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Abstract

The surface-impedance boundary condition for the
Finite-Difference, Time-Domain (FDTD} method is re-
formulated using digital filtering theory and Z trans-
forms. The approach expands upon recent work in de-
veloping an efficient surface-impedance boundary condi-
tion for FDTD. The present work involves formulating the
surface-impedance boundary condition in the frequency
domain for a lossy dielectric half-space and for a thin
lossy dielectric layer backed by a perfect conductor. The
impedance function of the lossy medium is approximated
with a series of low-pass filters. This approximation is
independent of material properties and these low-pass fil-
ters are converted to corresponding digital filters using Z-
transform theory. The FDTD surface-impedance bound-
ary condition is reformulated in the Z domain, and the
corresponding time-domain electric field sequence updat-
ing equation involves a recursive formula. Results are
presented for both one and two-dimensional test prob-
lems.

1 Introduction

The surface-impedance boundary condition (SIBC) is
a frequency-domain concept that is used to simplify scat-
tering calculations by eliminating the internal volume of
lossy dielectric objects. The SIBC relates tangential elec-
tric and magnetic field components at the surface of the
object throngh an impedance which is a function of the
object's material parameters. Thus, the material proper-
ties of the object are accounted for, and if exterior fields
are only of interest, the SIBC eliminates the need to cal-
culate fields inside the scatterer. This results in a savings
in computational resources by reducing the computational
storage requirements and/or computation time.

To analyze electromagnetic field interaction with lossy
dielectric objects, the Finite-Difference, Time-Domain
(FDTD) method requires that the interior of the object be
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modeled in order for ficlds to penetrate the body. Since
the wavelength inside a lossy dielectric material is much
less than the free space wavelength, accurate modeling
often requires a fine spatial grid resulting in a relatively
large number of cells for moderately sized objects. For
calculations where only exterior response is of interest, a
conducting dielectric object can be replaced by a SIBC
over the surface of the object. Thus, this boundary condi-
tion eliminates the spatial quantization of the object and
reduces the overall size of the solution space by elimi-
nating cells within the object and by allowing larger cells
to be used in the exterior region. The larger cells reduce
the storage requirements since fewer cells are required to
model the same physical dimensions of the cbject. The
computation time for the reduced solution space is also
decreased becanse fields in cells within the object are not
updated.

Most applications of the SIBC have traditionally been
in the frequency domain [1}-{18]. Recently, time-domain
surface-impedance concepts have received considerable
attention in the literature {19]. There have been several
FDTD implementations of the surface-impedance bound-
ary condition introduced by various authors [20]-{38].
Each implementation has certain advantages and disad-
vantages, but all strive to obtain the most efficient and ac-
curate method. These FDTD surface-impedance bound-
ary conditions are reviewed in a separate article [39].

It has been demonstrated recently that dispersive and
nonlinear optical media can be modeled in FDTD using
digital filtering and Z-transform theory [40]. Materiais
with Debye or Lorentz dispersion have rational functions
of frequency for the dielectric permittivity. These func-
tions that define relative permittivities as a function of
frequency have direct Z-transforms, thus allowing the re-
lationship between electric flux density and field intensity
to be formulated directy in the Z-domain. The result-
ing time-domain updating equations for the sequences in-
volve recursive formulas and are computationally identi-
cal to the time-domain, differential-equation based meth-



ods. Excellent results have been obtained in modeling De-
bye, Lorentz and nonlinear optical media. The difficulty
in applying Z-transform theory to the surface-impedance
boundary condition is that the frequency-domain, surface-
impedance function is irrational. With the recent work
of Oh et al. [37], the normalized irrational surface-
impedance function is approximated with a series of firsi-
order, rational functions. This approximation is inde-
pendent of material properties, and the firsi-order, ratio-
nal functions can be transformed into an equivalent Z-
domain form. This paper extends the work in [37] by
providing the technical approach for reformulating the
surface-impedance boundary condition using digital fil-
tering and Z-transform theory. The surface-impedance
boundary condition is converted to the Z-domain by two
methods and the resulting recursive updating formulas for
the electric field intensity sequence are almost computa-
tionally identical to that in [37]. There are several advan-
tages of using the Z-transform approach to implement the
SIBC for the FDTD method. The Z-transform approach
provides a more accurate, intuitive and consistent method
to implement the SIBC based upon the discrete nature of
the FDTD method. In the traditional recursive convolu-
tion approach, the SIBC is implemented by convolving
analog time-domain impedance and magnetic field signals
that have been discretized in time. However, the discrete
nature of the FDTD method results in discrete impedance
and magnetic field sequences which are manipulated eas-
ily and accurately using Z-transforms. The Z-domain
SIBC system functions are digital filters that operate on
the discrete FDTD magnetic field sequences which pro-
vides a more accurate implementation and a more intu-
itive and cohesive theoretical formulation.

In this paper, Section 2 develops the surface impedance
boundary condition in the Z-domain and provides the re-
cursive updating equations for the electric field inten-
sity sequence for both a lossy dielectric half-space and
a thin lossy dielectric layer backed by a perfect electri-
cal conductor (PEC). Section 3 presents one- and two-
dimensional results, and Section 4 provides concluding
rematks.

2 Z Transform Approach

~ This section develops the Z-transform approach for

both a lossy dielectric half-space and a thin, PEC-backed,
lossy-dielectric layer. The planar first-order, frequency-
domain SIBC is used and then an efficient implementation
of the corresponding time-domain SIBC is developed us-
ing digital filtering and Z-transform theory. This approach
is an extension of previous work by Oh et al. [37] inde-
veloping an efficient time-domain SIBC using recursion.
The notation presented in that paper [37] has been pre-
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served as much as possible in the present work.

2.1 Lossy Dielectric Half-Space

The first-order (or Leontovich) impedance boundary
condition relates tangential total field components and is
given in the frequency domain as (4]

-

Bw) - ﬁ[ﬁ-E(w)] = Zy{w) [ﬁ x ﬁ(m)] M

where w is the radian frequency, A is the unit cutward nor-
mal from the surface and Z,(w) is the frequency-domain
surface-impedance of the material. An e’ time depen-
dence is assumed and suppressed. This frequency-domain-
SIBC is for a planar material interface and does not ac-
count for the surface curvature of an object. Since the
present formulation uses the planar SIBC, it is limited
to those geometries where the smallest radius of curva-
ture is relatively large compared to the wavelength. The
frequency-domain surface-impedance is given by

Jwp

Zs(w) = o+ jwe

(2

When the impedance boundary is between free space and
the dielectric, it is assumed that the complex refractive
index, N, obeys the restriction

|V} > 1 3)

where N = /pi,€-(w). This restriction is imposed so
that the wave impedance in the material is independent
of the incidence angle and will be equal for both polar-
izations. This restriction limits the applicability of the
present formulation to those media with large conductiv-
ity or permittivity, but this restriction is feasible for most
practical simulations where a SIBC would be applicable.
For cases of low | N|, the approach developed by Kellali
et al. [29] includes the incidence angle in the SIBC. That
formulation may be beneficial in cases of lower | V]| o
avoid gridding and updating fields within a large object.
Since the restriction of (3) holds, then (2) is applicable
for both polarizations in the two- and three-dimensional
cases. This implies that the transmitted fields inside the
object will propagate almost normal to the object surface;
hence the wave impedance will be equal for both polar-
izations. .
The frequency-domain surface-impedance function o
(2) can be rewritten using the complex frequency variable
§ = jw as
s
s+a

Zy(s) = Zi )
where a = /¢ and Z; is the intrinsic wave impedance of
the maierial given by Z; = /p/¢. Following the proce-
dure in {37], equation (4) can be rewritten as a normalized



impedance function given by

Z, (s') '

s +1
where ' s/a. The normalized surface-impedance

function is approximated in the frequency domain by a
series of first order rational functions of the form

L
Ci
-Zs’+w;

=1

Za(s) = &)

Zn(s) =

(6)

This approximation is over the real axis interval s’
[0, 3], which will accommodate most materials up to sev-
eral tens of Gigahertz. The residues C; and poles «;
are given for sixth, seventh and eighth-order approxi-
mations in [37]. Figure 1 shows the percentage error
for the eighth-order approximation, which will be used

throughout this paper. Using the approximation in (6).
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Figure 1: Percent error versus complex frequency (s")in
eighth-order approximation to surface impedance func-
ton.

the frequency-domain, surface-impedance function can
be wrilten as

GZ C;

5 + awy

8
Z()mZi— Yy ——

=1

The time-domain, surface-impedance boundary condition
is obtained by applying the Convolution Theorem to (1)
which results in

am=%m®hxmﬂ

)

t)

where the @ is the convolution operator, €(¢) and R(t) are
the time-domain electric and magnetic field intensities at
the impedance boundary and the subscript “t" denotes tan-
gential field. From (7), it is clear that the time-domain
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representation of each first-order rational function is a de-
caying exponential. As a result, the convolution with the
tangential magnetic field can be updated using recursion
to avoid storing the complete time history of the magnetic
field at the material interface. This recursive approach
was first proposed in [22}-[23] and has been expanded
upon by several authors [29]-{31], [341-[38]. Sullivan
[41] has shown the multiplication theorem for convolu-
tion involving FDTD discrete field sequences includes the
sampling factor 7'. Thus the Z-domain surface-impedance
boundary condition is given by

Bz =2Z() [ax A@)| T ©
Each of the first-order rational functions in (7) is a low-
pass filter. When an analog filter function is known, dig-
ital filters can be obtained directly using three different
approaches [42]. These approaches are discussed in the
following sections.

2.1.1 HImnpulse Invariance Method

The first approach to obtaining a digital filter from
an analog filter is to use the impulse-invariance proce-
dure which involves choosing the unit sample response
of the digital filter as equally spaced samples of the im-
pulse response of the analog filter. The time-domain,
surface-impedance impulse response is found via an in-
verse Laplace transform of the frequency-domain expres-
sionin (7) to be

8
Zs(t) = Z,6(t) - Z C]'.C;e_a'ult

i=1

(10)

where 6(t) is the Dirac delta function. If this time-domain
impulse response is now sampled with interval 7', the dis-
crete surface-impedance impulse response is

8
= Z;6(nT) — Z aCe™ T (11)
=1

zs(n) = z:(nT)

Taking the Z-transform of both sides of this equation gives
the Z-domain, surface-impedance function of :

Y e

=1

(12)

%m

1-— z—-le—aw;T

The Z-domain surface-impedance boundary condition of
(9) is then

8

Zi—y
=1

CiT _
— za_1le-aw_17"] [n x H(z)]
(13}

E(z)=



This equation can be rewritten after some algebra as
8
B =2zpx @] - )
=1

where
Fi(z) = e Tz Fi(z) + aCi Z; [ﬁ x ﬁ(z)] (15)

is the recursive updating equation in the Z-domain. Re-
call that the z—! term is a delay operator, and in the time
domain, these equations become

gk = 2 [ax 2k =1/2)] = 2 E) (6

=1
with

f;n(k) — e—awaﬁn—l(k) an

+aCi1Z; [ﬁ, x Bn=1/2(k ~ 1/2)]

as the recursive updating equation suitable for FDTD im-
plementation. Note that equation {16) is identical 10 equa-
tion (8a) in [37] with a minor change in notation. By us-
ing the impulse invariance procedure, it is assumed that
the field sequences are piecewise constant in dme. This
will result in only a first-order accurate houndary con-
dition, similar to the recursive convolution approach for
dispersive media involving piecewise constant field com-
ponents. When implemented and tested, the impulse in-
variance procedure led to instabilities because of the alias-
ing problems in the digital filter frequency response, and
because the time step chosen for the FDTD calculations
was not small enough to resolve the characteristic time
constants of some of the exponential terms in the unit im-
pulse response. It is interesting o note that the impulse-
invariance design approach was shown to be unstable for
FDTD modeling of dispersive media for certain materi-
als exhibiting Lorentz dispersion [43]. Therefore, no re-
sults are shown using the impulse-invariance procedure,
but this section was included for completeness and for
comparison to the other Z-domain methods.

212 Backward Difference Method

With the frequency-domain surface-impedance of (7).
the surface-impedance boundary condition can be rewrit-
ten to be

8
s Sif;—%] [ x As)] a8

Ef,(.ﬁ) ~ l:Zi -

The backward difference method is a digital filter design
technique based upon the numerical solution of a differen-
tial equation. Each of the first-order rational terms above
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can be thought of as the analog system function for a first-
order time-domain differential equation. By approximat-
ing the time derivatives in the differential equation by a
backward difference, the digital system function is ob-
tained from the analog system function by a substitution
of variables

1—271 -

T

Substituting this into (18) and after some manipulation
gives the Z-domain surface-impedance boundary condi-
tion

(19)

5=

= ~ : an Z,'T
Eiz) ~ [Zi a ; (1-21) +aw;T] .
[ﬁ X f—f(z)]

Note that an extra 7' term does not appear above because
this transformation does not involve the convolution theo-
rem, hence the T factor is not present. After some algebra,
equation (20) can be written in the form

(20)

8

B =2 [ixA@] -1 AE @
=1
where
o _ z1 — GCIZ,;T N -
Fi() = T B + T gy [ax d(z)] @

is the recursive updating equation in the Z-domain. The
time-domain SIBC is the same as that given in (16) with

. 1 _
fk) = mf? k) (23}
—-——laflf;; [ x B /20~ 1 /2)]

as the recursive updating equation suitable for FDTD im-
plementation,

2.1.3 Bilinear Transformation Method

If the time-domain differential equation used for the
backward difference method for each of the first-order ra-
tional functions in (18) is integrated, and then this integral
is approximated by the trapezoidal rule, the corresponding
Z-domain system function canbe obtained from the ana-
log function by a different substitution of variables. This
is the bilinear transformation method, and the substitution
of variables is
_ 21— 2t
T Tl
Performing this substitution of variables in (18) and af-
ter some algebra gives the Z-domain surface-impedance

(24)

8



boandary condition to be

E.t (z} = {Z;—

& aC Z; T (1+271) L
; Z+amT) - @ aw;T)z—l] [ax d(2)

Note that an extra T term does not appear above because
the bilinear transformation does not involve the convoli-
tion theorem, hence the 7" factor is not required. Equation
(25) can be written in the same form as (14) where

2—awiT\ _; =
—_— F
(2+aw;T)z E(Z)

(ﬂ) (1+271) [ﬁ x I-_f(z)]

24+awT
is the recursive updating equation in the Z-domain. The
corresponding time-domain SIBC update equation is the
same as (16) and the recursive time-domain update equa-
tion is given by

s _ (2=awu T\
= (Freed) e

(2+aw;T) [ﬂx (h (k—1/2)

FRP2 (k1 /2))]

18] (26)

(27)

and is suitable for FDTD implementation. In the paper
by Oh et al. , the recursive updating equation is given by
equation (8b) of that paper [37] (with a slight change of
notation) as

8
& (k) = Z; [A x RrY2(k — 1/2)] -3 Ak @8
i=1

where A7 (k) is the recursive updating variable given by

Ak = Z5 (14 (7T — 1) f(@T)]

[ﬁ x Eﬂ—ll‘;(k - 1/2)] +

%ﬂ [1/(@wiT) — e (1+ 1/{awiT))] -

[ x An2/2(k - 1/2)] + e T A () 29)

The coefficients of this recursive updating equation were
obtained by directly evaluating the convolution integral
of the time-domain surface-impedance function with the
tangential magnetic field next to the impedance bound-
ary. The coefficients in (17), (23) and (27) were obtained
by manipulating the surface-impedance function in the Z-
domain. All of the coefficients in the recursive updating
equations of (17), (23), (27} and (29) can be precomputed
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and stored to maximize efficiency. Comparing the coeffi-
cients in (17), (23) with (29), it is clear that the former two
equations are first-order accurate since they only involve
one past time level of the tangential magnetic field. Note
that the bilinear transformation recursion equation in (27)
requires one less multiply and one less coefficient storage
location per recursive updating variable than the equation
in (29). This makes the bilinear transformation approach
slightly more efficient than (29). The bilinear ransforma-
tion maps the entire left half of the complex plane inside
the unit circle and the imaginary axis in the complex plane
becomes the unit circle. As a result, frequency warping
will take place when transferring from the analog system
to the digital system. The bilinear transformation is most
useful when this distortion can be tolerated or compen-
sated. When designing a digital filter using the bilinear
transformation, the analog cutoff frequencies can be pre-
warped so that the digital cutoff frequencies will fall at
the correct design cutoff frequencies. However, in this
application, this distortion in the frequency axis can be
tolerated and no compensation is required.

2.2 PEC-Backed Thin Lossy
Layer

Dielectric

Following the notation in [37], this section devel-
ops a Z-transform SIBC implementation for a PEC-
backed, thin, lossy dielectric layer. The geometry 1s one-
dimensional and the lossy dielectric layer has thickness,
d, and parameters ¢;, y and oy # 0. Itis assumed that the
intrinsic impedance of the dielectric layer, Z;(w), (equa-
tion (2)) obeys the restriction given in (3) and that d is
less than one-half the cell size. Since the dielectric layer
is backed by a PEC, the surface impedance looking into
the layer is

Zs(w) = Zy(w) tan(y{w)d) (30
where ~y(w) is the propagation constant. If d is smail, then
the approximation

tan(y(w)d) = y(w)d (31)
is applied to (30) 1o give
Zs(w) = Zi{w)y(w)d = jumd (32)
Using the Laplace transform variable s = jw gives
(33)

Zs(s) = mds

Now that the thin-layer surface-impedance is expressed
in terms of s, the Z-transform methods can be applied di-
rectly to obtain the corresponding update equations.



22.1 Backward Difference Method

For the backward difference method, the substitution of
variables given in (19) is used in (33) to give

Zy(z) = pud (1 -Tz_l)

in the Z-domain. Now the Z-domain SIBC can be written

(34)

~ U d " . -
B =57 [1-#7) (A x Az)] 69
and the time-domain SIBC is given by

ak) = ’%‘i[ﬁx (E"—1/2(k—1/2)

—Rr82(k — 1 /2))] 36)
which is suitable for FDTD implementation. Note that
this update equation is identical to (12) in [37]. The back-
ward difference method is the only stable Z-transform
method for the PEC-backed, lossy dielectric layer. The bi-
linear transformation method was unstable because the re-
sulting Z-domain surface-impedance function has a pole
at 0 = 7 where € is the digital filter frequency variable.

3 Demonstration

3.1 Lossy Dielectric Half-Space

To demonstrate these different approaches. equation
(16), along with the recursive updating equations. 23)
and (27) were implemented in a one-dimensional total
field EDTD code for the geometry shown in Figure 2. The

Figure 2: Problem geometry for FDTD SIBC with
one-dimensional FDTD grid and the placement of the
impedance boundary.

problem was to calculate the reflection coefficient versus

frequency for a pulse normally incident on a lossy dielec-
tric half space. The problem space size was 100 cells,
the impedance boundary was located at cell 100 and the
electric field was sampled at cell 100. The maximum fre-
quency of interest was 10 GHz and the incident electric
field was a Gaussian pulse with unity ampliude of the
form

EL(t) = e~ (@=t)/D" u(t) <Y

with 2, = 80 ps and 7 = 20 ps. The pulse was win-
dowed in time at approximately -80 dB with a rectan-
gular window width of 64 time steps. The frequency
response of the pulse contained significant energy to 12
GHz. Two computations were made with o = 2.0 S/m and
o = 200.0 S/m corresponding to loss tangents at 10 GHz
of 3.6 and 360, respectively. The permittivity and per-
meability of the lossy dielectric half space were taken as
those of free space. The cell size and time step were 750
um (40 celis/) at 10 GHz) and 2.5 ps respectively, and a
total of 8192 time steps were evaluated. For each FDTD
computation, a reflection coefficient versus frequency was
obtained by dividing the Fourier transform of the scat-
tered field by the Fourier transform of the incident field
at cell 100. The incident field was obtained by running
the FDTD code with free space only and recording the
electric field at cell 100. The scattered field is then ob-
tained by subtracting the time-domain incident field from
the time-domain total field. The results are compared with
the analytic surface-impedance reftection coefficient com-
puted from

1—+/1—jofwe
1+ /1 — jofwep

where o is the conductivity of the dielectric half-space.
The Z-transform results are also compared with the di-
rect recursive convolation approach of Oh ez al.  [37]
using the eighth order approximation and with a conven-
tional FDTD calculation for a simulated lossy half-space.
In all figures, the following abbreviations apply: recur-
sive convolution, RC; backward difference, BD; bilinear
transformation, BLT. Figures 3 and 4 show the SIBC re-
flection coefficient results for all methods compared with
the analytic SIBC result for o = 2.0 S/m and o = 200.0
S/m, respectively. Notice the agreement is excellent for
the o = 2.0 case and is less at higher frequencies in the o
= 200.0 case. This discrepancy is due to discretization er-
ror. In Figure 4, note that the SIBC implementations have
approximately the same absolute accuracy as the FDTD
result and the SIBC cannot be expected to perform any
better than the FDTD calculation. Therefore, these re-
sults are encouraging. Comparing Figure 4 to Figure 3¢
in [37], it is clear that Figure 3c exhibits better agree-
ment at higher frequencies. However, this is because the
reflection coefficient shown in that graph was computed

|R| = (38)
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Figure 3: Reflection coefficient magnitude versus fre-
quency for normal incidence plane wave reflection from
a lossy dielectric half space with & = 2.0 S/m using the
analytic and FDTD SIBC methods.
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Figure 4. Reflection coefficient magnitude versus fre-
guency for normal incidence plane wave refiection from
a lossy dielectric half space with ¢ = 200.0 §/m vsing the
analytic and FDTD SIBC methods.
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from a closed form representation for the rational func-
tion approximation. Note in Figure 4 from [37] that the
results for the case of o = 2.0 §/m with a six-term ratio-
nal function approximation exhibit the same type of high
frequency behavior as the results presented in Figure 3
and Figure 4. Thus, the results presented here are consis-
tent with those presented in [37]. The Z-transform SIBCs
are only first-order accurate overall because the magnetic
field at the impedance boundary is approximated by the
magnetic field one-half cell in front of the impedance
boundary. Although it was anticipated that the bilinear
transformation method was second-order accurate in time,
when applied in practice, it is only first-order accurate.
This is illustrated in Figure 5 where the BLT method is
used at a cell spacing of 325 pm (1/2 the previous cell
size) with a conductivity of o = 200.0 §/m. Note that

1 T T j T
0.99 Analytic — -

0.98 BLT with éz -~ - -
0.97 BLT with z/2 — |

0.96
0.95
0.94
0.93

0.92 ! L
0 2 4 6
Frequency (GHz)

Ty
T T

8 10

Figure 5: Reflection coefficient magnimde versus fre-
quency for nommal incidence plane wave reflection from
a lossy dielectric half space with o = 20(0.0 S/m using the
FDTD BLT SIBC at grid resolutions of §z and 42/2.

the new result is approximately 50% closer to the analyt-
ical solution. Similar behavior was observed with the BD
method.

3.2 PEC-Backed Thin Lossy Dielectric
Layer.
The calculation parameters for the thin layer example

are the same as for the previous example except the mate-
rial parameters have the following values:

€ = 2€&
mo= 2p
o = 2.08/m 39

and d = 0.18z. In this example, the impedance is calen-
lated at the thin-layer interface by calculating the ratio of
the electric and magnetic fields computed via the SIBC.



This is then compared with the exact impedance value
computed from (30). Excellent agreement is obtained for
the BD Z-transform method as shown in Figuare 6.

= 12 | | T |
S 10 - -
2
g 8 I 7]
=]
-
> 4+ Exact —— -
El BD ---
Z 2 b _
&
b= 0 1 ] ] 1

0 2 4 6 8 10

Frequency (GHz)

Figure 6: Magnitude of complex impedance for a thin,
PEC-backed lossy dielectric layer with € = 2¢o, gt = 2p0,
= 2.0 S/m and d = 0.15z.

3.3 Two-Dimensional Scattering Example

In this example, a two-dimensional TM FDTD code
was adapted to use the recursive convolution and Z-
transform SIBCs. Figure 7 shows the two-dimensional
geometry for both the plane wave and point source ex-
citations, A plane wave is incident from the —z axis

¥y

___________________________ |
Obsver. point :
. :
(151,276) '
' :
! 1
i 1
! |
| @s151) ¥
Il - I
¢ Source :
! point '
' 1
¥ 1
1 1
! ]
! '

| .
' Bz :
: & |
1
1

Figure 7: Problem geometry for two-dimensional TM
scattering calculations showing square cylinder, incident
plane wave, point source and field sampling points.

and a two-dimensional scattering width is calculated for
a square cylinder. The cylinder is 10 cm square and has
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the following parameters: €, = 1, g = land o =20.0
S/m. The problem space size was 300 by 300 cells, the
cell size is 500 pm and the time step is 1.2 ps. Scattering
angles of ¢ = 180, 90 and 0 degrees were used, where ¢
is measured from the +z axis. The incident pulse was of
the same form as (37) with {p = 37.7psand 7 = 9.45
ps and a second-order Liao absorbing boundary condition
was used [44]. Since an analytical solution is not avail-
able, each Z-transform approach is compared with a con-
ventional FDTD calculation for the same geometry. Fig-
ure 8 shows the monostatic scattering width at ¢ = 180°
and Figures 9 and 10 show the bistatic scattering width
at ¢ = 90° and ¢ = 0°, respectively. Note the agree-

6 ] T | T
— 4
E
% 2
g 0
=
8o -2
=
. E 4
3
G -6
3 | I 1 | ]
2 4 6 8 10
Frequency (GHz)

Figure 8: Monostatic scattering width at ¢ = 180° for
Jossy square cylinder using conventional FDTD and the
various SIBC implementations.
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Figure 9: Bistatic scattering width at ¢ = 90° for lossy
square cylinder using conventional FDTD and the various
SIBC implementations.

ment is good in all three cases. It is interesting to note
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Figure 10: Bistatic scattering width at ¢ = 0° for lossy
square cylinder using conventional FDTD and the various
SIBC implementations.

that the half-cell spacing error between electric and mag-
netic fields in the SIBC seems to manifest itself more in
the monostatic scattering width of Figure 7 than in the
bistatic scattering width pattemns. This is most likely due
to cancellation of the SIBC error sources from all four
sides of the square cylinder in the bistatic directions. A
nonplanar wave example was also used with the excita-
tion point located at grid point iy, jo (see Fig. 7) and a
soft excitation source of the form

Bt (ig, jo) = B*(io, jo) + EX**(i0,Jo) ~ (40)
where Ef%d(i,, 4o} is the free-space electric field up-
dated using FDTD and E*™(ip, jo) is the source term
of the same form as (37). The source point was located
at ig = 25,79 = 151 and the pulse parameters were
to = 37.7ps and 7 = 9.45 ps with the amplitude of
the source at 1000 V/m. The results are shown in Fig-
ure 11 for a near-field sampling point located at grid point
{151,276). Note the agreement is excellent for the recur-
sive convolution method and for both Z-transform meth-
ods.

4 Conclusion

An efficient implementation of the frequency-
dependent SIBC for the FDTD method based upon
Z-transforms has been presented. Both the backward
difference and bilinear transformation Z-transform meth-
ods were implemented and tested for a lossy dielectric
half-space and the backward difference method was
implemented and tested for a thin PEC-backed lossy
dielectric layer. Excellent agreement was obtained on
ohe- and two-dimensional TM problems using both
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Figure 11: Near zone scattered electric field at a point 25
cells above a 10 cm lossy square cylinder with a point
source excitation.

plane and nonplanar wave excitations. Although only a
square geometry was considered in the two-dimensional
example in this paper, scattering from circular cylinders
was demonstrated using a similar SIBC in [27]. The
extension to the two-dimensional TE case and the three-
dimensional case is straightforward.
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