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Abstract

Recently, digital signal processing techniques were
used to design, analyze and implement discrete models
of polarization dispersion for the Finite-Difference Time-
Domain (FDTD) method. The goals of the present work
are to illustrate the FDTD update equations for these tech-
niques and to validate and demonstrate these techniques
for one-dimensional problems involving refiections from
dispersive dielectric half-spaces. Numerical results are
compared with several other dispersive media FDTD im-
plementations.

1 Introduction

The Finite-Difference Time-Domain (FDTD) method
is an accurate and robust method for the numerical
solutior of Maxwell's time-dependent curl equations
directly in the time domain. Transient electromagnetic
field propagation, coupling and scattering is directly
simulated by approximating Maxwell’s equations with
discrete-time equations. The FDTD method has been
applied successfully to a wide variety of problems
including those involving the complex interaction of
electromagnetic fieids with materials. These materials
include (but are not limited to) biological tissues, optical
materials and ferrites; all of which exhibit dispersion.
The strength and usefulness of FDTD for these problems
depends on ap accurate treatment of the material disper-
sion. There have been many different implementations
for modeling dispersion in FDTD, and these usually
fall into three separate categories: recursive convolution
[1}6]; differential equation based methods [7}{11]
and Z-transform methods [12}-{13]. The recursive
convolution (RC) approaches convolve the electric
susceptibility with the electric field in the time-domain

to model the dispersive polarization term which results
in a very efficient implementation. The differential
equation method angments the conventional FDTD
method with an auxiliary differential equation (ADE)
in the time-domain relating the electric displacement
vector, D, and the electric field intensity vector, E.
This method requires a bit more memory than the RC
method, but usually results in improved accuracy. The
Z-transform (ZT) method is a combination of the RC
and ADE methods; implementing an update equation
relating D 10 F and other recursive accumulator variables.

In recent work by Hulse and Knoesen [14], digital sig-
nal processing techniques were used to design, analyze
and implement discrete models of dispersion in the FDTD
method. In that paper, the electric polarization was con-
sidered to be a filter or system function, and this was used
to design a corresponding digital system function. Differ-
ent design approaches and implementations were consid-
ered and were rigorously analyzed for truncation errors,
memory and CPU requirements. The recursive convolu-
tion, differential equation and Z-transform based methods
were unified under the frequency-approximation (FA) de-
sign methodology and were similarly analyzed to com-
pare with the frequency approximation methods. The fre-
guency approximation methodology is an extension of the
Z-transform approach by examiring other digital filter de-
sign options. This class of Z-transform approaches for
modeling dispersive media in FDTD is very intuitive and
appealing because the FDTD method generates and oper-
ates on discrete time-domain data sequences. Therefore,
frequency approximation methods provide a very natn-
ral mechanism for enhancement of the FDTD method in
a variety of ways. Although varions time-domain equa-
tions were presented in [14], a comparison of numericat
time-domain results was not illustrated. The present work
involves demonstrating two of the different frequency-
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approximation design approaches presented in [14) for
both Debye and Lorentz dispersion on one-dimensional
probiems involving reflection from a dispersive dielectric
half-space. The intent with the present work is to present
the FDTD update equations for these techniques and to
validate the frequency approximation methods by illus-
trating how the numerical resuits compare with previous
FDTD models of material dispersion.

2 Theory

The theory behind the frequency approximaton de-
sign methods is straightforward. Previous FDTD models
of material dispersion have transformed the frequency-
dependent electric polarization term from the frequency
domain to the titme domain. In the time domain, methods
were developed to discretize either the convolution inte-
gral or the auxiliary differential equation. The frequency
approximation methods avoid this transformation initially
by providing a discrete approximation o the analog sys-
tem (or filter) function and then formniating the discrete
time-domain update equations. The basic idea is to pro-
vide an approximation to the jw terms in the frequency
domain as a rational polynomial in z. This approxima-
tion is then substituted into the analog system function to
transform it into the Z-domain. This approach discretizes
each power of jw identically, whereas the ADE methods
will typically discretize each power of jw (i.e. each 3/8t
term in the time-domain) differently. A strong motiva-
tion for investigating the FA methods is because they sep-
arate the error in the FA design from other errors inherent
with the FDTD method such as grid dispersion and outer
boundary errors. The theoretical development in this sec-
tion is adapted from [14]. A similar model was recently
developed and implemented for the surface impedance
boundary condition [15].

2.1 Debye Dispersion

Materials exhibiting first-order Debye dispersion ¢an
be characterized by an electric permittivity of the form

€3 — €0

1+ jur M

(W) = €0 +

where ¢, is the static permittivity and e, is the mfinite
frequency permittivity. For linear, dispersive and isotropic
media, the electric displacement vector, D, is related to
the electric field intensity vector by the expression

D =ew)E 3]
The frequency approximation methods design a digital
system function for the electric permittivity by express-
ing the jw terms using a rational polynomial in z. The
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two approaches validated in this paper are the Backward
Difference (BD) method and the Bilinear Transformation
(BLT) method. For the BD method, jw is approximated
as {14]

1-2z"1

T 3

where T is the sampling interval. Substituting (3) into
equation (1) gives the digital system permittivity fanction

Jw ==

€co + €T /T~ €02}

@) = =7/ “@
The Z-domain analog of (2} can be rewritten as
B(z) =22 )

&(2)

and substituting (4} into equation (5) yields
E(z) = {('r +T)D(z) - 2T D(z)

(6

© EooT + €T
+eoTZ ! E(z)}

Note the z~! terms are delay operators in the time do-
main, and the corresponding FDTD update equation for
(6) is given by

-

E = TD" ! + EQOTE"'-I}

¢))
The bilinear transformation (BLT) metbod approxi-
mates jw by

T{(T+T)D"

€T + €,

. 21-—2"
om F e ®
Substituting (8) in (1) gives
_ . -1
(z) = (2600 + €T/ T) — (2600 — €T/ T) 2 (9)

C+T/r)—2-T/r)z?

for the digital system permittivity and the comesponding
time-domain update equation is given by

-

__ 1 An An=—1
BEr = e”T{(zu-:r')p +(T-20)D

2760 +

+(2r¢e0 —&T) E* } 10)

2.2 Lorentz Dispersion

For materials exhibiting Lorentz dispersion, the
frequency-dependent permittivity is given by

{€s — €c0) "‘"g

wg + jwd — w? ()

e{w) = €50 +



where wy is the resonant frequency and ¢ is the damping
coefficient. For the BD method, the digital system permit-
tivity function is given by
e(z) = { [em (1+6T) +e, (ng)z]
—€ee (24+0T) 27! +- e.,,,z"z} /

{ [l +6T + (on)”] —-2+T) 2zt + z—2}

(12)

and the corresponding time-domain update equation is

Er = {[1 +6T + (on)z] p* - 2+ 6T) D™
+D72 4 (24 STYEP — emﬁ"_z} /
[em (1+6T) + e (on)2] a3

For the BLT method, the digital system permittivity func-
tion is given by

{ [ew (44 26T) +e, (w‘on] -

[8500 — 2, (on)z] z!

+ [em (4 —26T) + ¢, (on)z] 2”2} /
{ [4 + 26T + (uoT)z] -

e(z) =

[s ~2 (@T)“’] 14
[4 — 26T + (woT)’] 272} (14)
and the corresponding time-domain update equation is

-

B = { [4 + 26T + (on)z] p-

[s -2 (on)2] s

[4 — 28T + (on)z] D24
[Sem —~ 2, (ng)z] Erio
[eeo (4 - 26T) + &, (woT)?] B2}/

{em (4+20T) + ¢, (on)z}
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It is interesting to note that the update equations (7),
(10}, (13) and (16) are very similar to the auxiliary differ-
ential equation (ADE) method [7].

3 Demonstration

The demonstrations in this section involve calculation
of reflection coefficients from one-dimensional dispersive
dielectric half-spaces. The numerical results using the BD
and BLT frequency-approximation methods are compared
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with other popular FDTD models of dispersive media,
which are: auxiliary differential equation (ADE) method
[7], recursive convolution (RC) [1], piecewise-linear re-
cursive convolution (PLRC) [6], and Z-transform (ZT)
[12} methods.

3.1 Debye Dispersion

For the Debye dispersion demonstration, computation
of wide-band reflections at an axr-water interface was per-
formed. The one-dimensional problem space had 1000
cells with 500 cells simulating the water half-space and
500 cells of free-space. The cell size was 37.5 ym and
the time step was 0.0625 ps. The water parameters used
were €, = 81¢q, € = 1.8¢p and 7 = 9.4 ps and Figure 1
shows the frequency dependent pemmittivity. The incident

Relative permittivity
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Figure 1: Relative permituivity, ., versus frequency for
Debye dispersive material.

pulse was a Gaussian pulse of the form

el (t) = e~((t=t0)/moY y(p) (16)
where t; = 25 ps and 7y = 7.37 ps. The pulse was tnun-
cated in time at -100 dB which resulted in a spatial pulse
width of 400 cells and it contained significant energy o
145 GHz. The FDTD reflection coefficient was obtained
by dividing the frequency response of the scattered field at
the air-water interface by the frequency response of the in-
cident field. The incident field was obtained by reconding
the electric field at the air-water interface location with-
out the water half-space (i.e. free space only in the en-
tire problem space). The time-domair scattered field is
obtained by recording the time-domain total field at the
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air-water interface and subtracting the time-domain inci-
dent field. The other popular FDTD material dispersion
implementations were used with equations taken directly
from the appropriate articles in the literature. Figure 2
shows very good agreement between the reflecton coef-
ficient results for the BD and BLT methods and the exact
solution. Figure 3 shows the percentage error of the BD
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Figure 2: Reflection coefficient magnitede versus fre-
quency for reflection from a Debye dispersive half-space.

and BLT methods compared to the other FDTD models of
Debye dispersion. Note the percentage error in Figure 3
for the ADE, BLT and PLRC methods are almost identi-
cal and is increasing with frequency. The percentage error
for the ZT method (which is an impuise-invariant design)
is almost constant with frequency. Although these results
include other inherent FDTD emror sources, the general
trend confirms the error analysis of the FA design meth-
ods presented in Figure 2 of [14} for Debye dispersion.
The phase of the reflection coefficients for each method
exhibited similar trends and levels of agreement.

3.2 Lorentz Dispersion

For the Lorentz dispersion demonstration, computation
of wide-band refiections at an air-material interface were
performed using two different dispersive media. The
material and FDTD caicviation parameters are given
in Table 1. Figure 4 shows the frequency-dependent
~ permittivity for material 1 only. since the permittivity for
material 2 is very similar in frequency bebavior. The
same procedure was used to obtain an FDTD reflection
coefficient as in the Debye dispersion example. The
incident puise was the Gaussian pulse of (16) with pulse

2 r—T—TTTT T

Percent error in reflection coefficient (%)

.04 | N | i 1 1 I
O 10 20 30 40 50 60 70 80
Frequency (GHz)

Figure 3: Percent emmor in reflection coefficient magnitude
versus frequency for reflection from a Debye dispersive

half-space.

Table 1: FDTD PARAMETERS FOR LORENTZ DiS-
PERSION MATERIALS.

" Parameter Material 1 Material 2 “
[ Total # of cells 8000 1000 '
[ Dispersive cells 3000 500
Cell size 06A 250 pm
&t 0.2as 0833 ps
€s 2.25¢9 3o
€ €0 1.5¢p
n wo 4 x 10" rad/s | 40= x 10° radis
i ] 056 x10°°s™" | 4x x107s~*
il to 424 as 21.5ps
| o 125 as 635 ps
{| Pulse freq. cutoff 85 PHz 175 GHz
[l Pulse ampl. cutoff 100 dB -100 4B
Total pulse widtk 84.8 as 43 ps
Time steps 11,000 2,048
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" Relative permittivity
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Frequency (PHz)

Figure 4: Relative permittivity for material 1 with Lorentz
dispersion. The material properties are given mn Table 1.

parameters also given in Table 1. For material 1, Figure
5 shows the reflection coefficient results for the BD and
BLT methods and Figure 6 shows the percentage error
in the reflection coefficient using several methods. In
Figure 5, the BLT method clearly has better agreement,
especially in the resonance region. Figure 6 shows that
the ADE and BLT methods have approximately the same
level of error throughout the eatire frequency band and
are more accurate than the RC method (the step-invariant
method) in the resonance region. Although the PLRC and
ZT methods were unstable for this material and the given
simulation parameters, a stabilized version was used to
provide resnlis for comparison. It was shown in [14] that
the ZT method {impulse-invariznt design) can be unstable
for certain Lorentz materials. The cause of the instability
with the PLRC is yet undetermined, but independent
calcnlations using the same methods and parameters were
made by Kelley [16] verified this instability.

Figures 7 and 8 show similar results as Figures 5 and
6, but for the second dispersive material. The FDTD
simuiation parameters are provided in Table 1. The BD
method exhibits more error in Figure 7 for this material
which is most likely due to aliasing in the digital system
frequency response. The resonance region in material 2
is Jower in frequency and therefore the sampling interval,
T, is larger than material 1; which will result in a less
accurate filter. Note in Figure 8 above the resonance
region that the ADE method has the largest amount of
etror, followed by the BLT method and the ZT method
(the impulse-invariant design). Although other emor
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Magnitude of reflection coefficient

10 15 20
Frequency (PHz)

Figure 5: Reflection coefficient magnitude versus fre-
quency (Petahertz, ie. 10'° Hz) for material 1 with

Lorentz dispersion.

Percent error in reflection coefficient magnitude (%)

20 25
Frequency (PHz)

19 15

Figure 6: Percent error (%} in reflection coefficient mag-
nitude versus frequency (Petahertz, i.e. 10'® Hz) for ma-
terial 1 with Lorentz dispersion.
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Magnitude of reflection coefficient

Frequency (GHz)

Figure 7: Reflection coefficient magnitude versus fre-
quency for material 2 with Lorentz dispersion.

Percent error in reflection coefficient magnitude (%)

40 60
Frequency (GHz)

Figure 8: Percent error (%) in reflection coefficient mag-
nitnde versus frequency for material 1 with Lorentz dis-
persion.
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sources inherent with the FDTD method are present,
these general trends in the reflection coefficient resulis
for both the Debye and Lorentz problems confiom ob-
servations in the frequency-approximation error analysis
from [14]. It is clear that the BLT method is the preferred
choice in the FA design methodology. Although results
were not presented for the second Lorentz dispersion
example, the original RC method remained stable and
reasonably accurate for both problems. The RC method
is a step-invariant design and is obviously a stable design
for both Debye and Lorentz media. :

The computational requirements of the BD and BLT
methods are identical with the ADE methogd, which is not
swrpnising, consideting the time-domain update equations
are almost identical. It can be shown that through care-
ful programaning and using optimatl storage implementa-
tions, the memory requirements of the FA approaches can
be made almost the same as the convolution methods, and
they have better accuracy and stability behavior.

4 Conclusion

This paper has successfolly demonsirated and validated
frequency-approximation design models for FDTD treat-
ment of dispersive materials exhibiting both Debye and
Lorentz dispersion. FDTD update equations were pro-
vided for modeling materials with both types of dis-
persion. Wide-band one-dimensional reflection coeffi-
cient calculations were performed and excellent agree-
ment with the exact solution was obtained. General trends
in the FA error analyses presented in [14] were observed
in the reflection coefficient results which provided further
validation for the design models. It was also iltustrated
that the BLT method was the FA method of choice for
both Debye and Lorentz dispersion to provide the best ac-
curacy. The FA results exhibited similar levels of accuracy
when compared with other FDTD implementations for
dispersive media. Based upon accuracy and stability con-
siderations, the BLT and ADE methods are the methods
of choice for treatment of dispersive media using FDTD.
The memory and floating point operational requirements
for the FA methods are very similar (and in some cases,
identical) 1o other FDTD dispersive media implementa-
tions. With optimal storage implementations, the BD and
BLT FA methods can have almost the same memory re-
quirements as the convolution approaches. Although this
paper oaly considered a single Debye or Lorentz relax-
ation, extension of the BD or BLT methods to multiple
relaxations is straightforward.
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