
Tuning NEC with a faster LU

Jürgen v. Hagen
Institut für Höchstfrequenztechnik und Elektronik

Universität Karlsruhe, Kaiserstr. 12, D - 76128 Karlsruhe, Germany,
Phone: +49 721 608 76 76, Fax: +49 721 69 18 65

email: vonhagen@ihe.etec.uni-karlsruhe.de

Abstract

The well-known and widely used NEC code in its forms NEC 2 and NEC 4 is affected by a rather slow LU factorization routine.
It is shown how few small changes to the code speed up the solution process considerably, almost by two orders of magnitude.

I. Introduction

NEC 2 and NEC 4 are widely used codes for computing radiation pattern, scattering problems etc. Whereas NEC
4 is still affected by a serious drawback (the code cannot be used outside the US), NEC 2 has a wide user community.
However, in the time NEC was developed, computers have not had the capabilities of today’s processors. Still, small
changes (166 lines) can be made to NEC to improve the performance.
The modifications use the mathematical routines in LAPACK [1], [2] and the standardized subroutines in [3], [4], [5],

[6]. Further optimization was possible by efficient cache re-use and has been reported in [7], [8], [9], [10], The above
numerical subroutines and the optimization have found their way into the mathematical subroutines and libraries from
almost all vendors of computer platforms and are available either commercially or at no cost.
In the following, the modifications to the nec2d sources are described to obtain the new nec2j, where optimized

libraries can be found, and finally what performance improvements you can expect.

II. Modifications to the NEC sources

Several changes are necessary to modify the nec2d sources. Beside the modifications to the subroutines that effectively
call the appropriate algorithms, modifications to the parser are necessary to switch between the original and the new LU
factorization routines. Therefore, some minor changes are necessary to the input parser that reads the NEC-input files.
Finally, some modifications were necessary to compile on certain platforms (g77 on Linux) that are of minor importance.
First, modifications to the parser include the creation of a new MS-card that switches between the original and the

new LU factorization routines. Fig. 2(a) show the changes (lines that begin by < are the old lines in nec2d, lines with
> are the new lines for nec2j). A new common block includes the new card and a definition for two variables that
are switches for the algorithm msolver (0 for the original algorithm) and an optional computation of an estimate for
the condition number compcn (0 for no computation). Default is solution by the optimized algorithm and no condition
estimate. Changes in the subroutines FACTRS and SOLVES are shown in Figs. 1(a) and 1(b), respectively.
Finally, some minor modifications that were necessary to compile on certain platforms are shown in Fig. 2(b).

III. Where to find optimized BLAS and LAPACK routines

To take advantage of the optimized subroutines, libraries are needed. They can be obtained (in the easiest case) from
the vendor of the platform. Vendors, the name of the library and a first Internet-site are shown in table I. For almost
any platform, auto-optimizing subroutines are available [11], [12]. For using the Atlas library you need a C compiler
and a Fortran compiler. Some precompiled libraries are available.
In any case, you need to modify the sources, compile the sources and link together with the libraries above in order

to obtain the high performance NEC.

IV. Example Performances

A sample problem with 2096 unknowns is reported in table II. The two platforms are Hewlett-Packard PA Risc
processors with the HP UX 10.20 and 11.00. The vendor’s mlib was used together with the HP compiler f90. The
second platform is an Athlon running Linux and the Atlas library. The Gnu compiler gcc 2.95 together with g77 was
used.

V. Final Comments

Due to the unclear copyright situation, I will not distribute the modified sources. I have not tried any platform other
than the above two cited platforms. Performance improvements may be considerably different on your platform.

References

[1] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. D. Croz, S. Hammarling, J. Demmel, C. Bischof, and S. Sorenson,
“LAPACK: A portable linear algebra library for high-performance computers,” Proceedings of Supercomputing ’90, pp. 2–11, Nov. 1990.

9

1 28a29,31

> INTEGER msolver, compcn

> COMMON /MSOLVERPAR/ msolver, compcn

> SAVE /MSOLVERPAR/

67c70

< DIMENSION ATST(22),PNET(6),HPOL(3),IX(2*MAXSEG)

> DIMENSION ATST(23),PNET(6),HPOL(3),IX(2*MAXSEG)

77c80

10 < 1 ’NX’,’EN’,’TL’,’PT’,’KH’,’NH’,’PQ’,’EK’,’WG’,’CP’,’PL’/

> 1 ’NX’,’EN’,’TL’,’PT’,’KH’,’NH’,’PQ’,’EK’,’WG’,’CP’,’PL’,’MS’/

85a89,91

> write(*,*) ’ NEC 2 - LAPACK version ’

> write(*,"(’compiled for ’,I5,’ segments’)") MAXSEG

> write(*,"(’maximum matrix size ’,I5)") MAXMAT

177a184,186

> msolver = 1

> compcn = 0

20 > C***

230a240

> IF (AIN.EQ.ATST(23)) GO TO 331

423a434,442

> C***

> C

> C SOLVER FLAGS

> C

> 331 continue

> if (ITMP1 .EQ. 0) msolver = 0

30 > if ((ITMP1 .NE. 0) .AND. (ITMP2 .NE. 0)) compcn = 1

> C***

> GO TO 14

3658c3677,3690

< DIMENSION A(1), IP(NROW), IX(NROW)

> DIMENSION A(*), IP(NROW), IX(NROW)

> C additional variables for NETLIB LU and condition number

> C juergen v.Hagen 1999

> integer info

40 > real*8 anorm

> include "NEC2DPAR.INC"

> complex*16 work(2*MAXSEG)

> real*8 rwork(2*MAXSEG)

>

> integer msolver, compcn

> common /msolverpar/ msolver, compcn

> save /msolverpar/

> C***

>

50 3663c3695,3712

< 1 CALL FACTR (NP,A(KA),IP(KA),NROW)

> if (msolver .eq. 0) then

> CALL FACTR (NP,A(KA),IP(KA),NROW)

> C netlib LU

> else if (msolver .eq. 1) then

> C compute condition number

> if (compcn .eq. 1) then

> anorm = zlange("1", NP, NP, A(KA), nrow, work)

60 > endif

> call zgetrf (np, np, A(KA), nrow, IP(KA), info)

> if (info .ne. 0) print *,’ZGETRF info=’,info

> C condition number second part

> if (compcn .eq. 1) then

> call zgecon("1", NP, A(KA), NROW, anorm, condnum,

> & work, rwork, info)

> WRITE(3,’(20X,"CONDITION NUMBER ",G)’) 1.0d0/condnum

> endif

> endif

70 > 1 continue

8336c8385

< DIMENSION A(1), B(N1C,1), C(N1C,1), D(N2CZ,1), IP(1), XY(1)

> DIMENSION A(*), B(N1C,*), C(N1C,*), D(N2CZ,*), IP(*), XY(*)

8507c8556,8561

< DIMENSION A(1), IP(1), B(NEQ,NRH)

> DIMENSION A(*), IP(*), B(NEQ,NRH)

> integer info

80 > integer msolver, compcn

> common /msolverpar/ msolver, compcn

> save /msolverpar/

>

8567c8621,8626

< 14 CALL SOLVE (NPEQ,A(IB),IP(IA),B(IA,IC),NROW)

> if (msolver .eq. 0) then

> CALL SOLVE (NPEQ,A(IB),IP(IA),B(IA,IC),NROW)

> else if (msolver .eq. 1) then

90 > call zgetrs("T",NPEQ,NRH,A(IB),nrow,IP(IA),B(IA,IC),NROW,info)

> end if

> 14 continue

(a) Changes to the nec2d code for using the optimized rou-

tines - changes to subroutine FACTRS.

1 28a29,31

> INTEGER msolver, compcn

> COMMON /MSOLVERPAR/ msolver, compcn

> SAVE /MSOLVERPAR/

67c70

< DIMENSION ATST(22),PNET(6),HPOL(3),IX(2*MAXSEG)

> DIMENSION ATST(23),PNET(6),HPOL(3),IX(2*MAXSEG)

77c80

10 < 1 ’NX’,’EN’,’TL’,’PT’,’KH’,’NH’,’PQ’,’EK’,’WG’,’CP’,’PL’/

> 1 ’NX’,’EN’,’TL’,’PT’,’KH’,’NH’,’PQ’,’EK’,’WG’,’CP’,’PL’,’MS’/

85a89,91

> write(*,*) ’ NEC 2 - LAPACK version ’

> write(*,"(’compiled for ’,I5,’ segments’)") MAXSEG

> write(*,"(’maximum matrix size ’,I5)") MAXMAT

177a184,186

> msolver = 1

> compcn = 0

20 > C***

230a240

> IF (AIN.EQ.ATST(23)) GO TO 331

423a434,442

> C***

> C

> C SOLVER FLAGS

> C

> 331 continue

> if (ITMP1 .EQ. 0) msolver = 0

30 > if ((ITMP1 .NE. 0) .AND. (ITMP2 .NE. 0)) compcn = 1

> C***

> GO TO 14

3658c3677,3690

< DIMENSION A(1), IP(NROW), IX(NROW)

> DIMENSION A(*), IP(NROW), IX(NROW)

> C additional variables for NETLIB LU and condition number

> C juergen v.Hagen 1999

> integer info

40 > real*8 anorm

> include "NEC2DPAR.INC"

> complex*16 work(2*MAXSEG)

> real*8 rwork(2*MAXSEG)

>

> integer msolver, compcn

> common /msolverpar/ msolver, compcn

> save /msolverpar/

> C***

>

50 3663c3695,3712

< 1 CALL FACTR (NP,A(KA),IP(KA),NROW)

> if (msolver .eq. 0) then

> CALL FACTR (NP,A(KA),IP(KA),NROW)

> C netlib LU

> else if (msolver .eq. 1) then

> C compute condition number

> if (compcn .eq. 1) then

> anorm = zlange("1", NP, NP, A(KA), nrow, work)

60 > endif

> call zgetrf (np, np, A(KA), nrow, IP(KA), info)

> if (info .ne. 0) print *,’ZGETRF info=’,info

> C condition number second part

> if (compcn .eq. 1) then

> call zgecon("1", NP, A(KA), NROW, anorm, condnum,

> & work, rwork, info)

> WRITE(3,’(20X,"CONDITION NUMBER ",G)’) 1.0d0/condnum

> endif

> endif

70 > 1 continue

8336c8385

< DIMENSION A(1), B(N1C,1), C(N1C,1), D(N2CZ,1), IP(1), XY(1)

> DIMENSION A(*), B(N1C,*), C(N1C,*), D(N2CZ,*), IP(*), XY(*)

8507c8556,8561

< DIMENSION A(1), IP(1), B(NEQ,NRH)

> DIMENSION A(*), IP(*), B(NEQ,NRH)

> integer info

80 > integer msolver, compcn

> common /msolverpar/ msolver, compcn

> save /msolverpar/

>

8567c8621,8626

< 14 CALL SOLVE (NPEQ,A(IB),IP(IA),B(IA,IC),NROW)

> if (msolver .eq. 0) then

> CALL SOLVE (NPEQ,A(IB),IP(IA),B(IA,IC),NROW)

> else if (msolver .eq. 1) then

90 > call zgetrs("T",NPEQ,NRH,A(IB),nrow,IP(IA),B(IA,IC),NROW,info)

> end if

> 14 continue

(b) Changes to the nec2d code for using the optimized rou-

tines - changes to subroutine SOLVES.

Fig. 1. Changes to FACTRS and SOLVES

.

10

1 28a29,31

> INTEGER msolver, compcn

> COMMON /MSOLVERPAR/ msolver, compcn

> SAVE /MSOLVERPAR/

67c70

< DIMENSION ATST(22),PNET(6),HPOL(3),IX(2*MAXSEG)

> DIMENSION ATST(23),PNET(6),HPOL(3),IX(2*MAXSEG)

77c80

10 < 1 ’NX’,’EN’,’TL’,’PT’,’KH’,’NH’,’PQ’,’EK’,’WG’,’CP’,’PL’/

> 1 ’NX’,’EN’,’TL’,’PT’,’KH’,’NH’,’PQ’,’EK’,’WG’,’CP’,’PL’,’MS’/

85a89,91

> write(*,*) ’ NEC 2 - LAPACK version ’

> write(*,"(’compiled for ’,I5,’ segments’)") MAXSEG

> write(*,"(’maximum matrix size ’,I5)") MAXMAT

177a184,186

> msolver = 1

> compcn = 0

20 > C***

230a240

> IF (AIN.EQ.ATST(23)) GO TO 331

423a434,442

> C***

> C

> C SOLVER FLAGS

> C

> 331 continue

> if (ITMP1 .EQ. 0) msolver = 0

30 > if ((ITMP1 .NE. 0) .AND. (ITMP2 .NE. 0)) compcn = 1

> C***

> GO TO 14

3658c3677,3690

< DIMENSION A(1), IP(NROW), IX(NROW)

> DIMENSION A(*), IP(NROW), IX(NROW)

> C additional variables for NETLIB LU and condition number

> C juergen v.Hagen 1999

> integer info

40 > real*8 anorm

> include "NEC2DPAR.INC"

> complex*16 work(2*MAXSEG)

> real*8 rwork(2*MAXSEG)

>

> integer msolver, compcn

> common /msolverpar/ msolver, compcn

> save /msolverpar/

> C***

>

50 3663c3695,3712

< 1 CALL FACTR (NP,A(KA),IP(KA),NROW)

> if (msolver .eq. 0) then

> CALL FACTR (NP,A(KA),IP(KA),NROW)

> C netlib LU

> else if (msolver .eq. 1) then

> C compute condition number

> if (compcn .eq. 1) then

> anorm = zlange("1", NP, NP, A(KA), nrow, work)

60 > endif

> call zgetrf (np, np, A(KA), nrow, IP(KA), info)

> if (info .ne. 0) print *,’ZGETRF info=’,info

> C condition number second part

> if (compcn .eq. 1) then

> call zgecon("1", NP, A(KA), NROW, anorm, condnum,

> & work, rwork, info)

> WRITE(3,’(20X,"CONDITION NUMBER ",G)’) 1.0d0/condnum

> endif

> endif

70 > 1 continue

8336c8385

< DIMENSION A(1), B(N1C,1), C(N1C,1), D(N2CZ,1), IP(1), XY(1)

> DIMENSION A(*), B(N1C,*), C(N1C,*), D(N2CZ,*), IP(*), XY(*)

8507c8556,8561

< DIMENSION A(1), IP(1), B(NEQ,NRH)

> DIMENSION A(*), IP(*), B(NEQ,NRH)

> integer info

80 > integer msolver, compcn

> common /msolverpar/ msolver, compcn

> save /msolverpar/

>

8567c8621,8626

< 14 CALL SOLVE (NPEQ,A(IB),IP(IA),B(IA,IC),NROW)

> if (msolver .eq. 0) then

> CALL SOLVE (NPEQ,A(IB),IP(IA),B(IA,IC),NROW)

> else if (msolver .eq. 1) then

90 > call zgetrs("T",NPEQ,NRH,A(IB),nrow,IP(IA),B(IA,IC),NROW,info)

> end if

> 14 continue

(a) Changes to the nec2d code for using the optimized rou-

tines - changes to use the new MS-card.

1 1906c1925

< CALL HSFLD (XI,YI,ZI,0.)

> CALL HSFLD (XI,YI,ZI,0.0d0)

3012c3031

< CALL SFLDS (0.,EGND)

> CALL SFLDS (0.0d0,EGND)

3175c3194

10 < TYPE 1,MSG(IND+2:MSGLEN)

> C TYPE 1,MSG(IND+2:MSGLEN)

3423,3424c3442,3443

< DIMENSION A(1), B(N1C,1), C(N1C,1), D(N2C,1), BX(N1C,1), IP(1), IX

< 1(1)

> DIMENSION A(*), B(N1C,*), C(N1C,*), D(N2C,*), BX(N1C,*), IP(*), IX

> 1(*)

4934c4983

20 < CALL TEST (T01R,T10R,TE1R,T01I,T10I,TE1I,0.)

> CALL TEST (T01R,T10R,TE1R,T01I,T10I,TE1I,0.0d0)

4947c4996

< CALL TEST (T11R,T20R,TE2R,T11I,T20I,TE2I,0.)

> CALL TEST (T11R,T20R,TE2R,T11I,T20I,TE2I,0.0d0)

5442c5491

< CALL TEST (T01R,T10R,TE1R,T01I,T10I,TE1I,0.)

30 > CALL TEST (T01R,T10R,TE1R,T01I,T10I,TE1I,0.0d0)

5458c5507

< CALL TEST (T11R,T20R,TE2R,T11I,T20I,TE2I,0.)

> CALL TEST (T11R,T20R,TE2R,T11I,T20I,TE2I,0.0d0)

5768c5817

< 1),ZLC(ISTEP),0.,0.,0.,’ SERIES ’)

> 1),ZLC(ISTEP),0.0d0,0.0d0,0.0d0,’ SERIES ’)

5771c5820

40 < 1),ZLC(ISTEP),0.,0.,0.,’PARALLEL’)

> 1),ZLC(ISTEP),0.0d0,0.0d0,0.0d0,’PARALLEL’)

5774c5823

< 1),ZLC(ISTEP),0.,0.,0.,’ SERIES (PER METER) ’)

> 1),ZLC(ISTEP),0.0d0,0.0d0,0.0d0,’ SERIES (PER METER) ’)

5777c5826

< 1),ZLC(ISTEP),0.,0.,0.,’PARALLEL (PER METER)’)

50 > 1),ZLC(ISTEP),0.0d0,0.0d0,0.0d0,’PARALLEL (PER METER)’)

5779,5780c5828,5829

< 23 CALL PRNT (LDTAGS,LDTAGF(ISTEP),LDTAGT(ISTEP),0.,0.,0.,ZLR(ISTEP),

< 1ZLI(ISTEP),0.,’FIXED IMPEDANCE ’)

> 23 CALL PRNT (LDTAGS,LDTAGF(ISTEP),LDTAGT(ISTEP),0.0d0,0.0d0,0.0d0,

> 1ZLR(ISTEP),ZLI(ISTEP),0.0d0,’FIXED IMPEDANCE ’)

5782,5783c5831,5832

< 24 CALL PRNT (LDTAGS,LDTAGF(ISTEP),LDTAGT(ISTEP),0.,0.,0.,0.,0.,ZLR(I

< 1STEP),’ WIRE ’)

60 ---

> 24 CALL PRNT (LDTAGS,LDTAGF(ISTEP),LDTAGT(ISTEP),0.0d0,0.0d0,0.0d0,

> 10.0d0,0.0d0,ZLR(ISTEP),’ WIRE ’)

7150c7199

< CALL HSFLD (XI,YI,ZI,0.)

> CALL HSFLD (XI,YI,ZI,0.0d0)

7989c8038

< CALL TEST(TMAG1,TMAG2,TR,0.,0.,TI,DMIN)

70 > CALL TEST(TMAG1,TMAG2,TR,0.0d0,0.0d0,TI,DMIN)

8016c8065

< CALL TEST(TMAG1,TMAG2,TR,0.,0.,TI,DMIN)

> CALL TEST(TMAG1,TMAG2,TR,0.0d0,0.0d0,TI,DMIN)

8336c8385

< DIMENSION A(1), B(N1C,1), C(N1C,1), D(N2CZ,1), IP(1), XY(1)

> DIMENSION A(*), B(N1C,*), C(N1C,*), D(N2CZ,*), IP(*), XY(*)

(b) Changes for double precision.

Fig. 2. Other minor changes.

11

TABLE I

Optimized mathematical subroutine libraries.

Platform Library and Supplier

i86 - Windows Math Kernel Library by Intel
http://developer.intel.com/software/products/mkl/index.htm

i86 - Linux ASCI-RED by University of Tennessee in Kentucky, UTK
http://www.cs.utk.edu/~ghenry/distrib/archive.htm

PPC - AIX ESSL by IBM
http://www.research.ibm.com/mathsci/ams/ams_ESSL.htm

Sparc - Solaris sunperf by SUN
http://www.sun.com/

PA - HP MLIB by HP
http://www.hp.com/

Athlon - Linux Atlas, distributed e.g. by netlib
http://math-atlas.sourceforge.net/

Any - Any Atlas, distributed e.g. by netlib
http://math-atlas.sourceforge.net/

TABLE II

Run Times for 2096 unknowns, original and optimized LAPACK factorization routines

Platform Filling Original LAPACK
Time

Athlon 900 MHz 6.040 s 68.990 s 4.740 s
PA 8200, 240 MHz 18.630 s 237.710 s 6.500 s
PA 8600, 552 MHz 7.120 s 148.200 s 2.810 s

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide. Philadelphia, PA, USA: SIAM, 3 ed., 1999.

[3] J. J. Dongarra, J. du Croz, S. Hammarling, and R. J. Hanson, “An extended set of fortran basic linear algebra subprograms,” ACM
Transactions on Mathematical Software, vol. 14, pp. 1–17, Mar. 1988.

[4] J. J. Dongarra, J. du Croz, S. Hammarling, and I. Duff, “A set of level 3 basic linear algebra subprograms,” ACM Transactions on
Mathematical Software, vol. 16, pp. 1–17, Mar. 1990.

[5] J. J. Dongarra, J. du Croz, S. Hammarling, and I. Duff, “Algorithm 679: A set of level 3 basic linear algebra subprograms: Model
implementation and test programs,” ACM Transactions on Mathematical Software, vol. 16, pp. 18–28, Mar. 1990.

[6] J. J. Dongarra and D. W. Walker, “Software libraries for linear algebra computations on high performance computers,” SIAM Review,
vol. 37, pp. 151–180, June 1995.

[7] B. Kågström, P. Ling, and C. van Loan, “GEMM-based level 3 BLAS: Portability and optimization issues,” ACM Transactions on
Mathematical Software, vol. 24, pp. 303–316, Sept. 1998.

[8] B. Kågström, P. Ling, and C. van Loan, “Algorithm 784: GEMM-based level 3 BLAS: High-performance model implementations and
performance evaluation benchmark,” ACM Transactions on Mathematical Software, vol. 24, pp. 268–302, Sept. 1998.

[9] M. J. Daydé and I. S. Duff, “The RISC BLAS: A blocked implementation of level 3 BLAS for RISC processors,” ACM Transactions on
Mathematical Software, vol. 25, p. 316340, Sept. 1999.

[10] S. Seny, S. Chatterjeez, and N. Dumirx, “Towards a theory of cache-efficient algorithms,” Eleventh ACM-SIAM Symposium on Discrete
Algorithms 2000, vol. 1, Oct. 2000.

[11] R. C. Whaley and J. Dongarra, “Automatically tuned linear algebra software,” tech. rep., Knoxville, Tennessee, USA, 1998.
[12] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical optimization of software and the atlas project,” To ap-

pear in Parallel Computing, 2001. Also avalable as University of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps).

12

