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At the University of York, research is being conducted to determine possible methods for 
quantifying the errors and uncertainties that exist in Computational Electromagnetics 
(CEM) simulations. Standards already exist that require an estimate of the uncertainty in 
measurements obtained from laboratory Electromagnetic Compatibility (EMC) 
measurements [1]. Currently no requirement exists for the measurements obtained by 
CEM simulations. Such error and uncertainty analyses would allow different models to 
be compared for accuracy. The analyses would help determine quantitatively whether a 
computationally cheaper, less accurate model, is accurate enough for purpose. 
Knowledge of the error and uncertainty in the output of a simulation would also provide a 
quantitative level of confidence in the results. 
 
The ‘Guide to the Expression of Uncertainty in Measurement’ [2] provides a framework 
for quantifying uncertainties in measurements. It is currently the internationally accepted 
master document for quantifying uncertainties [3]. This guide describes the error in a 
measured value as the difference between the measured value and the true value of the 
measurand [2]. It describes the uncertainty in the measured value as the quantification of 
the doubt about the measured value [2].  These descriptions of error and uncertainty are 
generally applicable to all types of measurement. It is possible to make more explicit 
definitions when considering the errors and uncertainties in computer modelling. 
 
Currently there has been more work on error and uncertainty analyses in Computational 
Fluid Dynamics (CFD) [4] - [7] than in CEM, and so this discipline is chosen to provide a 
formal definition of the errors and uncertainties in computer models. The following 
definitions come from the American Institute of Aeronautics and Astronautics (AIAA) 
report on the verification and validation of CFD simulations [5]. 
 
Error: A recognizable deficiency in any phase or activity of modelling and simulation that 
is not due to lack of knowledge. 
 
Errors are introduced into our models via the approximations and assumptions that are 
made in forming the model. Since these approximations and assumptions are generally 
known, the errors they produce can be analysed [4]. One type of error in conventional 
FDTD is the staircasing error that arises from modelling a curved surface on a rectangular 
grid. The modelled surface is known to be inaccurate and this inaccuracy will manifest 
itself as an error in the final measured value. 
 
Uncertainty: A potential deficiency in any phase or activity of the modelling process that 
is due to lack of knowledge. 
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Uncertainties can be further categorized into two groups. The first is the uncertainty in 
how well the mathematical model represents the true behaviour of the real physical 
system [7]. This uncertainty is very difficult to determine [7]. Electromagnetism is 
mathematically represented by Maxwell’s Equations, which have been verified by many 
people over many years. Thus it may be assumed that the model uncertainty can be 
ignored in CEM. The second type of uncertainty is the uncertainty that arises due to a 
lack of precise input parameter data [7]. If there are uncertainties in the input parameter 
data, then there will be uncertainties in the output. This type of uncertainty is often 
known as parameter uncertainty [7].  
 
Determining Errors 
 
In order to determine the errors that exist in a model, an error taxonomy must first be 
formed. This taxonomy is a list of all the possible sources of error that may exist in the 
simulation. The errors in this list may be quantified by considering the approximations 
and/or assumptions that have caused them. This is not a trivial task and may be 
computationally expensive.  
 
In FDTD, one known source of error is the discretisation of space and time. This can be 
analysed by comparing the results of one simulation with the results of the same 
simulation, performed on a finer mesh. As the mesh size decreases so does the error in 
the simulation. Thus an estimate of the error in the less accurate simulation can be formed 
by comparing the results of this simulation with that of the more accurate simulation. 
 
Determining Parameter Uncertainties 
 
Uncertainty analyses are either possibilistic or probabilistic. The work at York 
concentrates on the probabilistic methods. Probabilistic methods use the known 
Probability Density Functions (PDFs) of the input parameters to estimate the mean output 
value, and the combined uncertainty in this value. Three methods that are currently being 
investigated are the: Method of Moments (MOM), Monte Carlo Method (MCM) and 
Polynomial Chaos Method (PCM) [8]-[10]. 
 
The MOM is similar to the method outlined in UKAS [1] for the determination of 
uncertainty in practical EMC measurements. It is the method outlined in the ‘Guide to the 
Expression of Uncertainty in Measurement’ [2], for the propagation of uncertainties 
through a model. This method first calculates the uncertainty in the output due to each of 
the individual uncertain parameters; these individual output uncertainties are then 
combined to form the combined output uncertainty. It seems that this method is 
computationally the cheapest, but not the most accurate. 
 
The MCM involves taking multiple samples of the input parameters from their respective 
PDFs, performing multiple simulations using these samples, and then combining the 
multiple outputs to form an output PDF. The combined output uncertainty is taken to be 
the standard deviation of this PDF. This method is much more expensive 
computationally, but provides the most rigorous analysis of the uncertainty. 
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In the PCM, the solution is assumed to be the expansion of certain orthogonal basis 
polynomials, which represent the individual input uncertainties. These polynomials are 
propagated through the model and the combined uncertainty is found from the outputs. 
This method has been found to predict uncertainties that agree with those predicted by the 
more rigorous MCM. The PCM is slower than the MOM but much faster than the MCM. 
The memory requirements for the PCM are much bigger than both the other methods 
described here. This may limit its applicability to more complex simulations. The PCM 
has already been applied to one area of CEM [11]. Through this work it was shown that 
the PCM can accurately estimate uncertainties much more quickly than the MCM for a 
number of applications. 
 
All of the above uncertainty analyses require extra computational expense. The 
determination of uncertainty in laboratory measurements also requires extra work. At the 
University of York an uncertainty analysis method is currently being sought which will 
require minimal computational expense. This method will use a prior knowledge based 
expert system, informed by economic use of the techniques described above, applied to 
the current problem. 
 
Conclusion 
 
Error and uncertainty analyses would help us quantitatively compare the accuracy of 
different models in CEM. The analyses would also provide us with a quantitative level of 
confidence in the results obtained from these models. The formulation of such analyses is 
not a trivial task. Errors may be determined by using the results of more accurate 
simulations. Uncertainties can be determined in many different ways: some methods are 
more accurate, but other methods are computationally cheaper. All the uncertainty 
analyses described here require significant extra computational expense; the laboratory 
derivation of experimental uncertainty also requires a significant expense. Work is 
currently being carried out to determine whether it is possible to estimate the combined 
uncertainty in a simulation with only a small amount of extra computational expense. 
This work is based on using the techniques described above to update a prior knowledge 
based expert system. 
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