
1

Reduced Order Models for Metamaterial Transmission Lines

Giulio Antonini, Senior Member, IEEE

UAq EMC Laboratory

Dipartimento di Ingegneria Elettrica e dell’Informazione
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Abstract - This paper presents a reduced order model of metamaterial transmission lines. The metama-
terial transmission line can be regarded as a ladder network characterized by propagating and evanescent
modes generated by negative permeability and permittivity. Quasi-closed form of poles and residues are
computed, taking advantage of the periodic structure of such type of structure, thus leading to an effi-
cient time domain macromodel. Furthermore, the same methodology can be also efficiently used when
the metamaterial is characterized in terms of equivalent dispersive and lossy permeability and permit-
tivity over a frequency range. A model order reduction (MOR) technique is proposed allowing to reduce
the computational effort in carrying out time domain simulations and allowing fast parametric mod-
els generation. In addition, the capability of the proposed method to properly reproduce the physics
of metamaterials and to reduce the computational complexity due to the dispersive behavior of such
artificial materials is demonstrated by the numerical results.

Index terms-Metamaterials, transient analysis, dispersive and lossy materials, model-order reduction

techniques, parametric models.

I. Introduction

In the late 1960s, Veselago proposed that materials with simultaneously negative permittivity and
permeability are physically permissible and have a negative index of rifraction [1], [2]. He called these
left-handed (LH) materials because the vectors E, H and k form a left-handed triplet instead of
right-handed triplet, as in the case of conventional right-handed (RH) media. Although it has been
known for some time that arrays of thin metallic wires can produce an effectively negative dielectric
permittivity, it was not clear as to how produce a negative permeability until the recent development of
the split-ring resonator (SRR) by Pendry et al. was successful in this effort [3]. Experimental evidence
of LH materials properties has been given by Smith et al. [4], [5] who demonstrated an LH structure
made of negative-ε thin-wires and negative-µ split-ring resonators exhibiting anomalous refraction at
the boundary. More than 30 years passed before such media, referred to as metamaterials (MTMs),
were first realized by several research groups [4]-[7], based on resonant periodic structures with series
capacitors and shunt inductors.

Such artificial media are characterized by negative values of permeability and permittivity over a
wide frequency band and exhibit an evident and necessary dispersive behavior [2] which requires a
special care when implementing a time domain algorithm. So far metamaterials have been extensively
studied in the frequency domain and only recently time domain schemes have been proposed to capture
the dispersive nature of the metamaterial itself. In [8] a one-dimensional (1-D) Finite Difference Time
Domain (FDTD) method is presented to investigate the super-luminal properties of a particular type
of metamaterial, the two time derivative Lorentz material (2TDLM), in propagating signals through
the medium. Although the obtained results allow to gain deeper insight into the physics of such
materials, the developed FDTD code is complex to be implemented and simulations are quite time-
memory consuming. Also in [9] the behavior of an evanescent wave interacting with a slab of a
backward material with Lorentz-type frequency dependence is studied via FDTD simulations based on
a pseudo-spectral time domain (PSTD) method [10]. As in the previous work, a dedicated algorithm
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must be implemented to perform time domain computations and a special care is required to ensure
the necessary stability.

One of the most successful approaches to model left-handed (LH) materials has been presented in [7]
where an equivalent circuit for a left-handed transmission line (LH-TL) is proposed. Such equivalent
circuit has been then extended to composite right/left handed (CRLH) metamaterials in [11]. A
more complex unit cell of the equivalent line circuit of a metamaterial constituted by a split-ring
resonator/wire medium is presented in [6]. The same authors have presented in [12] a two-dimensional
(2-D) L,C loaded transmission line acting as an isotropic left handed or negative refracting index
(NRI) material. In [13] a 2-D Composite right/left handed transmission line (CRLH-TL) model is
presented and the dispersion diagram of the two-dimensional CRLH-TL is obtained analytically based
on the Bloch-Floquet theory. The main advantage of a circuit description is that the same equivalent
circuit can be used in both the frequency and time domain computations; the main drawback is that
the proposed circuits assume particular dispersive laws of the material and cannot be used to model
different type of metamaterials (e.g. 2TDLM).

One of the most challenging task in using metamaterials in practical applications is their minia-
turization in order to make them well suited for mobile communication systems. Much progress has
been recently done as shown in [14] where a super-compact diplexer is presented and characterized as
a multilayered composite left/right transmission line (ML-CRLH-TL).

Metamaterials surely will keep drawing interest in the microwave community and new artificial ma-
terials belonging to their family will be designed and new devices will be constructed. This increasing
interest in MTMs calls for new numerical techniques which are able to reproduce their intrinsic disper-
sive nature at a reduced cost. Nowadays, as pointed out above, time domain methods require a special
care, when dealing with dispersive media, which causes them to be extremely more time consuming
when compared with their non-dispersive counterpart.

More recently time domain modeling of MTMs has received an increasing interest and led to the
publication of several papers on it [15]-[17] where 2D and 3D numerical models are presented. As
several practical implementations of MTMs are based on circuit and transmission lines, one of the
most used techniques for modeling such kind of materials is the Transmission Line Matrix (TLM)
method [18], [19].

Aim of this work is to present a novel methodology for the transient analysis of metamaterial
transmission lines (MMTLs) exhibiting a general dispersive behavior, based on the analytical charac-
terization of the half-T ladder network approximating the metamaterial transmission line. The most
important features of the proposed approach are: 1) it allows straightforward computation of the poles
of the two-port representation of the MMTL with machine-accuracy; 2) the knowledge of the MMTL
poles allows to generate a macromodel which can be used in both time and frequency domain; 3) the
knowledge of the poles allows developing a reduced order model, by retaining only the poles which
significantly impact the physical behavior of the MMTL in the frequency range of interest; 4) the
proposed method can be used for any type of metamaterial as it doesn’t assume any particular kind of
dispersive behavior nor law for negative equivalent parameters µ and ε; 5) the proposed methodology
can be used as building block for modeling metamaterials and, in general, dispersive media, in the
framework of the TLM method [19]-[16]; 6) a quasi analytical correspondence between per-unit length
parameters of the MMTL and the poles of the system is extremely useful at the design stage as it
allows to select the stop and pass-bands and, thus, to design the frequency response of the system; 7)
parameterized reduced order models can be easily generated.

The paper is organized as follows. Section II presents the formulation for modeling MMTLs with
general constitutive parameters of equivalent materials. In Section III the two port representation of
the MMTL in both the cases of CRLH and 2DTLM metamaterials is presented; in Section IV relevant
formulas for computing poles and residues of CRLH materials are derived. The knowledge of poles
allows to select only the dominant ones, within a fixed frequency band, that really impact the physical
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behavior of the MMTL; the pole pruning is described in Section V pointing out that a special care is
needed in order to ensure high accuracy as the interaction of longitudinal and transversal resonators
cause the poles to be located mostly in well separated frequency bands. The possibility to adopt
the proposed method to generate parameterized macromodels of MMTL is reported in Section VI.
Numerical results for CRLH and 2DTLM MMTLs are presented in Section VII where the accuracy of
the proposed method in reproducing the physical behavior of MMTLs is demonstrated along with the
reduction of the computational complexity. Section VIII draws the conclusions.

II. General formulation for propagating and evanescent modes

Several previous studies of metamaterials have been carried out considering the propagation of
electromagnetic signals through a slab characterized by negative ε and µ over a frequency range [8];
more recently a composite right/left handed transmission line has been presented [7], [11] and studied
by using standard techniques in the frequency domain. Both these two problems can be studied by
means of the transmission line theory (TLT). Thus, we will start by considering the first kind of
problem keeping in mind that the second one can be analyzed by using the same formalism. Fig. 1
shows an uniform plane wave normally impinging on a slab of a metamaterial.
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Fig. 1. An uniform TEM plane wave impinging on a slab of metamaterial.

Although the methodology illustrated in the following holds also for non orthogonal incidence [22],
for the sake of clarity, only the orthogonal incidence will be here presented. For a Ex − Hy TEM
uniform plane wave Maxwell’s equations in Laplace’s domain read:

∂

∂z
Ex (z, s) = −sµ (s) Hy (z, s) (1a)

∂

∂z
Hy (z, s) = − (sε (s) + γ) Ex (z, s) (1b)

where µ (s) and ε (s) are the frequency dependent permeability and permittivity of the metamaterial
and γ its electric conductivity. The difficulty in finding the transient solution of such kind of equations
is related to the dispersive behavior of the µ (s) and ε (s) parameters which requires a special treatment.
The physics of metamaterials is strictly related to the fact that they exhibit simultaneously negative
permeability and permittivity. As pointed out before, TEM propagation through a slab can be studied
by using transmission line theory (TLT). In the case of metamaterials the per unit length parameters
of the equivalent transmission line may be frequency dependent making their transient analysis an
even more difficult task.

The development of transient analysis algorithms for lossy and dispersive transmission lines with
frequency dependent parameters has recently received much attention and efficient techniques have
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been proposed [23]-[27]. In these papers MOR techniques, based on Padé approximations, together with
the state-space formulation of the solution of the transmission line system, are used to develop reduced-
order macromodels of the transmission line (TL). More recently a new method has been presented
[28] based on half-T ladder network (HTLN) theory and special polynomials known as DFF and
DDFz [29]-[31], allows the extraction of poles and residues of the half-T ladder network approximating
the MTL which pawns the way to an efficient model order reduction technique; the method has been
more recently extended to frequency dependent per unit length parameters (FDPUL) [32] and will be
rapidly reviewed in Section III. Although the methodology illustrated in [32] can be adopted tout-court

to capture the physics of CRLH metamaterials which exhibit a dispersive behavior along with their
typical properties such as backward waves [33], a different approach is used in this work. An HTLN is
considered to model both the metamaterial slab or transmission line. Thus, in the following, we will
refer indifferently to the slab and the transmission line.

A classification of metamaterials can be done according to the kind of dispersion from which they are
characterized. We will consider two classes of metamaterials which are widely studied in the literature
and used for practical applications: CRLH and 2TDLM metamaterials.

A. CRLH metamaterials

Such kind of artificial materials have a simple equivalent circuit synthesis. In [34] the authors show
that both propagating and evanescent TM modes exist in double negative media (DNG) and equivalent
TL models have been proposed which are characterized by longitudinal capacitances and transversal
inductances. The same typology of elementary halt-T cell is adopted in [11]. For this reason in the
following it will be assumed the equivalent circuit shown in Fig. 2 which represents a possible model for
an electrically short section of a composite right/left handed transmission line (CRLH-TL), although
more complex models can be considered; sub-indexes R and L refer to right and left handed properties.

R LR CL

CR LLG

Fig. 2. Elementary half-T cell for a CRLH-TL.

Transient analysis of TLs, under the assumption that only the TEM mode propagates, is based on the
set of partial differential equations known as Telegrapher’s equations which, in Laplace domain, are
given by:

∂

∂z
V (z, s) = −

(

R′ + sL′

R +
1

s
C ′−1

L

)

I (z, s) (2a)

∂

∂z
I (z, s) = −

(

G′ + sC ′

R +
1

s
L′−1

L

)

V (z, s) (2b)

where R′ ∈ ℜ, L′

R ∈ ℜ, C ′

R ∈ ℜ, G′ ∈ ℜ, L′

L ∈ ℜ and C ′

L ∈ ℜ are frequency-independent per-unit-
length (FIPUL) parameters [35], [36]. The exponential form of Telegrapher’s equations [35], in the
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case of FIPUL parameters, reads:

[

V (ℓ, s)
−I(ℓ, s)

]

= eΨ

[

V (0, s)
I(0, s)

]

(3)

where

Ψ(s) =

(

α + sβ +
1

s
γ

)

ℓ α =

[

0 −R′

−G′ 0

]

β =

[

0 −L′

R

−C ′

R 0

]

γ =

[

0 −C ′−1

L

−L′−1

L 0

]

(4)
It is easy to verify that the equivalent circuit described in Fig. 2 is adeguate to model the basic
property of CRLH media which is the simultaneous negativity, at least within a certain frequency
range, of permittivity and permeability. This is essential to correctly model such as backward waves
and evanescent modes. For a lossless material the propagation constant is β = ω

√
µε; thus, as the

propagation constant of a TL is jβ =
√

Z ′Y ′, the following relation can be set up [11]:

−ω2µε = Z ′Y ′ (5)

Furthermore, the TL’s characteristic impedance Zc =
√

Z ′/Y ′ and the material’s intrinsic impedance

η =
√

µ/ε can be related such that

Zc = η → Z ′

Y ′
=

µ

ε
(6)

Finally, equivalent magnetic permeability and electric permittivity can be written as

µ (ω) =
Z ′

jω
= L′

R − 1

ω2C ′

L

(7)

ε (ω) =
Y ′

jω
= C ′

R − 1

ω2L′

L

(8)

which can be negative up to a given frequency determined by the values of per unit length right and
left parameters. The corresponding parameters in the Laplace domain read:

µ (s) =
Z ′

s
= L′

R +
1

s2C ′

L

(9)

ε (s) =
Y ′

s
= C ′

R +
1

s2L′

L

(10)

B. 2DTLM medium

In [8] it has been presented a different metamaterial model, the two time derivative Lorentz material
(2TDLM), which can be designed so that it allows communication signals to propagate in the medium
at speeds exceeding the speed of light in vacuum without violating causality. Such a medium is
characterized by frequency dependent parameters µ and ε:

µ (s) = µ0 [1 + χm
2TDLM (s)] (11)

ε (s) = ε0 [1 + χe
2TDLM (s)] (12)

where the Laplace domain electric and magnetic susceptibilities χ2TDLM (s) are:

χm
2TDLM (s) = χe

2TDLM (s) = χ2TDLM (s) =
ω2

pχα + sωpχβ + s2χγ

s2 + sΓ + ω2
0

(13)
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This choice of the parameters guarantees that the wave impedance in this matched 2DTLM medium
equals that from the free space thus leading to a zero reflection coefficient. Properly setting the
parameters in (13) leads to values of µ and ε smaller than their values in free space over a large range
of frequencies.

The previous model for µ and ε can be easily synthesized into equivalent circuits which look like with
those in Fig. 2. In the case of more complex dispersive behaviors (e.g. when higher order rational
representations are used for χ2TDLM (s)) it is always possible to use the HTLN model; in fact, an
equivalent HTLN can be built to model such a medium which is characterized by frequency dependent
per unit length parameters. In this case Telegrapher’s equations, in Laplace domain, are given by:

∂

∂z
V (z, s) = − (R′(s) + sL′(s)) I (z, s) (14a)

∂

∂z
I (z, s) = − (G′(s) + sC ′(s)) V (z, s) (14b)

where R′(s) ∈ ℜ, L′(s) ∈ ℜ, C ′(s) ∈ ℜ, G′(s) ∈ ℜ are frequency-dependent per-unit-length (FD-
PUL) parameters. Equations (14a-14b) can be re-written in the Laplace domain by using the same
exponential matrix function as in (3) where, in this case, Ψ reads

Ψ(s) = (α(s) + sβ(s)) l α =

[

0 −R′(s)
−G′(s) 0

]

β(s) =

[

0 −L′(s)
−C ′(s) 0

]

(15)

III. Two port representation

A. FIPUL parameters

Let’s assume that an order n half-T ladder network (HTLN) is used for approximating the TEM
modes in the metamaterial slab or MMTL; the parameters for a single cell are:

R = R′
ℓ

n
LR = L′

R

ℓ

n
CL = C ′

L

n

ℓ
(16a)

G = G′
ℓ

n
CR = C ′

R

ℓ

n
LL = L′

L

n

ℓ
(16b)

where ℓ is the thickness of the slab or the length of the transmission line. The unit cell quantities can
be defined as:

Z1 (s) =

(

R′ + sL′

R +
1

sC ′

L

)

ℓ

n
= Z ′(s)

ℓ

n
= R + sLR +

1

sCL

(17a)

Y2 (s) =

(

G′ + sC ′

R +
1

sL′

L

)

ℓ

n
= Y ′(s)

ℓ

n
= G + sCR +

1

sLL

(17b)

The standard case of RH propagation presented in [28],[32] is obtained when LL = CL = ∞.

B. FDPUL parameters

In the case of FDPUL parameters it is assumed that a suitable rational approximation of Z1 (s) and
Y2 (s) matrices is obtained by using standard fitting techniques [37], leading to the following rational
representations:

Z1 (s) ∼= Zfit,1 (s) = R0 + sL0 +

P1
∑

m=1

R1

s − pm,1

(18a)

Y2 (s) ∼= Yfit,2 (s) = G0 + sC0 +

P2
∑

m=1

R2

s − pm,2

(18b)
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where P1 and P2 represent the number of poles used in the rational approximation.
The zero-pole form is better suited for algebraic manipulations and polynomials convolutions [38]; for
matrices Z1 and Y2 it reads:

Z1 (s) ∼= b1s
P1+1 + b2s

P1s + · · · + bP1
s + bP1+1

a1sP1 + a2sP1−1 + · · · + aP1
s + aP1+1

=
Bp(s)

Ap(s)
(19a)

Y2 (s) ∼= d1s
P2+1 + d2s

P2s + · · · + dP2
s + dP2+1

c1sP2 + c2sP2−1 + · · · + cP2
s + cP2+1

=
Dp(s)

Cp(s)
(19b)

where Bp(s) and Dp(s) are positive real polynomial and Ap(s) and Cp(s) are strictly Hurwitz polyno-
mials. A strict Hurwitz polynomial has its roots only in the left half-plane. Hence, the poles of the
rational approximations (19) are strictly in the left half-plane.

C. Y matrix representation

In [30] it has been shown that a half-T ladder network can be analytically characterized in terms
of Chebyshev polynomials. The polynomial based approach presented in [30] and then extended to
transmission lines in [28],[32],[39] is here briefly summarized for the sake of clarity. To this aim let’s
define the half-T cell factor K(s) as:

K (s) = Z1 (s) Y2 (s) (20)

In [30] it was shown that all the electrical characteristics of a HTLN can be expressed in terms of two
polynomials (namely DFF and DFFz) depending on the cell matrix factor K (s):

P n
b (K(s)) =

n
∑

j=0

bj,nK
j(s) DFF polynomial of order n (21)

P n
c (K(s)) =

n
∑

j=0

cj,nK
j+1(s) DFFz polynomial of order n (22)

where coefficients bj,n and cj,n can be computed analytically as:

bi,j =

(

i + j
j − i

)

(23a)

ci,j =

(

i + j + 1
j − i

)

(23b)

Two port A, B, C and D parameters can be expressed in terms of DFF and DFFz polynomials as:

A (s) =
n
∑

j=0

bj,nK
j(s) = P n

b (K(s)) (24a)

B (s) =

(

n
∑

j=0

cj,nK
j+1(s)

)

· Y −1

2 (s) = P n
c (K(s)) · Y −1

2 (s) (24b)

C (s) = Z−1

1 (s) ·
(

n
∑

j=0

cj,nK
j+1(s)

)

= Z−1

1 (s) · P n
c (K(s)) (24c)

D (s) =
n−1
∑

j=0

bj,n−1K
j(s)T = P n−1

b (K(s))T (24d)
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The knowledge of the ABCD representation allows to obtain any two port matrix representation.
In the case of linear and isotropic media the symmetry and reciprocity properties hold thus ensuring
that D = AT , B = BT , C = CT and that det (AD − BC) = 1.

The Y matrix entries can be evaluated by computing Y11 and Y21 in terms of ABCD parameters and
then by enforcing the reciprocity and symmetry of the transmission line.

Y11 = DB−1 = P n−1

b (K(s)) ·
(

P n
c (K(s)) · Y −1

2 (s)
)

−1
(25a)

Y21 = −B−1 = −
(

P n
c (K(s)) · Y −1

2 (s)
)

−1
(25b)

Reciprocity and symmetry properties of the transmission line are guaranteed by the conditions:

Y12 = Y21 (26a)

Y22 = Y11 (26b)

Polynomials P n−1

b (K(s)) and P n
c (K(s)) can be factored by using the roots presented in [28]:

P n−1

b (K(s)) =
n−1
∏

j=1

(K(s) − uj,n−1U) (27a)

P n
c (K(s)) =

n−1
∏

j=1

(K(s) − vj,n−1U) · K (27b)

where U is the unitary matrix. Considering that K(s) ·Y −1

2 (s) = Z1 (s), the previous expressions (25a)
and (25b) can be factored as:

Y11 = Y22 =
n−1
∏

j=1

(K (s) − uj,n−1U) ·
[

n−1
∏

j=1

(K (s) − vj,n−1U) · Z1 (s)

]

−1

(28a)

Y21 = Y12 = −
[

n−1
∏

j=1

(K (s) − vj,n−1U) · Z1 (s)

]

−1

(28b)

where roots uj,n−1 and vj,n−1 are given by [29]:

uj,n−1 = −4sin2

(

(2j − 1)

(2n − 1)

π

2

)

j = 1 · · ·n − 1 (29a)

vj,n−1 = −4sin2

(

jπ

2n

)

j = 1 · · ·n − 1 (29b)

It is to be pointed out that the frequency dependence of per unit length parameters is completely
described by K(s) function and that the roots uj,n−1 and vj,n−1 of P n−1

b and P n
c polynomials are

frequency independent [30].

IV. Computation of poles and residues of MMTLs

The computation of poles and corresponding residues of transmission lines with frequency dependent
per-unit length parameters requires solving the following equation:

[

n−1
∏

j=1

(K (s) − vj,n−1) · Z1 (s)

]

= 0 (30)

In the following we will focus on CRLH-TLs which are characterized by frequency independent
parameters although their nature is complicated by the presence of left-handed parameters (C ′

L and
L′

L) which causes many poles to be located close to zero. The derivation leads to low order algebraic
equations and allows exploiting important properties of CRLH-TLs.
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A. Approximate poles of CRLH MMTLs

Poles of Y matrix functions are obtained as the zeros of the following equation:

[

n−1
∏

j=1

(K (s) − vj,n−1) · Z1 (s)

]

= 0 (31)

thus allowing to solve n equations separately.

The poles of the HTLN can be identified as:
1. zeros of polynomial Z1 (s)
2. zeros of polynomial Z1 (s) Y2 (s) − vj,n−1, for j = 1 · · ·n − 1

A.1 Poles 1

Poles of the first type satisfy the equation:

s2LRCL + sCLR + 1 = 0 (32)

A.2 Poles 2

Poles of the second type are obtained as the solutions of the equation:

Z1 (s) Y2 (s) − vj,n−1 = 0, for j = 1 · · ·n − 1 (33)

It can be re-written in terms of parameters of the elementary CRLH cell as:
(

RG +
LR

LL

+
CR

CL

)

+s (RCR + GLR)+s2LRCR+
1

s

(

R

CL

+
G

CL

)

+
1

s2

1

LLCL

−vj,n−1 = 0, for j = 1 · · ·n−1

(34)
In the general case, for each root vj,n−1, the following equation is to be solved:

a + bs + cs2 +
d

s
+

e

s2
= 0 (35)

where

a = RG +
LR

LL

+
CR

CL

− vj,n−1 (36a)

b = RCR + GLR (36b)

c = LRCR (36c)

d =
R

CL

+
G

CL

(36d)

e =
1

LLCL

(36e)

The roots finally satisfy the equation

as2 + bs3 + cs4 + ds + e = 0 (37)

Thus, for each root vj,n−1, j = 1 · · ·n − 1, four different poles are generated in the CRLH case, while
in the RH case only two poles corresponds to each root vj,n−1 [39]. It is also worth considering the
lossless case R = G = 0. Coefficients b and d in (36) are zero and the equation to be solved reduces to

as2 + cs4 + e = 0 (38)
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whose roots come in pair. As the poles of the HTLN can be computed by solving low order algebraic
equations, they are continuously depending on the physical parameters (circuit parameters, length
of the MMTL). This allows to claim that parameterized reduced order models corresponding to a
variation of such parameters with respect to a fixed point of the parameter space can be generated
just by perturbing the model for that point.

B. Computation of residues of Y matrix

Residues of pole pi can be obtained as:

R11,i = R22,i =

[(

n−1
∏

j=1

(K (s) − vj,n−1U)

)

· Z1 (s)

]

/

/ det

[(

n−1
∏

j=1

(K (s) − vj,n−1U)

)

· Z1 (s)

]

·
n−1
∏

j=1

(K (s) − uj,n−1U) (s − pi)|s=pi
(39)

R12,i = R21,i = −
[(

n−1
∏

j=1

(K (s) − vj,n−1U)

)

· Z1 (s)

]

/

/ det

[(

n−1
∏

j=1

(K (s) − vj,n−1U)

)

· Z1 (s)

]

· (s − pi)|s=pi
(40)

for i = 1 · · ·PY , being PY the total number of poles of the Y matrix entries.

V. Model Order Reduction

In Section III it has been shown that the proposed approach allows to provide a rational approxi-
mation of Y matrix entries (25) in terms of residues and poles whose computation is straightforward.
The development of a MOR technique requires the determination of the dominant poles of the sys-
tem, which significantly influence the time as well as the frequency characteristics of the system under
analysis [23]. In the recent past moment-matching techniques have been widely adopted to extract
the dominant poles of a given system [40]-[43]. It is known that such techniques are extremely time
consuming as they require computing and matching moments; on the contrary the proposed method
is extremely fast in extracting the poles among which the dominant ones have to be selected.

In [32] it has been presented a model order reduction approach which is based on a two step process:
1) poles within a given bandwidth kωmax (where k > 1 and ωmax corresponds to the required bandwidth
(e.g. the angular frequency beyond which the power of the excitation is negligible) are selected; 2)
as the corresponding residues are known, only those that significantly impact the frequency and time
responses are retained.

When dealing with metamaterials the co-existence of both longitudinal and transversal resonators
(see Fig. 2) cause many poles to be located near zero; the magnitude of the corresponding residues
is ordinarily small if compared to those of other poles; nevertheless they are important to correctly
model the physical behavior in the low frequency range. Furthermore, it has been observed that poles
are not spread over the entire frequency axis but tend to be concentrated in bandwidths which may be
also far away one from each other. This fact causes the typical pass-band and stop band behavior of
metamaterials frequency response. This suggests to adopt a frequency hopping poles selection within
each bandwidth.
The procedure can be formalized by the following algorithm:
• the maximum angular frequency ωMOR = kωmax is selected;
• the bandwidth [−ωMOR, ωMOR] is subdivided in sub-bands according to a suitable algorithm;
• dominant poles selection is performed within each band.

87



Once the dominant poles have been selected and the corresponding residues computed, a macromodel
can be generated [28] by using standard techniques.

A. Macromodel synthesis

Once the reduced order poles-residues representation of functions Y11, Y12, Y21 and Y22 is obtained a
macromodel can be easily derived by generating the ABCD state-space domain representation leading
to a set of first order differential equations which reads:

d

dt
x (t) = Ax (t) + Bu (t)

y (t) = Cx (t) + Du (t) (41)

where A ∈ Rp×p, B ∈ Rp×n, C ∈ Rn×p, D ∈ Rn×n, p is the number of states and n the order of
the proposed model. Obviously, as the admittance matrix representation is used, the input vector
u (t) and output vector y (t) correspond to port voltages v (t) or electric fields Ex(t) and currents
i (t) or magnetic fields Hy(t), respectively. Since a model reduction has already been applied, a
standard minimal-order realization can be efficiently used [44]-[47]. The set of first order differential
equations (41) are completed with the terminal conditions and solved numerically.

VI. Parameterized macromodels for MMTLs

The design of systems and devices based on MMTLs usually requires optimization procedures which
call for a fast evaluation of MMTLs performances for varying physical and geometrical parameters.
The proposed method is well suited to this aim. In fact it allows an easy computation of poles and
residues of the MMTLs by solving low order algebraic equations.

Let’s assume that the MMTL depends on a set of physical and/or geometrical parameters λ1, λ2, · · · , λn.
Telegrapher’s equations, in the case of CRLH MMTL, can be expressed as

∂

∂z
V (z, s; λ) = −

(

R′(s; λ) + sL′

R(s; λ) +
1

s
C ′

L(s; λ)−1

)

I (z, s; λ) (42a)

∂

∂z
I (z, s; λ) = −

(

G′(s; λ) + sC ′

R(s; λ) +
1

s
L′

L(s; λ)−1

)

V (z, s; λ) (42b)

The possibility to compute poles and residues of the Y matrix by solving low order algebraic equations
and to select only the dominant ones is exploited for the automatic generation of reduced order
parameterized models. The half-T cell factor becomes:

K (s; λ) = Z1 (s; λ) Y2 (s; λ) (43)

The poles of the parameterized Y matrix functions are obtained as the zeros of the following equation:
[

n−1
∏

j=1

(K (s; λ) − vj,n−1) · Z1 (s; λ)

]

= 0 (44)

which implies that, as pointed before, separate algebraic equations have to be solved. As described
in Section V only the dominant poles are retained to generate the reduced order model. Usually, per
unit length parameters are smooth functions of geometrical parameters. As a consequence, also the
solutions of (43) changes continuously with respect to the parameters. Location of dominant poles
in the complex plane can be monitored at the design stage such that special performances of the
MMTL can be obtained. It is worth mentioning that the ease computation of poles by solving low
order algebraic equations makes this procedure to be preferred to any interpolation scheme to recover
poles from unit-cell parameters. The generation of the macromodel corresponding to a generic set of
unit-cell parameters in the parameter space requires the efficient computation of residues; it can be
done by means of (39) or, as an alternative, by multidimensional linear interpolation.
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VII. Numerical results

A. Unbalanced CRLH-TL

As a first example it has been considered the lossless CRLH-TL described in [11], with global
parameters R = 10−3 Ω, LR = 2.45 nH, CL = 0.68 pF, G = 10−3 S, CR = 0.5 pF and LL = 3.38 nH
and a length l = 6.1 mm. Fig. 3 shows the dispersion diagram for such material along with the linear
dispersive curve and that of the balanced case (LRCL = LLCR).
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Fig. 3. Dispersion diagram for the CRLH-TL of example VII-A.

The effective permeability and permittivity (7) have been computed exhibiting simultaneous negative
values up to about 4 GHz; their magnitude is shown in Fig. 4.

The ABCD parameters have been computed in the frequency range 0-50 GHz by using the transmis-
sion line theory (TLT), the half-T ladder network (HTLN) and the polynomial representation (DFF).
Fig. 5 shows the comparison of coefficients A, B, C and D as evaluated by the three techniques. As
clearly seen the results are in a good agreement over the entire frequency range. As pointed out in
Section V, the higher complexity of the unit cell of CRLH-TLs, with respect to the one of standard
RH-TLs, causes the low frequency behavior to be much more complex, thus requiring great attention
in applying the model order reduction.
Fig. 6 shows the poles of the Y matrix entries in the complex plane. As seen, all the poles lie in the
left-half complex plane thus strictly ensuring the stability of the model.
The co-existence of two resonators in the unit cell makes the low frequency and high frequency behaviors
not well separated in the sense that there are low frequencies resonances (below 200 MHz) due to
the presence of the longitudinal resonator and the interaction between the same resonator and the
transversal one. This fact has the consequence that a large number of poles is located near zero, as
shown in Fig. 7.

The accuracy of transient broadband models of metamaterials is significantly dependent on such kind
of poles as they determines the behavior in the low frequency range. The proposed MOR technique
allows to select the most important low frequency poles thus preserving accuracy also below 200 MHz.
Fig. 8 shows the selected poles providing excellent accuracy up to 50 GHz. Magnitude and phase of
Y12 are shown in Fig. 9. The number of poles of the original model is 238 and that of the reduced one
is 136. If only the criterion based on the magnitude of residues is used to select dominant poles, the
number of poles decreases to 12 but the accuracy is lost below 100 MHz, as shown in Fig. 10

The importance of low frequency poles is then investigated looking at the magnitude of the corre-
sponding residues for the same example VII-A. Fig. 11 shows the magnitude and phase spectra of
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Fig. 4. Effective permeability (top) and permittivity (bottom) for example VII-A.

the Y12 function as obtained by considering the HTLN network (HTLN) and the reduced order model
(MOR); if only the residue magnitude criterion is used in selecting poles, all the low frequency poles
are excluded thus leading to loss of accuracy, as seen in Fig. 10. In this case a threshold thresh = 1/100
has been used. It is clearly recognized that neglecting poles with small residues in the low frequency
range results into a significant error in modeling Y12 in the same frequency band.

The MMTL has been excited by a voltage source vs(t) whose time behavior is the second time
derivative of a gaussian pulse; Fig. 12 shows the waveform along with the corresponding magnitude
spectrum.

The output voltage is plotted in Fig. 13 as obtained by the HTLN model via IFFT by using all
the poles (Reference) and by generating the reduced order macromodel and integrating the differential
equation by means of the Gear-Shichman scheme (MOR-GE-SH) [48]. The two curves are practically
overlapped. It is also worth to notice that causality is strictly preserved.

B. 2TDLM metamaterial

In the second test the 2TDLM metamaterial described in II-B has been considered. Such a medium
is characterized by negative values of permeability and permittivity over a wide frequency range. Fig.
1 shows the real and imaginary part of the 2TDLM susceptibility with χα = 1.0, χβ = 1.0 × 10−5,
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Fig. 5. Transmission coefficients ABCD for example VII-A. Upper left: A; upper right: B; lower right: C; lower right:
D.

χγ = −0.5, Γ = 1.0 × 10−1ω0 and ωp = ω0 = 2πf0 for f0 = 1 GHz. In [8] the propagation through
a slab of such a metamaterial is computed by using a specialized 1-D FDTD code involving, besides
electric and magnetic fields, polarization and magnetization fields as well to take into account the
frequency dependence of equivalent µ(s) and ε(s). The difficulty in carrying out a FDTD simulation
involving dispersive media relies into the existence of many wave speeds in the system and, thus,
Courant-Friedrichs-Levy (CFL) condition must be set carefully to achieve a stable algorithm. In the
HTLN model proposed in this work stability is automatically guaranteed provided that a stable and
passive model for the unit cell longitudinal impedance Z1(s) and transversal admittance Y2(s) are used.
2TDLM elementary cell is surely stable as it can be synthesized as a CRLH cell; as a consequence, the
overall equivalent circuit is stable as well.

In order to reduce the effect of absorption near resonance, the parameters of the 2TDLM medium
have been assumed as [8]: χα = 1.0, χβ = 1.0×10−5, χγ = −0.5, Γ = 1.0×10−5ω0 and ωp = ω0 = 2πf0

for f0 = 0.01 GHz. As pointed out in [8], such parameter setting allows to preserve the shape of the
single-cycle pulse having a peak frequency f00 = 1 GHz which should travel without distortion at the
speed 2 c0 through the slab.

A 20 cm long MMTL has been considered. The MOR technique has been applied leading to a
reduced set of poles well describing the behavior of the MMTL in the frequency range 0-30 GHz. The
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Fig. 7. Zoom of poles around zero for example VII-A.

initial set of 357 poles has been reduced to only 53. Fig. 15 shows the magnitude spectra of Y11 and Y21

as evaluated by the transmission line theory (TLT) and the proposed reduced order model (MOR); as
seen, a very good accuracy is achieved over the entire frequency range. In order to check the accuracy
of the reduced order model the Feature Selective Validation procedure has been applied. The Feature
Selective Validation (FSV) techniques aims to perform the comparison of different datasets by mimic
the behavior of a group of experienced engineers when they perform such a comparison by means of
a visual approach [49]-[51]. The FSV method is based on the decomposition of the original data into
two parts: amplitude (trend/envelope) data and feature data. The former component accounts for
the slowly varying data across the data set and the latter accounts for the sharp peaks and troughs
often found in CEM data. The numerical figures of merit obtained as output from the FSV procedure
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can be converted in a natural language descriptor (excellent, very good, good, fair, poor, very poor
comparison). The essential meaning of the FSV figures of merit are: ADM (Amplitude Difference
Measure), FDM (Feature Difference Measure) and GDM (Global Difference Measure). ADM and
FDM can be combined by using a Grade-Spread chart which gives a numerical value to the Grade by
counting how many categories are required (starting from Excellent) for the cumulative total of the
histogram to exceed a given value. A numerical value is given to the Spread by counting how many
adjacent categories (starting from the largest) are required to cumulatively exceed a given value.

The models obtained considering all the poles and only the dominant ones have been compared over
the frequency range 0-30 GHz. Fig. 16 shows the FSV comparison of the magnitude of Y12 matrix
entry. As seen, all the figures of merit confirm that the reduced order model perfectly captures the
physics of the system and provides a very good approximation over the entire frequency band 0-30
GHz.
A single-cycle pulse for the source of unit amplitude is used to excite the material:

f(t) =







√
7 (7/6)3

(

t−Tp/2

Tp/2

)

[

1 −
(

t−Tp/2

Tp/2

)2
]3

for 0 ≤ t ≤ Tp

0 for t > Tp

(45)

where Tp is the length of time the pulse has a non-zero value; in the simulation it has been assumed
Tp = 1 ns.
Fig. 17 shows the single cycle pulse used as source of the MMTL in example VII-B along with its
frequency magnitude spectrum.

Fig. 18 shows the voltages of the 2DTLM transmission line as obtained by using both the transmis-
sion line theory via inverse Fourier Transform (TLT-IFFT) and the proposed macromodel after the
pole pruning has been performed (MOR-Macromodel).

It is worth of notice that, as expected, the input pulse propagates through the MMTL, at speed 2
c0, with almost no attenuation. Also, it is to be observed that the proposed model strictly preserves
causality.
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Fig. 9. Model order reduction for example VII-A. Top: magnitude of Y12, bottom: phase of Y12.

C. Parameterized CRLH-TL

As last example a macromodel has been generated for a MMTL for several different values of LL.
Fig. 19 shows the location of poles in the left half complex plane for increasing values of LL and
LR = 4.7 nH, CR = 0.1 pF, CL = 9.6 pF, R = 1 mΩ, G = 1 mS, l = 120 mils.
It is clearly seen that all the poles have a strict negative real part, thus ensuring the stability of the
macromodel, and that, increasing the value of LL, results into a reduction of the imaginary part of
complex poles.
The transmission line has been modeled as a 20-th order half-T ladder network, with 78 poles; the
reduced order model has been generated to be accurate within the 0-30 GHz range; only four poles
have been selected as dominant ones. Thus, extremely simplified state-space models are generated, at
a reduced cost, for different values of LL. Fig. 20 shows the output voltage of the CRLH-TL excited
by a normalized second order derivative of a gaussian pulse.
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Fig. 10. Not accurate model order reduction in the low frequency range for example VII-A. Top: magnitude of Y12,
bottom: phase of Y12.

VIII. Conclusions

A general methodology for the transient analysis of MMTLs has been presented. A rational ap-
proximation of the metamaterial transmission line is obtained by extracting the poles of the Y matrix
representation of the half-T ladder network describing the MMTL; pole pruning allows the generation
of a reduced order macromodel which has been used for carrying out accurate transient analysis of
MMTLs. The proposed methodology can be applied to any type of metamaterial and/or lossy and
dispersive medium being based on a polynomial closed-form representation of half-T ladder network
which is totally independent on the nature of materials; moreover it can be used as a building block
for modeling dispersive materials in the framework of TLM method. The robustness and accuracy of
the method has been confirmed by the numerical results; in particular typical metamaterial phenom-
ena such as superluminal speeds of propagation over a large band of frequencies and well separated
stop/pass bands have been successfully modeled.
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Fig. 11. Magnitude of residues for example VII-A. Top: including all the low frequency poles; bottom: excluding low
frequency poles with residues below the fixed threshold.
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Fig. 18. Comparison of voltages at the input and output ports of a 2TDLM transmission line for example VII-B.
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Fig. 19. Poles location in the complex plane for increasing values of LL (example VII-C).
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