
Benefits and Challenges of GPU Accelerated

Electromagnetic Solvers from a Commercial Point of View

Ulrich Jakobus

Altair Development S.A. (Pty) Ltd.

Stellenbosch, 7600, South Africa

jakobus@altair.com

Abstract ─ This paper discusses the benefits but also

challenges of GPU accelerated electromagnetic solvers

from a commercial point of view, namely using FEKO

as example. Specifically, the effects of some of the

complex interdependencies between different components

are presented. It is shown that despite the advances made

in the field of GPGPU computing, and impressive

speedups for parts of a program or simplified problems,

there are a number of factors to consider before these

techniques can be applied to a commercial product that

is expected to be robust and, most importantly, to always

give trustworthy results for a wide variety of problems.

Index Terms ─ Commercial Solvers, CUDA, FDTD,

FEKO, FEM, GPGPU, GPU Acceleration, MoM,

RL-GO, SBR.

I. INTRODUCTION
In the field of computational electromagnetics

(CEM), a wide range of numerical techniques can be

used to simulate a variety electromagnetic radiation and

scattering problems. One of the primary reasons that

such a wide variety of methods exists, is that no single

method performs best for all problem types [1]. Thus,

one of the first challenges in solving an electromagnetic

problem is to select the method that is best or at least

reasonably suited to the problem of interest.

Even with the optimal method selected, there is still

the matter of the available computational resources to

consider. It may then be that the desired solution takes

hours, days, or even weeks to compute. One of the ways

in which an attempt has been made to increase the

computational power at disposal – thereby decreasing

the time required for a solution – has been to make use

of graphics processing units (GPUs) to perform general

purpose computational tasks, and not just the graphics-

related tasks for which they were originally designed for.

This practice, called general purpose GPU (GPGPU)

computing, has seen a remarkable increase of late, both

in terms of hardware capability, as well as the ease with

which these devices can be programmed [2].

The most common way of programming such

devices is using the Compute Unified Device Architecture

(CUDA) by NVIDIA. This couples a genuinely

programmable hardware architecture with programming

tools that can be used by any developer with a knowledge

of C/C++. Previously, GPGPU programming involved

convincing a GPU to do what one wanted by rewriting

computational routines as graphics programs. Since its

inception, CUDA's hardware/software combination has

evolved to such an extent that the latest generation of

devices can be found in the fastest supercomputers in the

world, with a much more powerful set of software

features available as well.

There has been considerable development and a

large number of papers were published on the GPU

acceleration of CEM methods, for example the Method

of Moments (MoM) [3] and [4], the Finite Element

Method (FEM) [5] and [6], and the method of Shooting

and Bouncing Rays (SBR) [7] and [8]. More general

advances such as in GPU based dense linear algebra

methods can be found, e.g., in [9]. The focus of this paper

is not to add to this (we have done so earlier, e.g., in [10]

or [11]), but instead to present an alternate perspective

on these advances. That is to say the use of GPU

technology as well as the challenges related to it are

considered from the point of view of a commercial CEM

software. To this end, the software package FEKO [12]

is taken as an example. The motivation for this is that

quite often such advances are considered from a purely

academic standpoint, and this leads to a number of short-

comings and challenges being overlooked.

Section II gives a short introduction on the FEKO

solution kernel and the various CEM methods that are

supported by it. This serves as background for a

discussion on the difficulties associated with the GPU

acceleration of a commercial CEM software package

such as FEKO in Section III, and a short discussion of

GPU accelerated solvers that exist in FEKO or are under

development in Section IV. The paper is concluded in

Section V, where a discussion on future paths to facilitate

further GPU acceleration is included.

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 117

1054-4887 © 2016 ACES

Submitted On: August 28, 2015
Accepted On: January 24, 2016

II. THE FEKO SOLUTION KERNEL
As already mentioned, a number of CEM methods

exist which have their own strengths and weaknesses,

and which can solve various problems of interest with

varying degrees of success. It is thus important that a

commercial CEM code such as FEKO implements a

number of these methods to allow it to be competitive for

a large selection of target application areas.

Figure 1 shows the various solution techniques

available in FEKO for the solution of RF/microwave

problems. Two factors influencing the choice of solution

method – the electrical size of the problem being

considered and the complexity of the materials being

simulated – are indicated on the axes. The possibility of

hybridizing various methods exists, and this allows for

the solution of more complex problems by selecting the

best solution method for different regions of the same

problem with full bi-directional coupling between them.

Fig. 1. A diagram depicting the various computational

methods in FEKO. The hybridization that exists between

some of the methods is also shown by green arrows.

III. CHALLENGES IN GPU

ACCELERATION
In any software development, it is required that the

available resources be allocated to maximize the

delivered value in the software project. How value is

determined is specific to each project, and may also

differ greatly between the academic and commercial

environments. In the commercial environment, for

example, the number of customers with capable

hardware demanding or being able to use GPU

acceleration directly influences the relative value of

GPU accelerated extensions when compared to other

feature extensions. Academic development may, on the

other hand, place a high importance on novelty for use in

academic publications.

A. Versatility, reliability, and reproducibility

Many academic publications on the topic of

accelerated CEM codes consider a small number of

examples to illustrate the applicability or performance

improvements of a specific method. These examples are

often simple or canonical problems, which may play to

the strengths of the method being considered, and also

may not exceed the resources – such as available

memory – of the GPU being used for acceleration.

In the commercial setting, there is no such control

over which examples are being considered, and

customers expect accurate results for a wide variety of

problems. This not only imposes heavy resource

requirements for additional validation and verification of

the accelerated methods, but also in the detection of

possible problem cases at run-time (such as running out

of GPU memory and then switching automatically to

block based algorithms or switching the computations on

the fly back to the CPU), and handling these in a well-

rounded and user friendly way.

B. Variety of CEM methods

The various computational methods included in the

FEKO solution kernel and discussed in Section II have

their own strengths and weaknesses when it comes to the

solution of CEM problems. In addition, each of these

methods present its own challenges in parallelization in

general (MPI, OpenMP, etc.), and in GPU computing

specifically.

Take the Methods of Moment (MoM) and the Finite

Element Method (FEM) as examples. These are both

matrix-based methods which require the construction,

and (for driven problems) the subsequent solution of a

linear system of equations. It is also possible to formulate

certain classes of problems in each method as

generalized eigenvalue problems.

At this point it may seem as if these two methods

would be amenable to similar approaches when

considering them for GPU acceleration. The situation is,

however, that the linear system which results as part of a

MoM computation is dense, whereas that associated with

the FEM is a sparse system. Although GPU tools exit for

the solution of both types of systems, the difference in

performance of dense and sparse computation on a GPU

means that the realized speedup will differ significantly.

Furthermore, the effect of the other phases in the solution

process (e.g., matrix fill) must also be taken into

consideration and will be discussed in Section IV.

C. Software and design decisions

Another important factor regarding the adoption of

GPU acceleration in an existing commercial CEM

package are design and development decisions such as

the language of implementation and low-level program

118 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

flow, which if – if not selected carefully – may not map

well to massively parallel architectures such as GPUs.

CUDA was already mentioned as programming

language to support NVIDIA cards. In the OpenMP 4.0

standard, for example, provision has been made for the

use of accelerators. OpenMP is a directive-based, open

standard which provides a portable means to parallelize

code over a number of threads. The inclusion of the

concept of accelerators and the associated operations,

means that the importance of such technologies has been

recognized. Furthermore, since the directives are

platform agnostic, acceleration would in theory not be

limited to a particular set of devices – such as NVIDIA

GPUs when using CUDA – but the same code could be

used to run on multi-core CPUs, GPUs by other vendors,

and other accelerator technologies such as Intel's Xeon

Phi coprocessors. There is also OpenCL, kind of being

in the middle between CUDA and OpenMP. In FEKO,

all three techniques (OpenCL, OpenMP, and CUDA) are

being explored and partially used, but all the following

GPU discussions refer to CUDA specifically.

Considering that many of the GPGPU programming

tools are centered on C/C++ implementations, the options

for the acceleration of for instance FORTRAN based

routines generally involve rewriting large portions of

code in C/C++, or switching to FORTRAN compilers

that do support GPU computing. Any rewriting

introduces the risk of introducing new bugs, increasing

the need for proper tuning, testing and software

verification.

In terms of switching compilers, there are also a

number of factors to consider. One of the biggest

problems is the loss of productivity – possibly for a

whole development team – due to changes required in

build processes and utilities, the introduction of

unforeseen bugs caused by incompatible compiler

options, and bugs in the compilers themselves.

IV. GPU ACCELERATION IN FEKO

A. The Method of Moments

As discussed in Section III, the MoM requires the

assembly and solution of a dense linear system with

other steps followed like near or far field calculations.

The run-time for the assembly of the matrix is quadratic

in terms of the number of unknowns, whereas that of the

solution of the linear system is cubic. The post-

processing is typically linear in terms of the number of

unknowns and linear in terms of the number of far field

directions/near field observation points etc. It follows

that as the problem size gets larger, the matrix solution

phase will dominate the overall run-time.

The matrix solution phase can be isolated and

accelerated using libraries such as MAGMA [9] or

cuSOLVER (available as part of CUDA since version

7.0). Unfortunately, even though it can be accelerated by

up to an order of magnitude, the total simulation

acceleration is significantly less, with the matrix

assembly phase now dominating the run-time. Even

though considerable speedups can be attained for this

matrix fill phase in simplified MoM code [3], a

considerable amount of development resources need to

be invested for a FEKO implementation due to the

complex nature of the code (many different basis

functions, higher order on curvilinear meshes,

Sommerfeld integrals for planar Green’s functions etc.).

B. The Finite Element Method

Another matrix-based method implemented in

FEKO is the FEM. In contrast to the MoM, the matrices

are sparse, but many of the same challenges present

themselves when the GPU acceleration of the method is

considered.

Here, the phases of the solution process which

contribute most significantly to the total simulation time

are the construction of the relevant preconditioner and

the subsequent solution of the sparse linear system.

FEKO uses by default iterative solvers for a single right

hand side which – with the right preconditioners –

provide according to our experience faster solution times

than direct sparse solvers and in particular use less

memory.

For the solution of FEM linear system, a simple

iterative solver can be expected to show a 2-5x

performance improvement when running on a GPU, but

for most problem sizes where the amount of GPU

memory is not a limitation, this translates into a

simulation speedup of only 50% as the other phases start

dominating.

Further acceleration is hampered by the sheer

number of preconditioning options available in a

software such as FEKO. In addition, differences in

matrix representation and the lack of complex value

support in available third-party libraries make the use of

a standalone approach – as was done with the MoM

matrix solution – problematic.

C. Ray launching Geometrical Optics

Along Uniform Theory of Diffraction (UTD) and

Physical Optics (PO), the Ray Launching Geometrical

Optics (RL-GO) solver – which is sometimes referred to

as Shooting and Bouncing Rays (SBR) – is ideal for the

analysis of electrically large and complex objects. It

is inherently parallel and is well suited to GPU

acceleration. As an initial proof of concept, we were able

to accelerate the calculation of the intersections of rays

with geometry in FEKO by at least an order of magnitude

when using CUDA.

However, this was handwritten CUDA code. It is

not possible to simply run the RL-GO code through

a GPU aware compiler and obtain an accelerated

implementation with similar performance. Furthermore,

the complexity and recursive nature of the code means

JAKOBUS: GPU ACCELERATED ELECTROMAGNETIC SOLVERS - A COMMERCIAL POINT OF VIEW 119

that GPU specific limits such as smaller stack size must

be addressed as well.

D. Finite Difference Time Domain Method

In much the same way that the RL-GO solver is

algorithmically well suited to GPU acceleration, the

Finite Difference Time Domain (FDTD) method lends

itself well to such parallelization. Much of this stems

from the fact that the same simple update equations are

applied to each voxel in each time step with (almost) no

communication required between adjacent updates. As is

indicated in Fig. 1, one advantage of the acceleration of

the FDTD over the RL-GO solver in FEKO is that there

is as yet no hybridization of FDTD with other methods

and thus, less complexity to be considered.

The FDTD solver implemented in FEKO makes

used of GPU acceleration to provide roughly an order

of magnitude speedup for certain problems. One

disadvantage of such a speedup is that from a user’s

perspective, the relative performance of post-processing

phases such as the calculation of far fields is significantly

lower.

For both CPU and GPU based FDTD solvers, the

measured performance is greatly affected by the problem

setup, which includes factors such as user-requested near

fields or the far fields already mentioned. If these are in

the frequency domain, for example, then additional

costly computations are required during every simulation

time step.

V. CONCLUSION
In this paper, a discussion on the challenges

associated with the GPU acceleration of the commercial

CEM software package FEKO was presented. This

showed that although a method may be promising

theoretically, its application in commercial software

generally requires the allocation of significant

development resources, with at this stage not always the

necessary demand from the market.

As examples, the acceleration of the MoM, FEM,

and RL-GO were considered, and although certain

phases of the computational process can be accelerated

significantly, the total simulation speedup is limited. The

further acceleration of these methods is hampered by the

complexity of the numerical algorithms, e.g., through

hybridization. As illustrated, for FDTD, the situation is

different.

REFERENCES
[1] D. B. Davidson, Computational Electromagnetics

for RF and Microwave Engineers, 2nd ed.,

Cambridge: Cambridge University Press, 2011.

[2] D. B. Kirk and W. W. Hwu, Programming

Massively Parallel Processors – A Hands-on

Approach, Burlington: Morgan Kaufmann, 2010.

[3] E. Lezar and D. B. Davidson, “GPU-accelerated

methods of moments by example: monostatic

scattering,” IEEE Antennas and Propagation

Magazine, vol. 52, no. 6, pp. 120-135, Dec. 2010.

[4] M. J. Inman, A. Z. Elsherbeni, and C. J. Reddy,

“CUDA based GPU solvers for method of moment

simulations,” Annual Review of Progress in

Applied Computational Electromagnetics, Tampere,

Finland, Apr. 2010.

[5] E. Lezar and D. B. Davidson, “GPU-based Arnoldi

factorization for accelerating finite element

eigenanalysis,” International Conference on

Electromagnetic in Advanced Applications (ICEAA),

Torino, Italy, Sept. 2009.

[6] A. Dziekonski, A. Lamecki, and M. Mrozowski,

“On fast iterative solvers with GPU acceleration

for finite elements in electromagnetics,” 10th

International Workshop on Finite Elements for

Microwave Engineering, Mill Falls, NH, USA,

Oct. 2010.

[7] K. E. Spagnoli, An Electromagnetic Scattering

Solver Utilizing Shooting and Bouncing Rays

Implemented on Modern Graphics Cards, ProQuest,

2008.

[8] Y. Tao, H. Lin, and H. Bao, “GPU-based shooting

and bouncing ray method for fast RCS prediction,”

IEEE Trans. Antennas Propagat., vol. 58, no. 2,

pp. 494-502, 2010.

[9] ICL, University Tennessee, Knoxville, “MAGMA:

Matrix Algebra on GPU and Multicore

Architectures,” 2015. [Online]. Available: http://icl.cs.

utk.edu/magma/index.html

[10] E. Lezar and U. Jakobus, “GPU accelerated

electromagnetic simulations with FEKO,”

International Supercomputing Conference,

Hamburg, June 2012.

[11] E. Lezar, U. Jakobus, and S. Kodiyalam, “GPU

related advances in the FEKO electromagnetic

solution kernel,” International Conference on

Electromagnetics in Advanced Applications

(ICEAA), Torino, Italy, Sept. 2013.

[12] Altair Development S.A. (Pty) Ltd, “FEKO – Field

Computations Involving Bodies of Arbitrary Shape,”

2016. [Online]. Available: www.altairhyperworks.

com/feko

120 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

