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Abstract

The objective of this study is to explore the ben-
efits of using the theory of characteristics to de-
velop accurate and efficient numerical algorithms
for Computational Elecromagnetics. The present
work adapts the numerical Method of Characteris-
tics (MOC) from Computational Fluid Dynamics to
the one-dimensional Maxwell curl equations in the
time domain. The relevant theory of charactetis-
tics is developed and the inverse marching method
is used to develop two numerical algorithms based
on different interpolation schemnes in the initial data
surface. Stability and dispersion for these algo-
rithms are discussed. Results are given for one-
dimensional model problems involving free space
pulse propagation, scattering from perfect conduc-
tors and reflection/transmission for lossy dielec-
tric materials. The model problems are designed
to provide quantitative insight into both accuracy
and efficiency for different classes of realistic ap-
plication problems. The Finite-Difference Time-
Domain (FDTD) method is used as a convenient ref-
erence algorithm for comparison. Itis demonstrated
that these algorithms have accuracy comparable to
FDTD, but do not require staggered grid storage,
which simplifies impedance boundary conditions
and implementation on nonuniform grids. The the-
ory of characteristics demonstrates a very natural
outer boundary condition without nonreflecting ap-
proximations or matched layers. A dispersion en-
hanced version of the MOC is also developed which
has phase errors 50-5,000 times lower than FDTD.

*This work was sponsored in part by the NSF under Grant #
EEC-8907070.

tDLM is with Mississippi State University, Department of Me-
chanical Engineering, P.O. Box ME, Mississippi State, MS 39762

This approach appears promising for development
of dispersion enhanced characteristic based schemes
for two and three dimensional applications.

1 Introduction

Both smail and large-scale transient electro-
magnetic phenomena are governed by the time
dependent Maxwell equations. To properly develop
numerical algorithms for approximate solutions
to Maxwell’s equations, it is important to separate
the problem into three areas: the physics, the
underlying mathematics and numerical algorithms.
The physics, of course, are described by Maxwell’s
time dependent curl equations along with the
constitutive relations for dielectric and magnetic
media. Since Maxwell’s equations are a system of
hyperbolic partial differential equations (PDEs), the
underlying mathematics is based upon the theory of
characteristics. The theory of characteristics shows
the solution at a given point in space and time
has a finite domain of dependence and range of
influence, and the boundary between these regions
are characteristic curves. Once the underlying
mathematics is defined and understood, a suitable
numerical algorithm can be applied. Maxwell’s
time-dependent curl equations have typically been
solved numerically by fixed grid finite difference or
finite volume marching methods such as the Finite-
Difference Time-Domain (FDTD) method [1]-[4]
or Finite-Volume Time-Domain (FVTD) methods
[5]119]. Many of these numerical methods have
proceeded from a continuum version of Maxwell’s
equations directly to a discretized version by using
various differencing schemes in time and space.
This direct approach overlooks the theory of char-
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acteristics, which provides a more natural path to a
suitable numerical algorithm.

Numerical solutions of the Euler equations in
Computational Fluid Dynamics (CFD) have illus-
trated the importance of treating a hyperbolic sys-
tem of equations with the theory of characteristics.
In a hyperbolic system, the solutions (e.g. waves)
propagate in preferred directions called characteris-
tics. A characteristic can be defined simply as a prop-
agation path along which a physical disturbance is
propagated [20]. The relevance to Maxwell’s equa-
tions is intuitively obvious because electromagnetic
waves have preferred directions of propagation and
a finite propagation speed. For the one-dimensional
wave equation,

PE L,0%E
32 e =0

(where ¢ is the speed of light) the solution in-
volves propagating waves along the x coordinate
with speeds of £c. In general, the characteristic
curves are (n — 1)-dimensional hyper-surfaces in
n-dimensional hyper-space (with n as the number of
independent variables) {21}. For the wave equation
in (1), the characteristics in the two-dimensional
solution domain are straight lines.

)

Characteristic based methods offer substantial
benefits over traditional fixed grid finite difference
or finite volume schemes. TFirst, characteristic
based methods treat the outer boundary condition
naturally without nonreflecting approximations
or matched layers. The interior point algorithm
predicts the outgoing characteristic variables, and
the algorithm only requires information about the
incoming characteristic variables at the domain
boundaries. Through knowledge of the wave
propagation angle, the Jocal coordinates can be
rotated to align with the characteristics, at which
point the boundary condition becomes almost exact.
Therefore, no extraneous boundary condition is
required to introduce additional information into
the solution. Second, characteristic based methods
are typically more accurate for the same order
of finite difference equation. This is because a
characteristic based method closely follows the
direction of information propagation in the physical
space, which provides increased accuracy. Finally,
characteristic based algorithms for CEM can easily
be parametrically combined to reduce phase errors
without using higher order difference schemes.
Ultimately, the theory of characteristics should
provide the most natural path toward a numerical
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scheme for CEM.

The objective of this paper is to elucidate the ben-
efits of using a characteristic based formulation to
numerically solve Maxwell’s equations by develop-
ment, implementation and testing of two method of
characteristics algorithuns on one dimensional prop-
agation and scattering problems. These model prob-
lems show relevance to the complex multidimen-
sional applications and the results are compared
with analytical solutions or FOTD simulations. An
enhanced version of the numerical MOC is also pre-
sented that has phase errors 50-5,000 times lower
than FDTD.

2 One-dimensional MOC Algo-
rithm

The numerical Method of Characteristics (MOC)
has been used successfully for gas dynamics prob-
lems in Computational Fluid Dynamics (CFD) -
[22)}-]27] and is very suitable for electromagnetics
problems. In fact, CFD researchers Shankar et al.
[28]-[33] and Shang et al. [34]-{43] were the first to
recognize the importance of using a characteristic
based algorithm for Maxwell’s equations. Their

" work concentrated on development of both explicit

and implicit characteristic based finite volume CFD
methods for CEM. This work intends to provide
an electrical engineering perspective on the theory
of characteristics; and at the same time, develops
different finite difference characteristic based algo-
rithms.

The method of characteristics is essentially a
coordinate transformation in which the computa-
Honal coordinates (the characteristic surfaces) are
also the paths of propagation of information in the
physical space. The governing PDEs are replaced
by an equivalent set of characteristic equations
and the applicable compatibility equations. The
characteristic equations are first integrated to con-
struct the characteristic coordinate system. Next,
the compatibility equations are integrated along
the characteristic curves to give the distribution of
the dependent variable on the characteristic curves.
Finally, the inverse-marching method is then used
to determine the required elements in the initial
data surface [21]. The MOC model provides a direct
match between the numerical and physical propa-
gation paths. In contrast, fixed-grid finite-difference
methods (such as FDTD) propagate information
only along coordinate axes, but they do propagate
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energy along the physical propagation paths. The
MOC also separately treats waves propagating in
opposite directions, and uses differencing schemes
based upon those directions.

One set of Maxwell’s equations for linear and ho-
mogeneous media in the one dimensional case (tak-
ing 8/8y = 8/8z = 0) are

8E, 18H, o '
B tear T T @)
dH. 10E,

5t 4oz @)

These equations can be rearranged in a more conve-
nient form given by

OE, 0H, o
Bt +Zie oz € Ey )
0H. , ¢ 0B, _

% Ziox - ©)

where ¢ = 1/, /p¢ is the speed of light in the medium
and Z; = /p/e¢ is the intrinsic wave impedance of
the medium. Applying the chain rule to the contin-
uous functions E,(z,t) and H.(z,t) gives

3E, . OE,

dEy = Gy dt+ g d= ©)
_ 8H,,  OH.
dH, = “Sidt+—tdo @)

Putting equations (4)~7) into matrix form gives

1 0 0 Ze %‘ ~ZE,
0 ¢/Zi 1 0O 2 _| 0
@ dz 0 O ¢, | = | gE,
0 0 d dx Q?; dH,

®

Setting the determinant of the coefficient matrix

equal to 0 gives the characteristic equation of the sys-
tem as

dz® — Fdt* =0 9)

Solving this equation yields the solutions
dz

&~
These are the characteristic equations of the system.
They provide two distinct real roots of the char-
acteristic equation, which is typical of a system of
hyperbolic equations. Equation (10) also shows that
waves propagate in the X directions with a finite
physical speed of c.

(10)

For the continuous function E,(z,t), the total dif-
ferential is defined by

_ 9By, 85, _ (9B d0FE,
By = dt+ azdx‘(at t e )
(11)
Using (10), this can be rewritten as
dE, (OE, GE,
el ( 5t :I:caz {12)

The total derivative along the characteristic is then
defined by

De() _20) . 80)
Dt & - bm (13)
A similar relationship can be developed for H; to
ive
dH. (68H. kK OH:
& _(Bt icaz) (14)

Using (13) and taking a kinear combination of equa-
tions (12) and (14) gives

Dy(E,)  ,De(Hs) _ ¢
D + Z; Di = eE” (15)
for the right-going characteristic and
D_(E,} _D_(H:) __z
Dt A pr Tl (16)

for the left-going characteristic. These characteris-
tic curves are straight lines in the two-dimensional
solution space (z,t) and are shown in Figure 1.
Equations (15) and (16) are the compatibility equa-

LI

P(x.t)

Right-going Left-going
characteristic characteristic
dw/dt =¢ dx/dt=-¢

/ X

Figure 1: Two dimensional solution domain D({z, t)
showing right and left-going characteristics.

tions for the system. To integrate these equations
along the characteristic curves, they are treated as
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a system of ordinary differential equations (ODEs).
Thus, equations (15) and (16) now become

dE, + ZidH. = -—%E,,dt along Dy (17)

o
dEy - ZdH, = —';'Eydt along D_ (18)

The characteristic equations from (10) can be rewrit-
ten in ODE format as

(19)
20)

dr =
dr =

cdt along Dy

—cdt along D_
A prespecified, two-dimensional, space-time grid is
now defined in the solution domain D(z, ) with co-

ordinates z = iAz and t = nAt as shown in Figure
2. The inverse marching method is employed to nu-

tll

P(i,n+1)

n At
(i+1,n)

Figure 2: Two dimensional space-time grid showing
solution point P with characteristics projected rear-
ward onto initial data surface at points ¢ and b.

merically integrate equations (17)+20) to determine
the solution at point P (see Figure 2). From the point
P at coordinates (i,n+ 1), the characteristics are pro-
jected rear-ward onto the initial data surface at time
level n. The z-intercepts may or may not intersect
the initial data surface at prespecified grid points;
therefore, interpolation in the initial data surface is,
in general, required. Equations (19) and (20) are first
integrated to give

z; — cAt
T; + cAt

@1
22)

Lo —
Ty =

Integrating the compatibility equations in (17) and
(18) gives
(EP - E2) + 2, (HY - H2) = -ZEj b0 (29)

(EP - E®Y) - Z; (HF - H!) = _%E;At (24)
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These equations are solved simultaneously for EJ to
give

EP = A (B2 +E)) - A2 (H2-HZ) (25)
where
— 1 _ Z;
A= 2(1 + oAtfe)’ 42 = 5 7At/e) (26)

Note that for a perfect electrical conductor as o —
oo, A; = As = 0.0, which properly enforces the per-
fect conductor boundary condition in (25). The solu-
tion of (23) and (24) for HF is

HP = 3 (H2+HY) - 4s (B - E}) @)
where 4; = 1/(2Z;). At this point, the solution is
complete except for obtaining the values of E, and
H; at points ¢ and b. Two algorithms are now pre-
sented based upon different interpolation schemes
in the initial data surface to obtain these field values
at points ¢ and b.

21 MOC Algorithm 1

For the first MOC algorithun, quadratic interpo-
lation using a second-order Lagrange polynomial
is performed in the initial data surface using grid
points (i — 2,n}), (i — 1,n) and (i,n) for the field
component at point a. For the field at point b, grid
points (i,n), ({ +1,n) and (i + 2,n) are used. This
interpolation scheme was chosen to provide an up-
wind, second-order interpolation formula which has
equivalent order of accuracy as the FDTD method.
With this interpolation scheme, the electric field m-
tensities at points a and b are given by

B = E()+ @
2 (B5) - 255G = D + By =) -
3 (BEp() —4E; (i~ 1) + Bj(i - 2)

B = ErG)+ @9

V2
= (Bp6) - 2B} +1) + Ej(i + 2) -
_‘21 (3ED() - 4E; (G + 1) + B3 (i + 2))

with v = (cAt)/Az. Similar equations are derived
for the magnetic field intensities, H2 and H. These
equations are then used in (25) and (27) to complete
the algorithm implementation. This algorithm has
conditional stability of » < 1 and has accuracy
O (At?, Az?).
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For nonuniform grids, quadratic interpolation
gives the following formulas for E2 and E?:

cAt (et — Azig)

By = Azip (Azims + Aziny) Bji-2)+
Eb. : N — D pn-n+ (G0
Sy RO
g =) Eﬁi : (AAZLB 2l e -
cAt (cAtA—in::; Aziy1)) ErGi+1)+

with the definition Az; = ;47 — ;-

2.2 MOC Algorithm 2

For the second MOC algorithm, quadratic interpo-
lation is also performed using grid points (i — 1,7n),
(4,m) and (i + 1, n) for the field components at points
a and &. This interpolation scheme was chosen again
to provide second order accuracy, but it adds one
downwind point, which provides a lagging phase
error. This is in contrast to the upwind interpolation
scheme in the previous section, which has a leading
phase error. These two schemes are combined to-
gether in Section 5. For the electric field intensity,

this interpolation scheme gives

B = EO- (52)
5 (E“(t+1) E}i-1)+
% (EpGi+1) —2E3G) + Ep(i— 1))

B, = EjG)+ @3
= (Bpli+ 1) - Eji- 1) +

2

= (Bpi+1) - 2E}() + E}(i- 1)

with similar relationships for the magnetic field in-
tensity. Equations (25) and (27) now become

E}Fi(i) = 2A1E;(i) - (34)
Asv (H2(i+ 1) -~ Hi—- 1))+
A (Bp(i+1) —2E}(3) + E}(i — 1))
HIMY i) = HIG) - (35)

vas (E3G+1) - Eji—1) +

1’; (H2(3+ 1) — 2HP (i) + HP i — 1))

This algorithm is equivalent to the Lax-Wendroff
one-step method with conditional stability » < 1
and with accuracy O(A#2, Az?).

For nonuniform grids, quadratic interpolation
gives the following formulas for EZ and E}:

cAt (cAt + Az;)

Ey Az (B + Az3) Ej(i—-1)— (36)
(cAt — Ag;:g;i:t + Az;) )+
oo v AL

B = mGeo A B0 @
(cAt + A;;:iig:it — Azi)E;‘(i) .
cAt (cAt + Az,_l) EPG 4 1)

- Ax; (A.":,_1+A.’B) ¥

2.3 Perfect Conductor Boundary Condi-
tion

For perfect conductor boundaries, the characteris-
tic update equations must be modified accordingly.
Referring to Figure 2, if a perfect electrical conductor
(PEC) half space begins at grid point ¢ and extends
to the right boundary of the problem space, then the
following conditions apply

E:, =H: = EP E7ti(i) =00 {38)
With these conditions, the equation for H. at point
P (see Figure 2) in (27) now becomes

1
HF = SHE+ A3E? (39)

A suitable and accurate update equation for a per-
fectly conducting boundary can be derived and is
givenby
HE = HH(i) =vHPi—1)+(1—v)HIGE) +
vA3E7(i—1) (40)

This equation, along with the conditions in (38),
form the necessary implementation for a perfectly
conducting boundary. A similar equation can be de-
veloped for a left-sided PEC half space starting at
cell ¢ and continuing to the beginning of the compu-
tational domain.

2.4 Boundary Conditions

Since the MOC algorithms use the theory of
characteristics, no extraneous boundary condition
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such as the Liao absorbing boundary condition [44]
or the PML [45] is required. This is a significant
advantage over fixed grid finite difference or finite
volume methods. For example, the FDTD method
uses a spatial central difference operator, which for
a wave propagating from left to right, eventually
requires a grid point oufside the domain. This
requirement introduces an additional equation
(i.e. boundary condition) to solve the system and
introduces information into the solution that is not
required by Maxwell’s equations. Using an upwind
characteristic based approach, the interior point al-
gorithmn calculates the left-going characteristic at the
left boundary (i.e. ati = 0) and the right-going char-
acteristic at the right boundary (i.e. ati = imaxz).
Therefore, the only additional information required
is for waves entering the domain. Waves exiting the
domain are handled naturally by the interior point
algorithm. Therefore, the characteristic boundary
conditions are as follows: at grid point : = G,
equation (29) is used to calculate E%(0). Then,
equation (25) is used, along with a specification of
the incoming, right-going field, E3(0). Therefore,
the interior point algorithm of (29) calculates the
outgoing, left-traveling field at the : = 0 boundary,
and the incoming, right-going field is spedified as a
boundary condition. A similar analysis applies at
the right grid boundary. At grid point i = imaz,
equation (28) is used to calculate Eg(imaz). Then,
equation (25) is used, along with a spedfication of
the incoming, left-going field, E}(imazx). Therefore,
the interior point algorithm of (28) calculates the
outgoing, right-traveling field, and the incoming,
left-going field is specified as a boundary condition.
Thus, the only additional information introduced at
the boundary is nothing more than what is required
by the physical system. A similar analysis holds
for characteristic boundary conditions for two and
three-dimensional situations. For grid points : = 1
and i = imaz — 1, a first-order accurate interpolation
scheme is employed for the right-going (equation
(28)) characteristic and left-going (equation (29))
characteristic, respectively.

The boundary conditions outlined in this section
are exact for one-dimensional wave propagation be-
cause the characteristic wave motion is aligned with
a Cartesian axis. For two and three-dimensional
simulations, characteristic based methods can be
split into a set of one-dimensional operators cor-
responding to the eigenvalues of the system. In
this case, these one-dimensional operators provide
an exact boundary condition if the wave motion is
aligned with a Cartesian axis. In the general case,

ACES JOURNAL, VOL. 14, NO. 2, JULY 1989

the wave propagation angle can be estimated using
the Poynting vector (E x H “), and then a coordi-
nate transformation can be applied to align the wave
propagation angle with a Cartesian grid axis. How-
evet, details of this coordinate transformation have
not yet been outlined, and this will be the subject of
a future article.

3 Fourier Analysis

One of the main measures in characterizing an EM
algorithm is its dispersion properties. Substitutin
trial solutions of the form ET (i) = Epef(wnat—kilz
and H7 (i) = Ey(2) /no into the update equations for
each MOC method, the foliowing dispersion rela-
tionships are derived:

filk) = ety g(l - v)ei2kAz _ @1)
o } 2 3
¥ -1)ei*s* —1- % + Sy MOC
folk) = ¥ (1—1*) —vPcoskAz —
jusinkAz MOC2 42)

These equations are numerically solved for the
wavenumber k using a Newton iteration procedure

* £'(ks)
koL, =k — oo

i fkr)

where m denotes the iteration number and &* de-
notes the numerical wavenumber. The phase error
is computed as a ratio of the numerical wavenum-
ber, k*, to the exact wavenumber, k. Figure 3 shows
the dispersion of the MOC algorithms as compared
to FDTD versus grid resolution using v = 3/4. Note
1.08
1.06
1.04
1.02
1
0.98
0.96
0.94
0.92

43)

Wavenumber ratio, k*/k

0 10 20 30 40 50 60 70 80
Grid resolution (cells /wavelength)

Figure 3: Numerical dispersion versus grid resolu-
tion for FDTD and the Method of Characteristics
schemes with v = 3/4.
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that algorithm MOCI has leading phase error and
MOC2 has a lagging phase error similar to the FDTD
method. From the graph, it appears that these MOC
methods are less accurate than FDTD, but the rela-
tive accuracy of the characteristic based schemes are
about the same.

4 Results

These MOC algorithms were employed to simu-
late pulse propagation in free space and also to sim-
ulate reflection and transmission for perfectly con-
ducting and lossy dielectric materials. Results for
these problems were compared with FDTD simu-
lations. For pulse propagation, the problem space
size was 2000 cells with periodic boundary condi-
tions, a uniform grid of 1 cm cell size, and a time
step of 25 ps. The periodic boundary conditions
enforced were that E,(i = 2000) = Ey(i = 0),
which makes the one-dimensional problem space a
closed ring. A Gaussian pulse with a full-width
half-maximum (FWHM) pulse width of 1.8 ns was
used and it contained significant frequency content
up to 1 GHz. The Courant number was » = 0.75,
and the pulse was allowed to propagate for a dis-
tance of 100A at 1 GHz, which corresponds to ap-
proximately 30 meters. Figure 4 shows the error in
the electric field results for the MOC algorithms and
FDTD obtained by subtracting the numerical results
from the exact solution after 4000 time steps. The

—_— 0-04
‘*E\ 0.03
= .
o 0.02
= 0Mm

¥
"{,‘) 0

L 001

-]

E 002

?_ -0.03

= 0m

30 31 32 33 34 35
Distance x {meters)

Figure 4: Error in electric field for free space pulse
propagation using FDTD and the MOC algorithms
with periodic boundary conditions.

MOC1 algorithm has approximately 1/2 the error
as FDTD for this problem, which can be attributed
to the windward interpolation scheme in the initial
data surface. The MOC2 algorithm had less accu-
rate results than FDTD due to the centered interpola-

tion scheme. Even though the MOC algorithms have
more phase error than FDTD, they still provide very
accurate results, which is an inherent benefit of the
characteristic formulation. It is useful to note that
combining (21} and (22) with the definition of the
Courant number v = (cAt)/Az yields,

v = (3~ Z.) [Az = (7p — 7:) [Ax (44)
If the characteristic intersects the initial data surface
at the prescribed grid points, then » = 1; and, for
a uniform grid, the MOC algorithms gave identical
results as FDTD, with no dissipation or dispersion.
The same propagation problem was simulated
using a nonuniform grid with a mesh stretch ratio,
M, = AzZpaz/AZmin of 2, which was periodic
every 10 cells. The pulse propagated the same
distance of 30 meters, with v = 1. The Courant
number, v, for a nonuniform grid, was defined
by cAt/Azmin, Where AZpmi, is the smallest cell
size in the nonuniform grid. Figure 5 shows the
error in electric field versus distance z obtained by
subtracting the numerical results from the analytical
solution. Note how the FDTD results show error

~ 002
£ oo
S °
S 0
2 oo
g 0
b

2 001
& 002
g -008
(£a]

04
30 32 34 36 38 40 42 44 46
Distance x (meters)

Figure 5: Error in electric field for free space pulse
propagation using FDTD and the MOC algorithms
with periodic boundary conditions on a nonuniform
grid with » = 1 and a mesh stretch ratio of 2:1 over
10 cells.

away from the area of the main pulse. The MOC1
results are more accurate than FDTD, which again
is a benefit of the windward interpolation scheme.
The MOC2 results exhibit similar accuracy behavior
as the uniform grid case.

For the next problem, a perfectly conducting
half-space was inserted for 7.5 < z < 20 m, with the
problem space and incident pulse having the same
parameters as before. The total electric field was
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again sampled at z = 4 m. Using the PEC boundary
condition in (40}, the MOC algorithms produce the
results shown in Figure 6 with 2 Courant number
of v = 0.75. Note the agreement is excellent for

e 02 T T

e . ;

Z 0

=

<

= -0.2

=

= -04

[#)

2

B2 06

-

Q)

g 08

S

e -1

25 30 35 40

Time (ns)

Figure 6: Reflected electric field versus time at a
perfectly conducting half-space using FDTD and the
MOC algorithms.

both reflected pulses. Even better agreement was
observed for a Courant number of v = 1.

To verify treatment of lossy dielectric materials
with the MOC algorithms, a lossy dielectric layer
was inserted for 5 < z < 6 m with material parame-
ters e, = 4 and ¢ = 0.002. Again, the incident pulse
was a Gaussian with FWHM pulse width of 1.8 ns
and the Courant number was again v = 3/4. Figure
7 shows the total field at z = 4 m, Figure 8 shows
the transmitted field inside the sheetatz = 5.5 m
and Figure 9 shows the transmitted field on the
right side of the sheetatz = 7.5 m.

1
0.8
0.6
04
0.2

<

Reflected Electric Field (V/m)

o O
w N

Figure 7: Reflected electric field versus time atz = 4
m for scattering from a lossy dielectric layer.

Note the resuits for the MOC algorithms are
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Figure 8: - Transmitted electric field versus time at
x = 5.5 m for scattering from a lossy dielectric layer.
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Figure 9: Transmitted electric field versus time at
z = 7.5 m for scattering from a lossy dielectric layer.
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indistinguishable from the FDTD results in all three
figures. This shows that the MOC algorithms have
accuracy equivalent to that of the FDTD method,
but using a characteristic based scheme which
propagates information directly along the physical
propagation paths.

These one-dimensional model problem results
have demonstrated that the numerical MOC is
promising for extension and application to realis-
tic three-dimensional problems involving PEC and
lossy dielectric materials. The MOC algorithms
also gave excellent results when tested on nonurd-
form grids, which further demonstrates these results
have relevance to complex multi-dimensional appli-
cations.

5 Dispersion Enhanced MOC
Scheme

The phase error of the MOC scheme can be sig-
nificantly improved by combining the leading and
lagging phase errors of both MOC schemes para-
metrically for a dispersion error lower than any al-
most any other higher order finite difference scheme
currently available for solving Maxwell’s equations.
This technique was first used by Fromm [46] for
CFD in which he performed a simple average of for-
ward and backward time steps to minimize disper-
sion for explicit convective difference schemes. The
idea of dispersion enhancement has appeared peri-
odically in CEM [3], [47}, [48], but not in the con-
text of cancellation of leading and lagging phase er-
rors. Lele [49] and Gaitonde and Shang [50] also
performed dispersion enhancement for compact dif-
ference schemes. Frommn reduced the dispersion er-
ror by a factor of 10 over a standard second-order
scheme, and the error was even lower than a stan-
dard fourth-order method. The present work gener-
alizes Fromm's approach by performing a weighted
average using a parameter, a {0 < a < 1), which in-
terpolates between the two wavenumber equations
(41) and (42) to give a combined dispersion relation-
ship of

fo(k) = (1 - a)fi(k) + afz(k) (45)

This equation is numerically solved for the en-
hanced wavenumber, k;, using the Newton itera-
tion procedure given in (43). The enhanced scheme
uses a S5-point stencil at grid points ¢ — 2,2 — 1, 4,
i+ 1and ¢ + 2. This same technique can also be
used with different interpolation schemes in the ini-
tial data surface to provide a dispersion enhanced

scheme using only a 3-point stencil at points ¢ — 1,
i and 7 + 1. Equation (45) was optimized for a spe-
cific wavenumber and Courant number by perform-
ing a numerical search of o to minimize the mean
square error in numerical wavenumber over grid
resolutions ranging from 20 to 80 cells per wave-
length. The optimum value of « was found to be
a = 0.419for v = 3/4and o = 0.5 for v = 1/2. Us-
ing these optimum a’s, Figures 10 and 11 show the
percent error in wavenumber (i.e. numerical disper-
sion} of the enhanced scheme and FDTD versus grid
resolution for v = 3/4 and v = 1/2, respectively.

Percent error in wavenumber (%)

0 10 20 30 40 50 60 70 80
Grid resolution (cells/wavelength)

Figure 10: Percent error in wavenumber versus grid
resotution for FDTD and dispersion enhanced MOC
scheme for v = 3/4.

Percent error in wavenumber {%)

0 10 20 30 40 50 60 70 80
Grid resolution (cells /wavelength)

Figure 11: Same as Figure 10 except with v = 1/2.

Note the remarkable improvement in phase errors
for the enhanced scheme over FDTD, even at coarse
grid resolutions of 10 cells/wavelength. Although
Figure 3 shows that the dispersion errors for both
FDTD and the MOC schemes are relatively insignif-
icant for reasonable grid spacings, with problems
involving propagation over large distances, these
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phase errors can become substantial. The improve-
ment in phase error is generally a factor of 50 for
v = 3/4, except around 25 cells /wavelength where
it is a factor of 5,000 lower. The optimum range is
20-30 cells/wavelength where the dispersion error
is about 500 times lower than FDTD. In Figure 11
where » = 1/2, the phase error improvement is any-
where from 500-5,000 times lower than FDTD. Simn-
ilar improvements were observed at other Courant
numbers in the range 0.5 < v < 1. It is worthy
to note that this low phase error scheme was de-
veloped using only a first-order ODE solver. Prac-
tical implementation of this enhanced scheme sim-
ply involves applying the parametric interpolation
formula of (45) using the MOC update equations in
place of fi(k) and f2(k). The dispersion enhance-
ment depends on wavenumber, Courant number,
and on the wave propagation angle for nonuniform
grids and multidimensional applications. In the
present work, the dispersion was optimized versus
grid resolution given specific values of wavenum-
ber and Courant number. This dispersion optimiza-
tion approach can be extended to lower dispersion
errors in complex multi-dimensional applications by
employing an optimization procedure such as a ge-
netic algorithm to search the parameter space. It
may be sufficient to optimize dispersion properties
in the multidimensional case for the highest fre-
quency in the excitation sources versus grid resolu-
tion and wave propagation angle. Frequencies be-
low the maximum will already be oversampled and
will have lower dispersion errors, even without op-
timjzation. For a one-dimensional nonuniform grid,
phase errors can be optimized in the Fourier sense
for various values of ». A Lagrange interpolation
polynomial can be obtained to find the value of «
given the local value of v at each grid point. Imple-
mentation and testing of the enhanced scheme for
1D, 2D and 3D problems is currently under devel-
opment.

6 Conclusions

This paper has demonstrated use of the theory of
characteristics to develop numerical algorithms for
solutions of Maxwell’s time dependent curl equa-
tions. This class of algorithuns can also easily be
combined parametrically for significant reduction in
phase errors over current FDTD schemes. The nu-
merical MOC was adapted from the solution of fluid
dynamics problems to the solution of Maxwell’s
time dependent curl equations based upon differ-
ent interpolation schemes in the initial data surface.
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A dispersion enhanced MOC algorithm was also
developed by parametric combination of the two
“standard” MOC algorithms to provide phase er-
rors 50-5,000 times lower than FDTD. This capability
provides a significant advancement in the accuracy
ievel of finite difference CEM solutions. The one-
dimensional model problem results demonstrated
that the numerical MOC is promising for extension
and application to realistic three-dimensional prob-
lems involving PEC and lossy dielectric materials.
Future extensions of this approach include treatment
of frequency dependent media, nonlinear and mag-
netic materials and implementation on curvilinear
grids. The extension of this approach to two and
three-dimensional problems is currently under in-
vestigation.
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