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Abstract— Progress in a continuing research project is reported
here. The objective of the research is to quantify the feasibility of
using physically compact RF inductors as effective transmitting
antennas for HF (3-30 MHz) communications. Proximity losses
for the closely spaced turns of helically wound, air core RF
inductors fabricated with either wire or tubing are substantial,
and must be accounted for in any predictive model. A capability
for estimation of total loss (proximity loss plus high-frequency
ac ohmic loss) has been developed which, when combined with
radiation pattern and gain calculations from a numerical method
such as the Method of Moments (MoM), gives a more accurate
and reliable prediction of performance for a coil antenna than is
available from MoM or proximity loss values, taken individually.

I. INTRODUCTION

There is considerable interest in small antennas for HF
radio communication applications, especially in the context
of portable and mobile operations. The geometry under con-
sideration here is helically wound, air core RF inductors,
fabricated with wire or tubing. A specific example is the coil
(RF inductor) whose photograph appears in Figure 1. This 57
µH inductor is made with 1.27 cm (0.5 inch) diameter silver-
plated copper tubing. There are 22 turns, total, in a length of
44 cm (slightly more than 17 inches), so the center-to-center
turn spacing is 2 cm. The coil diameter is approximately 30
cm (12 inches). This particular RF inductor was originally
part of an antenna tuning unit (ATU) circuit at a 50 kW AM
broadcast station.

The coil axis in Figure 1 is vertically aligned, with a section
of 10 cm (4 inch) diameter PVC pipe supporting the frame of
the coil and providing a nominal elevation of approximately
0.6m above the large plywood dolly base which is partially
visible in the lower part of the photograph. Two of three bars
for securing the coil turns in place are clearly visible in Figure
1, and these support structures are made of micalex. To create
a feed point, a gap of approximately 1.25 cm was created by
cutting that length out of the coil tubing and soldering two
heavy brass tabs with 0.25-inch brass hardware to secure the
center conductor and braid, respectively, of RG-8 50Ω coaxial
cable. A short section of coax is shown attached to the coil in
Figure 1; note the black heatshrink (toward the lower left in
the picture) which secures six cylindrical ferrite chokes to the
cable.

Figure 1. A compact coil (multi-turn loop) antenna.

II. BACKGROUND

An early source of interest in loop antenna configurations
for HF communications was the quad antenna, generally
credited to Clarence Moore as his solution to corona discharge
problems with yagis at high altitude while he was at the
shortwave missionary radio station HCJB in Quito, Ecuador,
in the early 1940s. A basic two-element quad array is depicted
in Figure 2. The driven elements are electrically 1λ in circum-
ference (i.e.,

λ

4
on each side), and the reflectors are slightly

longer.
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Figure 2. Basic two-element quad array.

Quad-yagi comparisons suggests that the quad excels with
respect to gain, is similar in SWR characteristics, and lags with
respect to front-to-back ratio. Favorable experience in applica-
tions solidified the quad as a popular directional wire antenna
for both the HF and VHF spectrum. The principal drawback
of the full-sized quad is that it is physically cumbersome to
construct and deploy. Physical size of the quad may fairly be
described as large at frequencies below 14 MHz, becoming
preclusive below 7 MHz.

As a compromise, the amateur radio community led the
quick adaptation to using the driven element from a quad array
alone as a single loop. Experiments with the loop mounted
horizontally soon followed and this work, in turn, inspired
efforts toward emulating 1λ loop performance with versions of
reduced size. One of the more complete collection of practical
guidelines to HF compact loop construction is in [1], which
contains specific designs [2] as well.

The next logical step in compact loop antenna development
was multiturn loops, and this class of physically small antennas
has received some attention over the past thirty years (see,
for example, [3]). Clever variations on the simple circular or
square loop geometries have been devised, such as the incor-
poration of fractals [4], [5]. Nonetheless, more success has
been achieved with small multiturn loop receiving antennas
[6] than with transmitting antennas.

III. TERMINOLOGY

Loops are generally divided into two classes: those loops
for which the total conductor length and maximum linear
dimension of a turn are very small relative to the operating
wavelength, and those for which the total conductor length
and loop dimensions become comparable to the wavelength.

A more precise definition of an electrically small loop
is one in which the current has the same magnitude and
phase everywhere in the loop. To reasonably comply with
this condition, the working compromise is that the loop’s total
conductor length should not exceed (approximately) 0.1λ. A
“large” loop, then, is one in which the current amplitude and
phase are not required to be constant everywhere in the loop.
In practice, a conductor length of 0.5λ is generally taken to
be the minimum for a loop to be described as large.

Especially for portable and/or mobile operation, physical
size is the more important parameter. Therefore, the descriptor
“compact” has been adopted here to identify the class of
(potential) multiturn loop antennas of interest, and is hereafter
the shorthand notation for “physically compact.” In some
cases, a physically compact multiturn loop (that is, a coil) may
qualify as electrically small at certain proposed frequencies of
operation, and simultaneously qualify as electrically large at
other higher operating frequencies.

IV. EFFICIENCY AND PROXIMITY LOSS

A straightforward measure of antenna radiation efficiency
is given by

η =
RRad

RRad +RLoss
, (1)

usually expressed as a percentage.
For a single-turn transmitting loop, RLoss is essentially

the conductor’s ac resistance (but also includes connection
resistances and embedded tuning reactance losses which are
generally negligible when RRad > 0.25Ω), approximated by

Rac =
0.996× 10−6

√
f

d
(2)

with frequency f in Hz, conductor diameter d expressed in
inches, and Rac in Ohms per foot. Skin effect is responsible for
increasing the effective resistance as frequency is increased,
corresponding to the increased energy loss experienced by
fluids forced to maintain a constant flow rate when directed
into a pipe of smaller diameter. Anecdotal accounts of practical
experience suggests that the loop conductor should be at least
0.75 inch diameter, if made of copper, to achieve reasonable
transmit efficiency.

For multiturn loops with turns closely spaced, there is
an additional loss arising from what is known as proximity
effect. The source of the observed effect is the fact that the
circumferential current distribution changes as the current-
carrying coil turns are brought close together, changing the
surface current (per square meter) flowing at surfaces adjacent
to other conductors. Higher loss than suggested by a skin
effect analysis results because the current flow is compressed
and flows through a smaller cross-sectional area than if the
neighboring turns were absent.

The order of magnitude of the effect is indicated in the
following excerpt from page 5-12 of reference [1]:

As the efficiency of a loop antenna approaches
90%, the proximity effect is less serious. But un-
fortunately, the less efficient the loop, the worse
the effect. For example, an 8-turn transmitting loop
with an efficiency of 10% (calculated by the skin-
effect method) actually only has an efficiency of 3%
because of the additional losses introduced by the
proximity effect.

When the coil conductor is segmented for Moment Method
analysis by a code such as EZNEC, the numerical procedure
returns a complex (magnitude/phase) current value for each
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segment. However, it appears that closely spaced parallel
conductors pose a challenge for the numerical technique, and
that it does not account for the significant current compression
loss associated with the proximity effect. The plausibility
of this conclusion has been investigated by means of the
following specific case study.

V. A SPECIFIC CASE STUDY: GATES ATU COIL

The RF inductor shown in the photograph of Figure 1 was
selected for a detailed engineering study. This 57 µH coil
was originally manufactured by Gates Radio Company for
use in high-power AM broadcast service. Its relatively large
diameter silver-plated tubing and turn-to-turn spacing that was
originally selected for MF applications suggested that this
coil might hold significant promise for use as a transmitting
antenna at HF.

To begin, the coil geometry was segmented (using an oc-
tagonal approximation to its circular cross section), similar to
the illustration in Figure 3, and preliminary numerical analysis
conducted with the Method of Moments code EZNEC [16].
For purposes of this study, the following specific frequencies
were selected: 1.9, 3.8, 7.3, 10.1, 14.25, 18.1, and 21.3 MHz.
These frequencies are all in, or at the edge of, amateur radio
bands so that transmit as well as receive experiments could
be conducted. Figures 4 and 5 illustrate the elevation pattern
results obtained.

Figure 3. MoM segmentation, octagonal approximation.

Because the total conductor length of the coil tubing is about
22 m, approaching half-wavelength natural resonance length
near the 7 MHz (40 meter) band, and armed with the -4.51
dBi gain prediction for 7.3 MHz from the computer analysis, it

was decided to initiate experimental observations in the 40m
band. The coil center-feed terminals were connected to the
output of a MFJ HF antenna tuning unit, as shown in the
photograph of Figure 6 through a section of 50Ω that was less
than 1 meter in length. From there, another 15-meter long 50Ω
coaxial cable was used to connect the MFJ tuner input to a
100W HF transceiver inside.

Figure 4. Elevation plot for 3.8 MHz.

Figure 5. Elevation plot for 7.3 MHz.

Numerous radio contacts were made in the 40m amateur
bands with the coil deployed on its plywood dolly inside
the bed of a pickup truck (see photograph in Figure 6,
which shows the coil antenna being connected to the ATU),
and the immediate results were exhiliarating. Both transmit
and receive signals were fully comparable to a full sized
horizontal center-fed dipole mounted at approximately 40
feet (12.2 m). In some instances, the coil exhibited superior
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performance! Since the 21 MHz (15m) amateur band is at
an odd multiple of 40m, so the coil conductor length again
approaches a natural resonance, contacts on the 15m band
followed - with similarly astonishing results. From Alabama,
first-day contacts included stations from Africa to Asia.

Figure 6. Coil on platform in truck bed.

Unfortunately, when cylindrical coax-diameter ferrite
“beads” were placed on the cable section between the coil feed
point and the ATU, the performance on both 40m and 15m
plummeted. All those bodacious signals and superlative long-
distance signal reports were mostly attributable to currents
flowing on the outside of the coax braid and blind chance
selection of a day with outstanding propagation conditions for
the initial testing!

Six ferrite chokes were added to the short coil feed pigtail,
secured by enclosure with heatshrink tubing, and the “choked”
pigtail connector was used in all subsequent experimentation.

Seeking an explanation for the large discrepancy subse-
quently observed between NEC2 performance prediction and
actual practice, the compact coil HF antenna project proceeded
to obtain quantitative results for potentially significant addi-
tional proximity effect losses.

VI. PROXIMITY LOSS PROGRAM INTRODUCTION

A literature search revealed that Glenn Smith, now a pro-
fessor of electrical engineering at Georgia Tech, conducted
the most thorough scientific study available of proximity loss.
Dr. Smith’s work dates from the early 1970s, while he was
still working with R.W.P. King at Harvard University. It was
deemed a necessity to be able to reproduce the results reported
in his papers, principally [7], and to develop a modernized
computer code (in MATLAB [8]) which would allow contem-
porary users to make proximity loss predictions about coils of
geometries (and operating frequencies) different from those of
high priority to Dr. Smith in his original work.

VII. MATHEMATICAL PRELIMINARIES

In [7], the solutions for two cases of proximity loss cal-
culation are treated. First, in the case when two parallel,
closely-spaced cylindrical conductors are present, the Jacobi
elliptic integrals and functions are used to determine the
normalized current distribution in each conductor and, also, the
normalized additional ohmic resistance per unit length due to
the proximity effect. In the second case, that of an even number
of conductors (greater than two), a least squares methodology
is used. The second case will be addressed later; some review
remarks about the elliptic integrals and functions relevant to
the first case are made here.

Jacob Bernoulli encountered a form of elliptic integral in
1679 and, in 1694, he made an important step in the theory
of elliptic integrals. See [9] for a brief tutorial on the elliptic
integral, from which the following excerpt is taken:

Elliptic integrals can be viewed as generaliza-
tions of the inverse trigonometric functions and
provide solutions to a wider class of problems. For
instance, while the arc length of a circle is given
as a simple function of the parameter, computing
the arc length of an ellipse requires an elliptic
integral. Similarly, the position of a pendulum is
given by a trigonometric function as a function
of time for small angle oscillations, but the full
solution for arbitrarily large displacements requires
the use of elliptic integrals. Many other problems
in electromagnetism and gravitation are solved by
elliptic integrals.

A very useful class of functions known as elliptic
functions is obtained by inverting elliptic integrals
to obtain generalizations of the trigonometric func-
tions. Elliptic functions (among which the Jacobi
elliptic functions and Weierstrass elliptic function
are the two most common forms) provide a powerful
tool for analyzing many deep problems in number
theory, as well as other areas of mathematics.

Theorem 1: If R(x, y) is a rational function in x and y =p
P (x), namely

R(x, y) =

Z
A(x)dx

B(x)
OR
=

Z
A(x) +B(x)

p
P (x)

C(x) +D(x)
p
P (x)

dx (3)

where P (x) is a polynomial of degree three or four with no
repeated factors, then the integralZ

R(x,
p
P (x))dx ≡

Z
R(x, y)dx (4)

can always be expressed in terms of elliptic integrals [13]. For
a proof, see [14].

It is necessary to apply the above theorem to achieve an
analytical solution for the proximity loss associated with a
pair of conductors, and there are three classifications of elliptic
integrals:

1st Kind: F (k, φ) =
φZ
0

dθp
1− k2 sin2 θ

, 0 < k < 1 (5)
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2nd: E(k, φ) =
φZ
0

p
1− k2 sin2 θ dθ, 0 < k < 1 (6)

3rd: Π(k, φ, a) =
φZ
0

dθp
1− k2 sin2 θ

¡
1 + a2 sin2 θ

¢ , (7)

for

⎧⎨⎩ 0 < k < 1
a 6= k, 0
n = −a2

.

Parameter φ is called the amplitude and k the modulus.
Number n is called the characteristic and can take any value
(−∞,∞) regardless of other variables. When φ =

π

2
, these

become known as the complete elliptic integrals, with the
special designations

1st Kind: F (k,
π

2
) =⇒ K(k) = K

2nd Kind: E(k,
π

2
) =⇒ E(k) = E

3rd Kind: Π(k,
π

2
, a) =⇒ Π(k, a) = Π.

(8)

Useful infinite series representations for K and E, and
results for limiting cases m→ 0 and m→ 1 are well known
and readily available in references such as [13], [15]. Inversion
of elliptic integrals leads to elliptic functions which fall into
two categories - the Weierstrass and Jacobi elliptic functions,
with the Jacobi elliptic functions considered the standard form.
The three basic Jacobi functions are

sn(u) = sn u = sinφ = x
cn(u) = cn u = cosφ

dn(u) = dn u =
p
1−m sin2 φ

(9)

with the third relation giving φ = arcsin (sn u) =am u, the
amplitude. The Jacobian elliptic functions are doubly periodic.
K and iK0 are the “real” and “imaginary” quarter-periods of
these functions, defined by

K(m) = K =

π

2Z
0

dθp
1−m sin2 θ

(10)

and

iK0(m) = iK0 = i

π

2Z
0

dθp
1−m0 sin2 θ

(11)

with 0 < m < 1 and m +m0 = 1. Both K and K0 are real
numbers. Finally, if one wishes to use the modulus k instead

of the parameter m, equations 10 and 11 become

K(k) = K =

π

2Z
0

dθp
1− k2 sin2 θ

(12)

and

iK0(k) = iK0 = i

π

2Z
0

dθq
1− (k0)2 sin2 θ

(13)

where (k0)2 = 1− k2.

TABLE I
Elliptic Integral Reference Table of Variables
Variable Description
k Modulus
k0 Complementary Modulus
m = k2 = sin2 α Parameter
m0 = 1−m Complementary Parameter
α = sin−1 k Modular Angle
φ = am u Amplitude

q = e
−
iK0

K Nome
K = K(k) Quarter Period
K0 = K(k0) Imaginary Quarter Period

VIII. SOLUTION FOR TWO WIRES

For the two cylindrical wires case, assuming constant (i.e.,
equal) current flowing in both conductors, the analytical so-
lution in [7] uses Jacobi elliptic integrals and functions to
calculate the normalized current distribution on each conductor
and, from that, the normalized additional ohmic resistance
per unit length arising from the proximity effect. Smith [7]
adapted the conformal mapping electrostatic solution reported
by Whipple [10] to the context of the problem of present
interest, and arrived at the following as the solution for the
normalized current distribution (Eq. 30 in [7]):

g(θ) =
2(1 + k)K(k)

π
csch α(coshα− cosu) (14)

×dn
Ã
(1 + k)K(k)

π
u,
2
√
k

1 + k

!
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with

u = sin−1
µ
sin θ sinhα

c/a+ cos θ

¶

α = ln

"
a

c− (c2 − a2)
1
2

#

K0(k)

K(k)
=
2α

π

0 ≤ u ≤ π

2
for 0 ≤ θ ≤ cos−1

³a
c

´
π

2
≤ u ≤ π for cos−1

³a
c

´
≤ θ ≤ π.

(15)

in addition to the entries of Table I. Calculation of the modulus
k requires the so-called theta functions, summarized in Table
II below.

Table II
Theta Functions

Θ1(z, q) = Θ1(z) = 2q
1
4

∞X
n=0

(−1)n qn(n+1) sin(2n+ 1)z

Θ2(z, q) = Θ2(z) = 2q
1
4

∞X
n=0

qn(n+1) cos(2n+ 1)z

Θ3(z, q) = Θ3(z) = 1 + 2
∞X
n=1

qn
2

cos(2nz)

Θ4(z, q) = Θ4(z) = 1 + 2
∞X
n=1

(−1)nqn2 cos(2nz)

The normalized additional ohmic resistance per unit length
attributable to proximity effect is then

Rp

R0
=

µ
2K

π

¶2 "
2 ctnh α

(
E(K, k)

k
− (k

0)2

2

)#
−
¡
1 + 2 csch2α

¢
(16)

(Eq. 31 in [7]) where E(K,k) is the complete elliptic integral
of the second kind and (k0)2 = 1− k2).

Noting that 2c is the center-to-center conductor spacing
and a is the conductor radius, the normalized surface current
distributions as a function of angle θ (see Figure 7) for two
conductors at various ratios

c

a
are shown in Figure 8. The

results, computed with MATLAB, closely emulate those in
Fig. 3 of reference [7]. MATLAB does not have built-in
support for all the elliptic functions, so custom code was
written to calculate the elliptic function values for substitution
into 16. The half-period ratio τ is related to the real and
imaginary quarter periods by

τ =
iK0

K
=
2α

π
. (17)

Subsequently, the value of nome is obtained from

q = e

−πK0

K = eiπτ . (18)

Table II contains the theta function formulas used to calculate
the elliptic modulus

k =

µ
Θ2
Θ3

¶2
. (19)

The value of z in the Table II relations is zero here. Parameter
m is obtained from k, and is used as the argument in the
MATLAB function “ellipj” to evaluate the elliptic integrals
of the first and second kinds.

Figure 7. Two-conductor geometry.
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Figure 8. Normalized surface current distribution for
different wire spacings.

IX. SOLUTION FOR MORE THAN TWO CONDUCTORS

For more than two circular conductors, a closed form
solution (in contrast to the two-wire case) cannot be found,
and [7] proceeds to apply an approximation method - namely,

13



undetermined coefficients - to obtain current distributions
and total ohmic resistance per unit length. Again, constant
current is assumed. A trigonometric series is the expansion
representation for the normalized surface current density:

gm (θ) = 1 +

qX
p=1

amp cos (pθ) (20)

where m is the wire number, q now represents the number
of harmonics (and is not the nome, as before), and the amp

factors represent Fourier coefficients. The simplification of an
even number of wires in the system is taken. The Fourier
coefficients are calculated via a matrix generated by the
method of least squares, with an “Indicator function” involved
in the process.

I (θ,m− , p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

(1− s2) (−s)p+1
(As2 +Bs+ C),

p = 1, 2, . . . , q

−1
s (1− s2)

(Bs+ 2C), p = 0

(21)
where

s =

∙
4(m− )2

³ c
a

´2
+ 1 + 4(m− )

³ c
a

´
cos θ

¸1
2

A = cos [θ − (p− 1)Ψ]

B = 2
h
1 + 2 (m− )

³ c
a

´
cos θ

i
cos (pΨ)

C = cos [θ + (p+ 1)Ψ]

Ψ = π − tan−1
⎛⎝ sin θ

2 (m− )
³ c
a

´
+ cos θ

⎞⎠ ,

m− = 1, 2, . . .

Ψ = tan−1

⎛⎝ − sin θ
2 (m− )

³ c
a

´
+ cos θ

⎞⎠ ,

m− = −1,−2, . . .

The equation key to determination of the coefficients amp

can be written simplistically as

qX
p=1

ampt
m
kp +

n

2X
=1
6=m

qX
p=1

ampt
m
kp = smk,

(
m = 1, 2, . . . ,

n

2
k = 1, 2, . . . , q

(22)

which is equivalent to the matrix equation

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

T11 T12 . . . T
1,
n

2
T21 T22 . . . T

2,
n

2
...

...
. . .

...
Tn

2
,1

Tn

2
,2

Tn

2
,
n

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
A1
A2
...

An

2

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

S1
S2
...

Sn

2

⎤⎥⎥⎥⎥⎥⎦
(23)

where the submatrices within the partitioned T
˜

matrix are

Tii =

⎡⎢⎢⎢⎣
ti11 ti12 . . . ti1,q
ti21 ti22 . . . ti2,q
...

...
. . .

...
tiq,1 tiq,2 tiq,q

⎤⎥⎥⎥⎦ , Tij =
⎡⎢⎢⎢⎢⎣

tij11 tij12 . . . tij1,q
tij21 tij22 . . . tij2,q
...

...
. . .

...
tijq,1 tijq,2 tijq,q

⎤⎥⎥⎥⎥⎦ ,

Ai =

⎡⎢⎢⎢⎣
ai,1
ai,2

...
ai,q

⎤⎥⎥⎥⎦ and Si =

⎡⎢⎢⎢⎣
si,1
si,2

...
si,q

⎤⎥⎥⎥⎦ .

Expansion series coefficients amp, obtained by solving the
matrix equation in standard fashion by multiplication with
A−1, are substituted into Eqn. (20) to give normalized surface
current distribution graphs such as those in Figures 9 through
11 for the illustrative (half) spacing to radius ratio

c

a
= 2 in

a 6-wire system. The results for conductors 4 (left middle) to
6 (left end) are known by symmetry. The interested reader
should also see the original family of plots in Fig. 4 of
reference [7], which are confirmed by the calculations done
in this study.
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Figure 9. Surface current distribution, wire #1 (right end).
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Figure 10. Surface current distribution, wire #2 (next to end).
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Figure 11. Surface current distribution, wire #3 (right
middle).

The same amp coefficients are used to get the additional
ohmic resistance per unit length due to proximity effect from

Rp

R0
=

R− nRR

nRR
=
1

2n

nX
m=1

qX
p=1

|amp|2 Ω/m (24)

where RR is the Rayleigh formula for high-frequency
resistance per unit length of a circular conductor, according
to

RR =
2P

|I|2
=

RS

2πa
=

1

2πa

³ωµ0
2σ

´1
2 Ω/m (25)

=⇒ RS =
³ωµ0
2σ

´1
2 (26)

and R is the ohmic resistance for n parallel wires, with all
conductors carrying the same current, given by

R =
RS

2πa

nX
m=1

Ã
1 +

1

2

qX
p=1

|amp|2
!
. Ω/m (27)

The right hand expression in Eqn. (24), with the double sum-
mation of |amp|2 , is the form used for practical calculations.

X. SPECIFIC CASE STUDY

The subject specific case study is the multiturn loop (coil)
transmitting antenna shown in Figure 1 and described in the
“Introduction” section of this paper. For this 22-turn coil with
c

a
= 1.667 (center-to-center spacing of turns = 2 cm), after

first calculating the T
˜

and S
˜

matrices discussed above, the
matrix equation is solved for the coefficients ( A

˜
matrix) using

MATLAB. Then the normalized additional resistance from the
proximity effect follows from Eqn. (24):

Rp

R0
=
1

2n

nX
m=1

qX
p=1

|amp|2 = 0.8979 Ω/m (28)

Since the total conductor length for the coil is about 22 m,

µ
Rp

R0

¶
total prox

= 22× 0.8979 = 19.75 Ω (29)

and the total resistance per unit length (from 27) may be
calculated from

R =

r
2πfµ0
2σ

2π × (0.6× 10−2) [2× 22.16] = 0.30263
p
f
Ω

m
,

(30)
noting that symmetry in the |amp|2 numbers allows summation
of half the index values to be computed (= 22.16) and that
result doubled (×2).

For the subject coil antenna, selected numerical results are
tabulated in Table III, where “Total R” is R in

Ω

m
multiplied

by the conductor length 22.16 m, and loss in dB is from

10 log

µ
Total R

73

¶
. The reference normalization value of

R0 = 73 Ω was chosen because we wish to consider loss
relative to the 73 Ω purely resistive input impedance associated
with a naturally resonant half-wave dipole.

TABLE III
Case Study Resistance Results, c/a = 1.667

Freq. (MHz) R (Ω/m) Total R (Ω) Loss in dB
1.9 417.1 9177.2 20.99
3.8 589.9 12978.5 22.50
7.3 817.7 17988.5 23.92
10.1 961.8 21158.8 24.62
14.25 1142.4 25132.8 25.37
18.1 1287.5 28325.11 25.89
21.3 1396.7 30727.2 26.24
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Figure 12. Proximity loss for Gates ATU coil.
As a brief but informative digression, Table IV hypothesizes

about the results if the coil tubing radius a is held constant, but
the turn-to-turn spacing is varied. The takeaway from Table IV
is that, as expected, the proximity loss decreases as the turn
spacing 2c is increased.

TABLE IV
Effect of Turn Spacing on Proximity Loss

Spacing 2c in cm
c

a

Rp

R0
in
Ω

m
1.5 1.25 2.507
1.8 1.5 1.238
1.92 1.6 1.005
2.0 1.667 0.886
2.04 1.7 0.834
2.4 2.0 0.526
3.0 2.5 0.295
3.6 3.0 0.190
4.0 3.333 0.150
4.2 3.5 0.134
4.8 4.0 0.099

The plausibility of the “loss in dB” figures from Table III was
tested experimentally, as discussed in the following section.

XI. COMPARISON TO MEASUREMENTS AND
CONCLUSIONS

The hypothesis is that NEC gain prediction by EZNEC and
similar codes, even when real conductor loss is selected in
the analysis program, is inadequate in the case of closely
spaced parallel conductors such as in the case of the subject
Gates ATU coil antenna. Further, it is asserted that the MoM
numerical analysis fails to account for proximity loss, so
that the addition of predicted proximity loss should give
predicted gain values considerably closer to real-world signal
observations.

A full measurements program has been only partially com-
pleted as of this writing. The results reported here, therefore,
should be taken as significant but incomplete and reflective

of conditions that do not allow the association of meaningful
error bars. However, a preliminary interpretation may be made
here with reasonable reliability.

The subject coil antenna was set up in an unobstructed area,
with a 130-foot long horizontal dipole (at height approximately
13 m) in the near vicinity. Received signals at selected HF
bands were observed by switching the two antennas, routed
through MFJ tuners for impedance matching, into a Ten-
Tec Corsair II receiver. Signal strength readings were taken
from the analog front-panel S-meter of the Corsair II, which
was determined to be calibrated to acceptable commercial
radio standards. Incoming signals were from various (often
unknown) compass bearings, distances (angles of arrival), and
no attempt was made to correct for pattern effects of the
large dipole at higher frequencies. Small data samples were
collected on some seven different days. Propagation conditions
made it difficult to acquire data at 18.1 MHz, and 21 MHz
was essentially dead (any signals heard on the dipole were too
weak to quantify accurately on the coil) on all days available
for experimentation. The available data is presented in Table
V below.

Table V

Predicted versus Measured Received Signal Strengths

(A) 3.8 MHz nominal
Number of signal measurements: 27
Average measured coil vs dipole (dB): -38.3
Proximity loss prediction: -22.5
EZNEC gain (dBd) prediction: -11.4
Sum of PL and EZNEC predictions: -33.9
Discrepancy (measured-predicted) dB: -4.4

(B) 7.2 MHz nominal
Number of signal measurements: 31
Average measured coil vs dipole (dB): -20.6
Proximity loss prediction: -23.9
EZNEC gain (dBd) prediction: -6.7
Sum of PL and EZNEC predictions: -30.6
Discrepancy (measured-predicted) dB: +10.0

(C) 10.1 MHz nominal
Number of signal measurements: 25
Average measured coil vs dipole (dB): -20.5
Proximity loss prediction: -24.6
EZNEC gain (dBd) prediction: -5.25
Sum of PL and EZNEC predictions: -29.85
Discrepancy (measured-predicted) dB: +9.35

(D) 14 MHz nominal
Number of signal measurements: 32
Average measured coil vs dipole (dB): -28.3
Proximity loss prediction: -25.4
EZNEC gain (dBd) prediction: -4.3
Sum of PL and EZNEC predictions: -29.7
Discrepancy (measured-predicted) dB: +1.4
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(E) 18.1 MHz nominal
Number of signal measurements: 10
Average measured coil vs dipole (dB): -29.4
Proximity loss prediction: -25.9
EZNEC gain (dBd) prediction: -3.9
Sum of PL and EZNEC predictions: -29.8
Discrepancy (measured-predicted) dB: +0.4

The total conductor length for the subject coil gave a natural
resonance close to the 7.0 - 7.3 MHz 40-meter band. This
fact likely accounts for at least part of the unexpectedly good
coil performance as an antenna in this nominal frequency
range. It is also noteworthy that the 10.1 MHz (nominal)
measurements included several instances, at different points
in time, of measurements on the time standard station WWV
in Fort Collins, Colorado. Similarly, the 7.2 MHz (nominal)
measurements included several measurements, at different
times, of the Canadian time standard CHU on 7.335 MHz.

Overall, the results presented in Table V clearly support the
merit of the hypothesis that a correction for proximity loss
should be added to pattern gain predictions from NEC in order
to obtain electrical performance predictions more consistent
with that generally observed in actual practice.

XII. FUTURE WORK AND FINAL REMARKS

It is apparent that more measured data is required to
improve confidence in the preliminary conclusion reached
here, especially in the vicinity of the 7.2 and 10.1 MHz bands.
Additional measurements comparing coil and dipole received
signal strengths will be made in the near future.

The calculation of proximity loss assumes constant current
in all the coil turns. For the specific case study here, at 3.8
MHz a free space wavelength is close to 79 m, so the 22 m
of tubing used to make this coil is approximately 0.28λ. At
7.2 MHz, the coil conductor becomes approximately 0.53λ.
Provision for current that is not constant could improve the
results to a signficant degree, and this refinement represents a
second activity reserved for future work.

The collection of MATLAB code(s) required to make new
individualized proximity loss calculations is not yet in a user-
friendly form. Work toward having a final software product
that can be made available in the public domain is continuing.

A practical finding of this work is that compact multiturn
loop antennas similar to one studied in detail here may, indeed,
be effective as portable/mobile antennas for HF communica-
tions if fed with coaxial line of appreciable length (at least
15 meters) without the ferrite choke assembly employed in
this study to suppress currents on the coax braid. In such
unbalanced operation, it has been observed that the coil plus
coax system becomes competitive with a half-wave dipole.
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