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Abstract—We consider here fundamental computer-basedmod-
els for the multimode behavior of single-layer helical air-core RF
inductors at frequencies up to approximately 1.5 GHz. Four spe-
cific CAEmodels are presented, with discussion of theirmerits and
limitations. This study is one in a series, motivated by the desire
to improve practical design and analysis of efficient antenna tun-
ing units, power amplifier tank circuits, and other RF applications
employing helical air-core RF inductors.

Index Terms—Antenna tuning units, RF inductors, inductor
CAE, electronic component models.

I. INTRODUCTION

Antenna design projects often include the design of a com-
panion antenna tuning unit (ATU) to match the transmitter and
transmission line characteristic impedance to the impedance(s)
presented at the antenna element feed point(s). For moderate to
high operating power levels at frequencies from LF (30 - 300
kHz) up into the UHF (300 MHz - 3 GHz) region, the fun-
damental ATU subsystems to achieve phase and power division
control are networks comprising three reactive components. RF
inductors and capacitors are typically configured in Tee or Pi
circuits, and radio system engineers generally are aware how
they can scientifically determine three L and C values that will
match an arbitrary (finite) complex load impedance ZL to a de-
sired real input impedance Z0 at a specific design frequency,
and simultaneously provide a desired phase shift in the process.
RF power amplifiers similarly have tuned (tank) circuits involv-
ing both inductors and capacitors. ATU and amplifier tank cir-
cuit losses are always in the background consciousness of de-
sign engineers, and losses may be significant, but typical cir-
cumstance is that the designer lacks the computer-aided engi-
neering (CAE) tools for an accurate and reliable analysis of the
network losses. This article is the first in a series, which will
culminate in the computer-based tools to thoroughly character-
ize such networks, including losses, in practical applications.
Achievement of the objective of useful CAE software is an

evolutionary project which, of course, is predicated on begin-
ning from correct fundamental principles and appropriate engi-
neering models. The starting point, therefore, is an examination
and modeling of the essential characteristics and behavior of the
helical air coils and variable plate capacitors typically found in
ATUs and tank circuits. This paper reports some highlight re-
sults from first studying RF inductor basics.
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II. ILLUSTRATIVE CASE STUDY
To enable quantitative treatment of RF inductor behavior, a

specific (but typical) helical air coil is discussed. To facilitate
some comparisons to [1], we here adopt a coil of the same di-
mensions, namely, 12.9 single-layer turns of 18-gauge copper
wire with the following nominal dimensions: an inside solenoid
radius of ai = 0.248 inches, mean radius of the solenoid
a = 0.268 inches, axial length c = 0.89 inches, and pitch
Ψ = 0.041. When the inductor is horizontally mounted above
a ground plate, the S21 transmission characterization, as mea-
sured in manual mode by a Hewlett-Packard 8505A vector net-
work analyzer, is shown in Figure 1. This data closely emulates
that given in [1], with individual data points marked by small
circles. We parenthetically note that excellent interpolation of
values between the measurement points is available in MAT-
LAB [2] by use of the interp1 function with the ‘pchip’ (piece-
wise cubic Hermite interpolation) option. The interp1 function
was utilized in generation of the solid line plots in Figure 1.

Fig. 1. S21 of horizontally mounted RF inductor.

Figure 1 straightaway shows a behavior pattern that may be
surprising to some RF design engineers. The “classic model”
for a real-world RF inductor, which is the subject of the next
section, clearly indicates that, at sufficiently high frequency,
the device will be self-resonant. RF circuit designers are well-
aware of the reality of that resonance effect, and carefully avoid
it in requirements such as, for example, an RF choke in the bias
circuit of a high-power tube amplifier. The surprise, at least for
some, is that real RF inductors exhibit not just one, but multiple
resonances, as frequency is increased.
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Experimental characterization, illustrated by Figure 1, is
more useful as a guide to appropriate models for RF inductors
than as a routine design aid. Engineers are inclined by their
training to develop and work with models, and justifiably so,
because accurate and reliable models may be used and extended
to new and various circumstances, versus the rigid limitation
that measured data is obtained under constrained and quite spe-
cific conditions. In short, good engineering models offer a high
degree of flexibility and convenience. In the following sections,
we will discuss a series of basic models that are all amenable to
computer implementation as a CAE tool. Through application
to the same "case study" inductor, the objective is for the reader
to acquire a good sense of the relative power and limitations of
each model.

III. CLASSIC MODEL
The so-called “classic” model, widely depicted in undergrad-

uate electrical engineering textbooks on circuit theory and basic
electronics, is shown in Figure 2. Rhea [1] is a good reference
for a summary review discussion of the classic model. From
only a casual consideration of Figure 2, one can quickly and
correctly conclude that this will be a low-frequency model of
limited general utility, and so we restrict our discussion of the
classic model here.

Fig. 2. Classic model of an RF inductor.

Wheeler [3] developed an almost exact low-frequency (i.e.,
quasi-static) classic inductor model that requires the calcula-
tion of complete elliptic integrals. An approximation formula
which does not require elliptic integrals, but is accurate at low
frequencies to approximately 1% for coil lengths greater than
0.67 times the radius, is

L =
n2a2

9a+ 10c
' 1 µH (1)

with n = 12.9 T, a = 0.268 inch, and c = 0.890 inch. Med-
hurst [4] gives the capacitance relationship

C (in pF) = H ×D =⇒ C ' 0.65 pF (2)

where D = 2a (in cm) and H is a function of
c

2a
, the length-

to-diameter ratio. Please see [4] or Table 1 of [1] for how H is
obtained from

c

2a
.

c

2a
=

0.89

2× 0.268 = 1.6604 =⇒ H = 0.48 (3)

The estimation of R starts with the relation for unloaded Q [4]

Qu = 0.15aϕ
p
f0 (4)

with f0 in units of Hz and ϕ is determined from its relation to
c

2a
and

dw
s
(the fraction of axial length c occupied by wire) in

accordace with Table 2 of [1]. Here,
dw
s
= 0.58 for 18-gauge

copper wire, giving ϕ ' 0.72 and

Qu = 0.15× (0.268× 0.0254)× 0.72×
p
f0 (5)

and, finally,

R =
ωL

Qu
=
2πf0L

Qu
. (6)

Since R is a function of frequency, it is calculated as a vector
inside the MATLAB modeling program.
To enable the classic model to show its best possible predic-

tions in comparison to the measured data, two low-frequency
ranges were selected and, also, the MATLAB modeling
program performed a least squares optimization of the nominal
numerical values of R,L, and C via the function lsqcurvefit
provided in the MATLAB package. The graphical result for
|S21| for the restricted frequency range 1 to 50 MHz (in steps
of 1 MHz) is in Figure 3, where it is evident that the optimized
parameter values of L = 1.0619 µH and C = 0.65349 pF
improve on the original model fit. The low-frequency (static)
classic model is moderately successful in predicting the actual
experimental data up to a frequency of 50 MHz.

Fig. 3. Classic model vs measured, 1-50 MHz.

However, when we just extend the frequency range of
interest to 1 - 300 MHz, still far from the full range of 1 - 1300
MHz, the classic model already exhibits breakdown (see Figure
4). It is immediately clear that this elementary model is not
even a candidate for the multimode reality shown in Figure 1.
It is visually difficult to discern if the optimized classic model
is actually better than the original classic model in Figure 4, so
we introduce a quantitative measure of error at this point.
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Fig. 4. Classic model vs measured, 1-300 MHz.

IV. QUANTIFICATION OF MODEL ERROR
In this paper, the measured data is taken as the standard ref-

erence, and the various model predictions are then compared
to the experimental data. The measure of model discrepancy is
then the “SSE” (sum of the errors squared). For all modeling
cases reported here, the frequency step is 1 MHz. Therefore,
comparing the results for two different models with 1-300 MHz
results presented is direct and immediate, without the need for
additional manipulation or interpretation. When the frequency
span is different, some interpretation is necessary. To facilitate
comparisons in those instances, the total SSE is divided by the
number of points at which the composite calculation was made,
yielding an SSEavg value per point.
The observant reader will quickly note that the original mea-

surement points depicted in Figure 1 are not in 1 MHz steps,
and wish to know the procedure applied in the event a frequency
for analysis does not exactly match one of the original measure-
ment frequencies. In those cases, the standard value for model
accuracy comparison is determined by interpolation between
the nearest original measured data points in MATLAB using the
interp1 function with ‘pchip’ option, as previously discussed.
Using this error quantification technique, the 1-50 MHz clas-

sic model result of Figure 3 has a |S21| error of SSE = 136.83
(SSEavg = 2.74 per pont) for the original component values,
and SSE = 66.92 (SSEavg = 1.34 per point) for the least
squares optimized component values. For the 1-300 MHz clas-
sic model result of Figure 4, the original values give SSE =
24, 685 (SSEavg = 82.3 per point) and the optimized compo-
nents yield modeling error SSE = 22, 451.(SSEavg = 74.8
per point) Hence, the optimized classic model curve in Figure
4 really is a better fit to the measured curve than that of the
original classic model.

V. TRANSMISSION LINE MODEL
A new multimode model for the helical air-core RF inductor

was proposed in 1997 in [1]. In this model, the inductor is

replaced with a section of transmission line of electrical length
Θ degrees and characteristic impedance Z0, as indicated in
Figure 5. In Figure 1, we note that |S21| has its first local
minimum just above 200 MHz, and then makes its first return
approach to 0 dB at approximately 383 MHz. The response at
383 MHz suggests that the appropriate transmission line length
at this frequency is 180◦.

Fig. 5. Transmission line model.

A computer-aided implementation again aids our appre-
ciation of the essential merit of this particular model. Two
instructive results are included here. In both cases, the MAT-
LAB program was allowed in each case to apply the lsqcurvefit
function in order to optimize the values of line length and Z0 to
provide the best possible fit against the measured data. Figure
6 shows model performance from 1 to 395 MHz in 1 MHz
steps:

Fig. 6. Transmission line model, 1-395 MHz.
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The modeling error calculations associated with Figure 6 are
SSE |S21| = 415.5, or SSE||avg = 1.052 per point, and SSE
]S21 = 2.42 × 105, or SSE]avg = 614.5 per point. It was
deemed desirable, for illustration and comparison purposes, to
capture the first inductor “resonance” in the frequency range
of examination, although this choice clearly adversely affected
the SSE result for the phase angle to a significant degree. For
the full 1-1300 MHz range of measured data is modeled, the
result is Figure 7.

Fig. 7. Transmission line model, 1-1300 MHz.

As one would expect, the transmission line section has pre-
cisely periodic repetitions of its fundamental behavior. Figure
7 emphasizes that the higher frequency resonances of the real-
world RF inductor, on the other hand, are not at integer multi-
ples of the fundamental frequency. The modeling error calcu-
lations associated with Figure 7 are SSE |S21| = 48596, or
SSE||avg = 37.4 per point, and SSE ]S21 = 1.646× 107, or
SSE]avg = 1.27× 104 per point. One is led by these two re-
sults to conclude that the transmission line model can be a quite
effective tool at low to medium frequencies (below the first res-
onance, here about 383 MHz), but its range of validity does not
extend to the higher-frequency regime.

VI. HELICALLY CONDUCTING SHEET MODEL

In this section, we first present (and then extend in the next
section) results using a multimode RF inductor model recently
advocated by Mezak [5]. This model considers the RF inductor
to be a helically conducting sheet which has both TM (trans-
verse magnetic) and TE (transverse electric) modes and ex-
hibits dispersion. It is especially accurate in predicting the res-
onant frequencies of an inductor. The key governing equations
were first developed in studies on helical line models for the
traveling-wave tube community in the 1960s. One of the better
references for finding full details of the original derivation steps
is Pierce [6]. A concise description of the calculational process,
for a given frequency, follows.
First, the transcendental equation

(γa)2
I0 (γa)K0 (γa)

I1 (γa)K1 (γa)
= (β0a cotΨ)

2 (7)

(where γ2 = β2−β20, a = radius of the inductor helix, I0 and I1
are the modified Bessel functions of the first kind of order 0 and
1, respectively,K0 andK1 are the modified Bessel functions of
the second kind of order 0 and 1, respectively, β0 = propagation
constant in free space, β = propagation constant of the helix,
and Ψ = the helix pitch angle) is solved for γ. Then the value
of β follows from the relation γ2 = β2 − β20. The so-called
transverse characteristic impedance of the helix is next found
from the relation (see [6], page 30)

Kt = F1 · F2 (8)

where factor F1 is

F1 =

µ
γ

β

¶2µ
β

β0

¶"
120I20

(γa)2

#
(9)

and

F2 =

·µ
1 +

I0K1

I1K0

¶¡
I21 − I0I2

¢
+

µ
I0
K0

¶2µ
1 +

I1K0

I0K1

¶¡
K0K2 −K2

1

¢# (10)

Choosing to use the regular chain (ABCD) matrix T̃ instead of
the normalized chain matrix T̃n, we directly take

Z = Kt. (11)

Z0 is the system characteristic impedance (typically 50Ω). Z,
in turn, allows determination of the regular chain matrix ele-
ments from the well-known form for a section of transmission
line ·

A B
C D

¸
=

"
cos (β ) jZ sin (β )
j

Z
sin (β ) cos (β )

#
(12)

where it should be noted that the inductor length, previously
denoted c, is here denoted by . Here, the load resistor RL in
Figure 5 is equal to the system characteristic impedance Z0,
and complex S21 is found from

S21 =
2

A+
B

RL
+CRL +D

. (13)

For short, the helically conducting sheet model will be referred
to as simply the Mezak model. To show how the dispersion
model predicts the multiple resonant frequencies rather well,
the model is compared to the measured data over the full 1 -
1300 MHz range in Figure 8. On the other hand, as Figure
8 shows, this model is less successful in emulating, both
qualitatively and quantitatively, the S21 data in between the
multiple resonant frequencies.
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Fig. 8. Mezak model, 1 - 1300 MHz.

VII. EXTENDED HELICAL CONDUCTING SHEET MODEL

In applied electromagnetics, a frequent occurrence is that
theoretical values for a real operational device are related to
experimental measurement values through a fractional linear
transformation. For example, in the context of antenna feed-
point impedances, see [7]. Motivated by favorable prior experi-
ences, an empirical study was made of extending the so-called
Mezak model to include a fractional linear transformation of
the form

Zm =
a1Zi + a2
a3Zi + 1

(14)

withZm representing measured data at a specific frequency and
Zi representing the corresponding ideal, or theoretical, value (in
this case, the value from the Mezak model). The procedure for
determining the complex constants a1, a2, and a3 is detailed in
[8]. The extended model is here called the Transformed model.
A more formal name has not been chosen because the inves-
tigative study is not yet complete, and the model details remain
subject to further evolutionary change.
Three results for different frequency spans are presented in

Figures 9, 10, and 11 below. Data row 1 in Table I (for 1 - 200
MHz) indicates the notable extent to which the Transformed
model is superior to the Mezak model in the low-frequency
regime, below the first inductor resonance. Indeed, the Trans-
formedmodel is the best performer in the low-frequency regime
of all the models discussed in this paper. For very wide fre-
quency ranges (see data row 3 in Table I), the Transformed
model offers modest improvement over the Mezak model, al-
though a span of 1 to 1300 MHz obviously overextends the
range of validity for both.
It should be noted that there are special circumstances that

result in performance degradation of the present Transformed
model implementation. An example is modeling the subject
RF inductor over the frequency range 1 to 395 MHz. The res-
onance at approximately 383 MHz actually causes the Trans-
formed model, in its present form, to degrade the input data re-
ceived from the Mezak model (see data row 2 in Table I). Work

continues toward anticipating and eliminating such anomalous
behavior for this model.

Fig. 9. Transformed model, 1-200 MHz.

Fig. 10. Transformed model, 1- 395 MHz.

Fig. 11. Transformed model, 1 - 1300 MHz.
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TABLE I
Error Comparison of Mezak and Transformed Models
Range (MHz) Mezak SSEs Transformed SSEs

|S21| ]S21 |S21| ]S21
1 - 200 304 5.15e4 1.94 106
1 - 395 523 2.65e5 705 2.43e5
1 - 1300 1.66e4 2.45e6 7907 2.32e6

VIII. CONCLUSIONS
Antenna engineers concerned with the design of antenna

phasing and power divider networks would like computer soft-
ware that provides more accurate and reliable CAE of the RF
inductors and capacitors used in such practical systems. RF
circuit design engineers charged with the production of high-
power amplifiers share the desire of their antenna system coun-
terparts. The ultimate objective of our work is such a computer
software product, which we intend to make available in the pub-
lic domain.
It is important for all radio engineers to be cognizant of the

multimode behavior of real RF inductors, and aware that the
widely accepted “classic model” for helical air-core coils is
severely limited in its scope of applicability. Another funda-
mental realization of significance about RF inductors, not dis-
cussed here, is that the dominant capacitance associated RF
coils is not turn-to-turn (interwinding) capacitance as long as-
sumed, but rather the distributed capacitance with respect to
ground. Reference [1] has a clear discussion of this point, and
interested readers should see the Additional Remarks section of
that paper.
This report has presented some highlight features of four

RF inductor models: the classic model, the transmission line
model, the so-called Mezak model, and the Transformed model
incorporating a fractional linear transformation. Evidence and
results examined during the course of this study first suggested
that the distributed inductance and capacitance associated with
inductors for RF applications made a (TEM) transmission line
section a viable model candidate at sufficiently low frequencies.
Later, measured inductor behavior above the first resonance of
the coil then revealed that a waveguide (that is, TE/TM) model,
with dispersion, becomes more appropriate at higher frequen-
cies. The approach of [5] is based on a non-TEM, dispersive
helix, and provides good predictions of inductor resonant fre-
quencies. Because the Mezak model does not incorporate loss
in its formulation, it is generally deficient in emulation of the
behavior of |S21| and S21 phase away from the near neigh-
borhoods of resonances.Work to date by the authors with the
Transformed model is encouraging, and how it may accurately
account for the losses associated with real-world RF inductors
is being actively studied. Continuing efforts are also underway
to determine if a variation of the fractional linear transformation
will allow development of an even better, more comprehensive
RF inductor model.
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