstrip lines and CBCW. When compared to re-
sults obtained by other methods, a good agreement
is observed.
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