# Tuning NEC with a faster LU 

Jürgen v. Hagen<br>Institut für Höchstfrequenztechnik und Elektronik Universität Karlsruhe, Kaiserstr. 12, D - 76128 Karlsruhe, Germany,<br>Phone: +49 7216087676 , Fax: + 49721691865 email: vonhagen@ihe.etec.uni-karlsruhe.de


#### Abstract

The well-known and widely used NEC code in its forms NEC 2 and NEC 4 is affected by a rather slow $L U$ factorization routine. It is shown how few small changes to the code speed up the solution process considerably, almost by two orders of magnitude.


## I. Introduction

NEC 2 and NEC 4 are widely used codes for computing radiation pattern, scattering problems etc. Whereas NEC 4 is still affected by a serious drawback (the code cannot be used outside the US), NEC 2 has a wide user community. However, in the time NEC was developed, computers have not had the capabilities of today's processors. Still, small changes (166 lines) can be made to NEC to improve the performance.

The modifications use the mathematical routines in LAPACK [1], [2] and the standardized subroutines in [3], [4], [5], [6]. Further optimization was possible by efficient cache re-use and has been reported in [7], [8], [9], [10], The above numerical subroutines and the optimization have found their way into the mathematical subroutines and libraries from almost all vendors of computer platforms and are available either commercially or at no cost.

In the following, the modifications to the nec2d sources are described to obtain the new nec2j, where optimized libraries can be found, and finally what performance improvements you can expect.

## II. Modifications to the NEC sources

Several changes are necessary to modify the nec2d sources. Beside the modifications to the subroutines that effectively call the appropriate algorithms, modifications to the parser are necessary to switch between the original and the new $L U$ factorization routines. Therefore, some minor changes are necessary to the input parser that reads the NEC-input files. Finally, some modifications were necessary to compile on certain platforms (g77 on Linux) that are of minor importance.

First, modifications to the parser include the creation of a new MS-card that switches between the original and the new $L U$ factorization routines. Fig. 2(a) show the changes (lines that begin by < are the old lines in nec2d, lines with $>$ are the new lines for nec2j). A new common block includes the new card and a definition for two variables that are switches for the algorithm msolver ( 0 for the original algorithm) and an optional computation of an estimate for the condition number compen ( 0 for no computation). Default is solution by the optimized algorithm and no condition estimate. Changes in the subroutines FACTRS and SOLVES are shown in Figs. 1(a) and 1(b), respectively.

Finally, some minor modifications that were necessary to compile on certain platforms are shown in Fig. 2(b).

## III. Where to find optimized BLAS and LAPACK routines

To take advantage of the optimized subroutines, libraries are needed. They can be obtained (in the easiest case) from the vendor of the platform. Vendors, the name of the library and a first Internet-site are shown in table I. For almost any platform, auto-optimizing subroutines are available [11], [12]. For using the Atlas library you need a C compiler and a Fortran compiler. Some precompiled libraries are available.

In any case, you need to modify the sources, compile the sources and link together with the libraries above in order to obtain the high performance NEC.

## IV. Example Performances

A sample problem with 2096 unknowns is reported in table II. The two platforms are Hewlett-Packard PA Risc processors with the HP UX 10.20 and 11.00. The vendor's mlib was used together with the HP compiler f90. The second platform is an Athlon running Linux and the Atlas library. The Gnu compiler gcc 2.95 together with g77 was used.

## V. Final Comments

Due to the unclear copyright situation, I will not distribute the modified sources. I have not tried any platform other than the above two cited platforms. Performance improvements may be considerably different on your platform.

## References

[1] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. D. Croz, S. Hammarling, J. Demmel, C. Bischof, and S. Sorenson, "LAPACK: A portable linear algebra library for high-performance computers," Proceedings of Supercomputing '90, pp. 2-11, Nov. 1990.
28a29,31
$\begin{array}{ll}> & \text { INTEGER msolver, compcn } \\ > & \text { COMMON /MSOLVERPAR/ msol }\end{array}$
$>$
67c70
COMMON /MSOLVERPAR/ msolver, compcn
DIMENSION ATST (22) , PNET (6) , HPOL (3) , IX ( $2 *$ MAXSEG)
dimension atst (23), PNET (6), HPOL (3), IX (2*MAXSEG)
< DIMENSION A(1), B(N1C,1), C(N1C,1), D(N2CZ,1), IP(1), XY(1)
DIMENSION $A(*), B(N 1 C, *), C(N 1 C, *), D(N 2 C Z, *), \operatorname{IP}(*), X Y(*)$
8507c8556,8561
$<\quad$ DIMENSION A(1), $\operatorname{IP}(1), B(N E Q, N R H)$
DIMENSION $A(*), \operatorname{IP}(*), B(N E Q, N R H)$
integer info
integer msolver, compcr
common /msolverpar/ msolver, compcn
save /msolverpar/
8567c8621,8626
< 14 CALL SOLVE (NPEQ, A (IB) , IP (IA) , B(IA , IC) , NROW)
if (msolver .eq. 0) then
CALL SOLVE (NPEQ, A(IB), IP (IA), B(IA,IC), NROW)
else if (msolver .eq. 1) then
> call zgetrs("T",NPEQ, NRH, A (IB) , nrow, IP (IA ) , B (IA , IC) ,NROW, info)
call
end if
end if
continue
(a) Changes to the nec2d code for using the optimized routines - changes to subroutine FACTRS.

1 28a29,31
$>$ INTEGER msolver, compcn INTEGER msolver, compcn
COMMON /MSOLVERPAR/ msolver, compcn SAVE /MSOLVERPAR/
< 67 c 70
DIMENSION ATST(22), PNET(6), HPOL (3), IX (2*MAXSEG)
DIMENSION ATST(23), PNET(6), HPOL (3), IX ( $2 *$ MAXSEG)
1 'NX', 'EN', 'TL', 'PT', 'KH', 'NH', 'PQ', 'EK', 'WG', 'CP', 'PL'/
1 'NX','EN', 'TL', 'PT', 'KH', 'NH', 'PQ', 'EK', 'WG', 'CP', 'PL', 'MS'/
85a89,91
write(*,*) , NEC 2 - LAPACK version,
write(*,"('compiled for ',I5,' segments')") MAXSEG
write(*,"('compiled for ', I5,' segments')") MA
write(*,"('maximum matrix size ',I5)") MAXMAT
177a184,186
msolver $=1$
compcn $=0$
)
230a240
IF (AIN.EQ.ATST(23)) GO TO 331
423a434,442
> C***
C
$>$ C SOLVER FLAGS
331 continue
if (ITMP1 .EQ. 0) msolver $=0$
if ((ITMP1 .NE. 0) .AND. (ITMP2 .NE. 0)) compcn = 1
C***
GO TO 14
3658c3677,3690
< DIMENSION A(1), IP(NROW), IX(NROW)
C DIMENSION A(*), IP(NROW), IXTIB LU and condition number
juergen v.Hagen 1999
integer info
real*8 anorm
include "NEC2DPAR.INC"
complex*16 work(2*MAXSEG)
real*8 rwork(2*MAXSEG)
integer msolver, compen
common/msolverpar/msolver, compcn
save /msolverpar/
< 1 CALL FACTR (NP, A (KA) , IP (KA) , NROW)
if (msolver .eq. 0) then
CALL FACTR (NP, A (KA), IP (KA) ,NROW)
$>$ C netlib LU
else if (msolver .eq. 1) then
compute condition number
(compcn .eq. 1) then
anorm = zlange("1", NP, NP, A(KA), nrow, work)
endif call zgetrf ( $n p, n p, A(K A)$, nrow, $\operatorname{IP}(K A)$, inf
call zgetrf (np, np, A(KA), nrow, IP(KA), info
if (info .ne. 0) print ${ }^{*}$, 'ZGETRF info=', info
condition number second part
if (compcn eq. 1) then
call zgecon $(" 1 "$, NP, $A(K A)$, NROW
call zgecon("1", NP, A(KA), NROW, anorm, condnum,
work, rwork, info)
$\operatorname{WRITE}(3, '(20 X, " C O N D I T I O N$ NUMBER ", G)') $1.0 \mathrm{do} /$ condnum
endif
endif
endif
continue
$8336 c 8385$
< DIMENSION $A(1), B(N 1 C, 1), C(N 1 C, 1), D(N 2 C Z, 1), \operatorname{IP}(1), X Y(1)$
$>$ DIMENSION $A(*), B(N 1 C, *), C(N 1 C, *), D(N 2 C Z, *), \operatorname{IP}(*), X Y(*)$
8507c8556,8561
DIMENSION A(1), IP (1), B(NEQ,NRH)
80
DIMENSION $A(*), \operatorname{IP}(*), B(N E Q, N R H)$
integer info
integer msolver, compcn
common /msolverpar/ msolver, compcn
save /msolverpar/
8567c8621,8626
< 14 CALL SOLVE (NPEQ, A(IB) ,IP(IA), B(IA,IC),NROW)
if (msolver .eq. 0) then
CALL SOLVE (NPEQ, A (IB) ,IP (IA) , B (IA , IC) ,NROW)
else if (msolver .eq. 1) then
call zgetrs("T",NPEQ,NRH,A(IB), nrow,IP(IA),B(IA,IC),NROW,info)
call
end if
(b) Changes to the nec2d code for using the optimized routines - changes to subroutine SOLVES.

Fig. 1. Changes to FACTRS and SOLVES

1

$$
\begin{aligned}
& \text { 28a29,31 } \\
& > \\
& > \\
& >
\end{aligned} \quad \text { COMMON msolver, compcn } \quad \text { MSOLVERPAR/ msolver, compcn }
$$

    67 c 70
        DIMENSION ATST (22) , PNET (6) , HPOL (3), IX ( \(2 *\) MAXSEG)
    ```
1 'NX','EN','TL','PT','KH','NH','PQ','EK','WG','CP','PL','MS'/
```

    85a89,91
    write(*,*) , NEC 2 - LAPACK version,
        write(*,"('compiled for ', I5,' segments')") MAXSEG
        write (*,"('maximum matrix size ', I5)") MAXMAT
    177a184,186
        msolver \(=1\)
    compen $=0$
20
C 30
$>{ }^{230 \mathrm{a} 240}$ IF (AIN.EQ.ATST(23)) GO TO 331
423a434,442
C***
$>\mathrm{C}$
$>$ C SOLVER FLAGS
> 331 continue
$\begin{array}{ll}> & \text { if (ITMP1 .EQ. 0) msolver }=0 \\ \text { if ((ITMP1 .NE. 0) } \cdot \text { AND. (ITMP2 .NE. O)) compcn }=1\end{array}$
$>$ C***
$>{ }^{>}$C*** GO TO 14
< DIMENSION A(1), IP (NROW), IX(NROW)
$>$ DIMENSION A(*), IP(NROW), IX (NROW)
$\rightarrow$ C additional variables for NETLIB LU and condition number
juergen v.Hagen 1999
integer info
real*8 anorm
include "NEC2DPAR. INC"
complex $* 16$ work ( $2 *$ MAXSEG)
real*8 rwork ( $2 *$ MAXSEG)
integer msolver, compcn
common /msolverpar/ msolver, compcn
save /msolverpar/
> C***
< 1 CALL FACTR (NP, A (KA) , IP (KA) ,NROW)
if (msolver .eq. 0) then
CALL FACTR (NP, A (KA), IP (KA) ,NROW)
$>$ C netlib LU
else if (msolver .eq. 1) then
C compute condition number
if (compcn .eq. 1) then

endif
call zgetrf (np, np, A(KA), nrow, IP (KA), info)
if (info .ne. 0) print $*$,' 'ZGETRF info=', info
condition number second par
(compcn .eq. 1) then
call zgecon("1", NP, $A(K A)$, NROW, anorm, condnum,
\& work, rwork, info)
WRITE(3,'(20X,"CONDITION NUMBER ",G)') 1.0do/condnum
endif
70
$\begin{array}{ll}>1 & \text { con } \\ 8336 c 8385 \\ < & \text { DIM }\end{array}$
< DIMENSION A(1), B(N1C, 1$), \mathrm{C}(\mathrm{N} 1 \mathrm{C}, 1), \mathrm{D}(\mathrm{N} 2 \mathrm{CZ}, 1), \mathrm{IP}(1), \mathrm{XY}(1)$
--- $\quad$ DIMENSION $A(*), B(N 1 C, *), C(N 1 C, *), D(N 2 C Z, *), \operatorname{IP}(*), X Y(*)$
$8507 C 8556,8561$
< DIMENSION A (1), IP (1), B(NEQ,NRH)
> DIMENSION $A(*), \operatorname{IP}(*), B(N E Q, N R H)$
integer info
integer msolver, compcn
integer msolver, compcn
common /msolverpar/ msolver, compcn
common /msolverpar/
save /msolverpar/
8567c8621,8626
< 14 CALL SOLVE (NPEQ, $\mathrm{A}(\mathrm{IB}), \mathrm{IP}(\mathrm{IA}), \mathrm{B}(\mathrm{IA}, \mathrm{IC})$, NROW)
CALL SOLVE (NPEQ, A(IB),IP (IA), B(IA,IC),NROW)
else if (msolver .eq. 1) then
call zgetrs("T", NPEQ, NRH, A (IB) , nrow, IP (IA) ,B(IA, IC) ,NROW, info)
end if
continue
(a) Changes to the nec2d code for using the optimized routines - changes to use the new MS-card.
$\begin{array}{ll}> & > \\ > & \text { else if (msolver .eq. 1) then } \\ \text { call zgetrs("T", NPEQ, NRH, } \mathrm{A}(\mathrm{IB}), \text { nrow, } \mathrm{IP}(\mathrm{IA}), \mathrm{B}(\mathrm{IA}, \mathrm{IC}), \mathrm{NROW}, \operatorname{info})\end{array}$
continue
$1 \quad 1906 \mathrm{c} 1925$
< CALL HSFLD (XI,YI,ZI, 0.)
$>$ CALL HSFLD (XI, YI , ZI , 0.0d0)
3012c3031
< CALL SFLDS ( $0 .$, EGND)
> CALL SFLDS (0.Odo, EGND)
<
$<175 c 3194$
TYPE
1, MSG (IND +2 :MSGLEN $)$
$>$ C TYPE 1 ,MSG(IND+2:MSGLEN)
$3423,3424 \mathrm{c} 3442,3443$
DIMENSION $\mathrm{A}(1), \mathrm{B}(\mathrm{N} 1 \mathrm{C}, 1), \mathrm{C}(\mathrm{N} 1 \mathrm{C}, 1), \mathrm{D}(\mathrm{N} 2 \mathrm{C}, 1), \mathrm{BX}(\mathrm{N} 1 \mathrm{C}, 1), \operatorname{IP}(1)$, IX
$<\quad 1(1)$
DIMENSION $\mathrm{A}(*), \mathrm{B}(\mathrm{N} 1 \mathrm{C}, *), \mathrm{C}(\mathrm{N} 1 \mathrm{C}, *)$, $\mathrm{D}(\mathrm{N} 2 \mathrm{C}, *)$, $\mathrm{BX}(\mathrm{N} 1 \mathrm{C}, *)$, $\mathrm{IP}(*)$, IX
$>1(*)$
$4934 c 4983$
20
CALL TEST (T01R,T10R,TE1R,T01I,T10I,TE1I, 0.)
$>$ CALL TEST (T01R,T10R,TE1R,T01I,T10I,TE1I, 0.OdO)
$4947 c 4996$
$<$
< CALL TEST (T11R,T20R,TE2R,T11I, T20I, TE2I, 0.)
$>$ CALL TEST (T11R,T20R,TE2R,T11I ,T20I, TE2I , 0.0d0)
5442 c 5491
<-- CALL TEST (T01R,T10R,TE1R,T01I, T10I, TE1I , 0.)
$30>$ CALL TEST (T01R,T10R,TE1R,T01I,T10I,TE1I , 0.OdO)
5458c5507 CALL TEST (T11R,T20R,TE2R,T11I,T20I, TE2I, 0.)
--- CALL TEST (T11R, T20R, TE2R,T11I , T20I , TE2I , 0.0dO)
5768c5817
< 1),ZLC (ISTEP) , $0 ., 0 ., 0 .$, SERIES ')
> 1), ZLC (ISTEP) , 0.0d0 , 0.0d0, 0.0d0,' SERIES ')
5771 c 5820
<-- 1),ZLC(ISTEP), $0 ., 0 ., 0 .$, 'PARALLEL')
> 1),ZLC(ISTEP) , 0.0d0, 0.0do, 0.0d0, 'PARALLEL')
< 1),ZLC(ISTEP), $0 ., 0 ., 0 .$, SERIES (PER METER) ')
$>1$ 1),ZLC (ISTEP) $, 0.0 \mathrm{do} 0,0.0 \mathrm{do}, 0.0 \mathrm{do}$,' SERIES (PER METER) ')
5777c5826
< 1),ZLC (ISTEP), $0 ., 0 ., 0 .$, PARALLEL (PER METER)')
$50 \stackrel{\text {--- }}{>} \quad 1)$, ZLC (ISTEP) , 0.0d0 $, 0.0 \mathrm{do}, 0.0 \mathrm{do}$, ' PARALLEL (PER METER)')
5779,5780c5828,5829
$<23 \quad$ CALL PNNT (LDTAGS, LDTAGF(ISTEP) ,LDTAGT(ISTEP) , $0 ., 0 ., 0 .$, ZLR (ISTEP) ,
<-- 1ZLI (ISTEP), 0 .,'FIXED IMPEDANCE ')
$>23$ CALL PRNT (LDTAGS,LDTAGF(ISTEP), LDTAGT(ISTEP) , $0.0 \mathrm{do}, 0.0 \mathrm{do} 0,0.0 \mathrm{~d} 0$,
1ZLR(ISTEP), ZLI (ISTEP) ,0.0d0, 'FIXED IMPEDANCE ')
< $24 \quad$ CALL PRNT (LDTAGS, LDTAGF(ISTEP), LDTAGT(ISTEP) , $0 ., 0 ., 0 ., 0 ., 0 .$, ZLR(I
60 <-- 1STEP),' WIRE ')
$>24$ CALL PRNT (LDTAGS,LDTAGF (ISTEP), LDTAGT (ISTEP) , $0.0 \mathrm{do}, 0.0 \mathrm{do}, 0.0 \mathrm{do}$,
> $10.0 \mathrm{do} 0,0.0 \mathrm{do}, \mathrm{ZLR}($ ISTEP ),' WIRE ')
$7150 c 7199$
< CALL HSFLD (XI, Yi , ZI, O.)
$>{ }_{7989}$ C 8038 CALL HSFLD (XI, YI ,ZI, 0.OdO)
<
$70>$ CALL TEST(TMAG1,TMAG2,TR $, 0.0 \mathrm{do} 0,0.0 \mathrm{dO}, \mathrm{TI}, \mathrm{DMIN})$
< CALL TEST(TMAG1,TMAG2,TR,0., 0.,TI, DMIN)
--- CALL TEST(TMAG1,TMAG2,TR,0.0d0,0.0do,TI,DMIN)
8336 C 8385
< DIMENSION $A(1), B(N 1 C, 1), C(N 1 C, 1), D(N 2 C Z, 1), \operatorname{IP}(1), X Y(1)$
$>\quad$ DIMENSION $\mathrm{A}(*), \mathrm{B}(\mathrm{N} 1 \mathrm{C}, *), \mathrm{C}(\mathrm{N} 1 \mathrm{C}, *), \mathrm{D}(\mathrm{N} 2 \mathrm{CZ}, *), \mathrm{IP}(*), \mathrm{XY}(*)$
(b) Changes for double precision.

Fig. 2. Other minor changes.

TABLE I
Optimized mathematical subroutine libraries.

| Platform | Library and Supplier |
| :--- | :--- |
| i86 - Windows | Math Kernel Library by Intel <br> http://developer.intel.com/software/products/mkl/index.htm |
| i86 - Linux | ASCI-RED by University of Tennessee in Kentucky, UTK <br> http://www.cs.utk.edu/~ghenry/distrib/archive.htm |
| PPC - AIX | ESSL by IBM <br> http://www.research.ibm.com/mathsci/ams/ams_ESSL.htm |
| Sparc - Solaris | sunperf by SUN <br> http://www.sun.com/ |
| PA - HP | MLIB by HP <br> http://www.hp.com/ |
| Athlon - Linux | Atlas, distributed e.g. by netlib <br> http://math-atlas.sourceforge.net/ <br> Atlas, distributed e.g. by netlib <br> http://math-atlas.sourceforge.net/ |

TABLE II
Run Times for 2096 unknowns, original and optimized LAPACK factorization routines

| Platform | Filling | Original <br> Time | LAPACK |
| :--- | ---: | ---: | ---: |
| Athlon 900 MHz | 6.040 s | 68.990 s | 4.740 s |
| PA $8200,240 \mathrm{MHz}$ | 18.630 s | 237.710 s | 6.500 s |
| PA $8600,552 \mathrm{MHz}$ | 7.120 s | 148.200 s | 2.810 s |

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide. Philadelphia, PA, USA: SIAM, 3 ed., 1999.
[3] J. J. Dongarra, J. du Croz, S. Hammarling, and R. J. Hanson, "An extended set of fortran basic linear algebra subprograms," ACM Transactions on Mathematical Software, vol. 14, pp. 1-17, Mar. 1988.
[4] J. J. Dongarra, J. du Croz, S. Hammarling, and I. Duff, "A set of level 3 basic linear algebra subprograms," ACM Transactions on Mathematical Software, vol. 16, pp. 1-17, Mar. 1990.
[5] J. J. Dongarra, J. du Croz, S. Hammarling, and I. Duff, "Algorithm 679: A set of level 3 basic linear algebra subprograms: Model implementation and test programs," ACM Transactions on Mathematical Software, vol. 16, pp. 18-28, Mar. 1990.
[6] J. J. Dongarra and D. W. Walker, "Software libraries for linear algebra computations on high performance computers," SIAM Review, vol. 37, pp. 151-180, June 1995.
[7] B. Kågström, P. Ling, and C. van Loan, "GEMM-based level 3 BLAS: Portability and optimization issues," ACM Transactions on Mathematical Software, vol. 24, pp. 303-316, Sept. 1998.
[8] B. Kågström, P. Ling, and C. van Loan, "Algorithm 784: GEMM-based level 3 BLAS: High-performance model implementations and performance evaluation benchmark," ACM Transactions on Mathematical Software, vol. 24, pp. 268-302, Sept. 1998.
[9] M. J. Daydé and I. S. Duff, "The RISC BLAS: A blocked implementation of level 3 BLAS for RISC processors," ACM Transactions on Mathematical Software, vol. 25, p. 316340, Sept. 1999.
[10] S. Seny, S. Chatterjeez, and N. Dumirx, "Towards a theory of cache-efficient algorithms," Eleventh ACM-SIAM Symposium on Discrete Algorithms 2000, vol. 1, Oct. 2000.
[11] R. C. Whaley and J. Dongarra, "Automatically tuned linear algebra software," tech. rep., Knoxville, Tennessee, USA, 1998.
[12] R. C. Whaley, A. Petitet, and J. J. Dongarra, "Automated empirical optimization of software and the atlas project," To appear in Parallel Computing, 2001. Also avalable as University of Tennessee LAPACK Working Note \#147, UT-CS-00-448, 2000 (www.netlib.org/lapack/lawns/lawn147.ps).

