
Porting an Explicit Time-Domain Volume Integral Equation Solver onto

Multiple GPUs Using MPI and OpenACC

Saber Feki 1, Ahmed Al-Jarro 3, and Hakan Bagci 2

1 KAUST Supercomputing Laboratory
2 Division of Computer, Electrical and Mathematical Sciences and Engineering

King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, KSA

{saber.feki, hakan.bagci}@kaust.edu.sa

3 Department of Electronic and Electrical Engineering

University College London, Torrington Place, WC1E 7JE, London, UK

ahmed.aljarro@ucl.ac.uk

Abstract ─ A scalable parallelization algorithm to port

an explicit marching-on-in-time (MOT)-based time

domain volume integral equation (TDVIE) solver onto

multi-GPUs is described. The algorithm makes use of

MPI and OpenACC for efficient implementation. The

MPI processes are responsible for synchronizing and

communicating the distributed compute kernels of the

MOT-TDVIE solver between the GPUs, where one MPI

task is assigned to one GPU. The compiler directives of

the OpenACC are responsible for the data transfer and

kernels’ offloading from the CPU to the GPU and their

execution on the GPU. The speedups achieved against

the MPI/OpenMP code execution on multiple CPUs and

parallel efficiencies are presented.

Index Terms ─ Explicit marching-on-in-time scheme,

GPU, MPI, OpenACC, time-domain volume integral

equation.

I. INTRODUCTION
The use of hardware accelerators, including multi

and many-core architectures, has been increasing in

many emerging applications of high performance

computing (HPC) as they provide cost effectiveness,

power efficiency, and physical density. Nevertheless,

one of the limiting factors to a wider spread use of multi-

core accelerators, such as GPUs, is the human-labor

intensive porting process required by low-level

programming models, such as CUDA [1] and OpenCL

[2]. To overcome this limit, HPC research has focused

on developing high-level directive based programming

models, such as OpenACC [3], which provide compiler

directives and clauses to annotate codes originally

developed for CPUs in a manner similar to how OpenMP

[4] is used on codes executed on multicore CPU

architectures. This high-level approach, when carefully

implemented, significantly reduces the re-programming

efforts while maintaining the efficiency of the resulting

codes.

In this work, we report on our recent efforts on

parallelizing a fully explicit marching-on-in-time (MOT)-

based time-domain volume integral equation (TDVIE)

solver [5] for efficient execution on multiple GPUs.

The MOT-TDVIE solvers are becoming attractive

alternatives to finite difference time domain (FDTD)

schemes for analyzing transient electromagnetic

scattering from inhomogeneous dielectric objects [5, 6].

However, their effective use in practical problems of

photonics, optoelectronics, and bio-electromagnetics,

where electrically large scatterers need to be discretized

with millions of degrees of freedom, relies on

acceleration algorithms such as the plane-wave time

domain (PWTD) method [7] and/or hardware-based

acceleration [8-11].

Our recent research has focused on the latter; we

developed highly scalable parallelization algorithms [8,

9] to enable the explicit MOT-TDVIE solver of [5] in

analyzing scattering from electrically large structures.

Additionally, we used OpenACC to enable the execution

of the same solver on GPUs [10, 11]. Significant

performance improvements with up to 30X and 11X

speedups relative to the sequential and multi-threaded

CPU codes were achieved. Furthermore, we demonstrated

that the (single) GPU-accelerated MOT-TDVIE solver

could leverage energy consumption gains on the order of

3X relative to its multi-threaded CPU version [10]. In

this paper, we describe in detail the process of porting

the same MOT-TDVIE solver onto multi-GPUs using

MPI/OpenACC. Additionally, we present numerical

results, which demonstrate that the ported code executes

up to 11.2X faster on multi-GPUs than on conventional

CPUs.

ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016 129

1054-4887 © 2016 ACES

Submitted On: September 20, 2015
Accepted On: July 4, 2016

II. MOT-TDVIE SOLVER

A. MOT-TDVIE algorithm

Let V represent the volumetric support of dielectric

scatterer with permittivity () r residing in an unbounded

background medium with permittivity
0 . The scatterer

is excited by a band-limited incident electric field

0 (,).tE r Upon excitation, scattered field sca (,)tE r

is generated. Scattered and incident fields satisfy

E(r,t) = E

0
(r,t) + E

sca (r,t), where (,)tE r is the unknown

“total” field. One can construct a TDVIE as [5, 6]:

 2

0 0(,) (,) (,), ,tt t c t V     E r E r A r r (1)

where (,)tA r is given by:

 0 0

0

()() (,)
(,) , .

4V

t R c
t dv V

R

 



  
  

r E r
A r r (2)

Here, 0c is the speed of light in the background medium,

and R  r r is the distance between points r and .r

TDVIE (1) is solved by time marching, which makes use

of an explicit predictor-corrector algorithm as described

next [5]. First V is discretized using
eN cubic elements.

Let kr ,

k = 1: N

e
, and t represent the centers of these

elements and time step size..Assume n represents the

index of the “current” time step. At the predictor step, first

, (,)k n k n t A A r are computed using
, (,),l m l m t E E r

l = 1: N

e
, max(1,) :gm n N n t   , in the integral given

in (2). For this operation,
,(,) l mm t E r E is assumed

within cubic element l and linear interpolation is used to

approximate
0(, /)l kln t R c E r , where

kl k lR  r r , from

, 1l mE and El ,m for
0[1] / .klm t n t R c m t       Note

that here max 0/ 2gN R c t     , where

R

max
= max{R

kl
},

for any , .k l Vr r Then, finite differences (FD), which

approximate the spatial derivative operator “”, are

applied to
,k nA to yield “predicted” samples , .k nE

Differentiation “ 2t ” in (1) is approximated using

backward FD for pairs (,)k lr r that satisfy
02klR c t 

and using central FD for all other pairs. At the corrector

step, differentiation “ 2t ” is recomputed using a central

difference formula for pairs (,)k lr r that only satisfy

02 .klR c t  Note that use of central FD is now allowed

since field samples that are not known at the predictor

step (due to causality) can now be replaced by the

predicted fields’ samples. At the end of time step ,n

,k mE are stored as part of the “history” of field samples

to be used in the computation of Ak ,n+1
.

Note that FD evaluations and corrector updates are

spatially local operations while computation of Ak ,n
,

k = 1: Ne
, is global. Samples El ,m

 that satisfy the

condition
0[] kln m c t R   do not contribute to Ak ,n

since the fields radiated from point rl at time m t have

not yet reached point rk at time n t . This also means

that for
gn N , all fields radiated from all points reach

to all other points. Consequently, they all contribute to

all samples Ak ,n
, k = 1: Ne

, rendering the computational

cost of the integral evaluation O(Ne

2) per time step for

all gn N . As Ne increases, the cost of computing Ak ,n

limits the solver’s applicability to electrically large

problems. This limitation can be overcome by using

acceleration algorithms such as the PWTD method [6-7]

and/or highly scalable parallelization algorithms [8-11]. In

this work, we implement and fine-tune the parallelization

algorithm of [8, 9], which is originally developed for

CPUs, for multi-GPUs to further increase the applicability

of the MOT-TDVIE solver to electrically large problems.

B. MPI parallelization

Operations required by the MOT-TDVIE solver at

each time step can be grouped into two: (i) computation

of Ak ,l
, 1: ek N , which requires access to samples

,l n mE , l = 1: Ne
, 1: min(1,)gm n N  and (ii)

computation of samples Ek ,n
 by applying FD to Ak ,n

.

The parallelization scheme used here, first, ensures the

even distribution of the memory via application of the

graph-based partitioning scheme to the distribution of

the points
kr , k = 1: Ne, representing the discretization of

V . This results in an unstructured partitioning of the

points
kr [9]. In this partitioning, each process stores

only
,k nE and

,l n mE that belong to the partition

assigned to it. The computational load of step (i) is

distributed using a one-way pipeline communication

strategy, so-called the “rotating tiles” paradigm [8]. The

test tiles (partitions that contain test points) are initially

same as the source titles (partitions that contain source

points) at the beginning of the rotation but they are

rotated among the processors during the computation of

Ak ,l
. When a processor receives a test tile, it first adds

the contribution from the source titles it stores to Ak ,l

associated with the received test tile, then it passes the

(updated) tile to its “neighboring” processor. At the end

of a full rotation all contributions to Ak ,l
 are computed.

It is noted here that, this strategy eliminates the need for

globally executed collective routines such as MPI_Reduce

[8]. The computational load of step (ii) is distributed

using the same grouping of the test points provided

by the graph-partitioning algorithm. This reduces the

communication costs associated with spatial FD

computations by ensuring that the data communication

only happens between points residing on the boundary of

any two partitions [9].

III. PORTING TO MULTIPLE GPUS

The state-of-the-art GPU-nodes can include up to 8

K80 GPUs, which is essentially equivalent to having 16

independent GPUs. On the other hand, OpenACC

standard, as a stand-alone programming model, provides

very limited support for code development on multiple

devices. Therefore, one typically relies on using

OpenACC/OpenMP together with the MPI standard to

port codes onto a cluster of nodes equipped with multiple

GPUs/multicore CPUs. In this work, OpenACC is used

to accelerate the time marching loop of the MOT-TDVIE

130 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

solver. Both memory- and compute-bound operations

are executed on GPUs, which benefit from the improved

memory bandwidth and higher flop rate, respectively.

However, because the amount of compute-bound

operations is significantly higher that memory-bound

operations, benefits from increased memory bandwidth

might be considered negligible. The main advantages of

OpenACC over CUDA are the significantly increased

programming efficiency and code portability on different

hardware platforms. More specifically, OpenACC offers

an easy way to port codes onto accelerators using simple

descriptive compiler directives. Additionally, the same

OpenACC-annotated code can be compiled on different

hardware platforms, including the host itself (multicore

CPU architecture) as well as any other accelerator

supported by the OpenACC standard. In contrast, the

CUDA programming model is more tedious to

implement and can be used on only NVIDIA GPUs.

The code is designed such that the number of MPI

processes spawn on each node is equal to the number of

GPUs per node. Each MPI process is assigned to a GPU

using the runtime API function acc_set_device_num to

set the GPU target to the MPI rank modulo the number

of GPUs per node, as shown in the pseudo code in Fig.

1. The data directive #pragma acc data is applied to the

outermost time loop in order to minimize data transfers

between the host and the device. Input and output arrays

are annotated with clauses present_or_copyin and

present_or_copyout, respectively. However, the arrays

needed for the MPI communications, which are of very

limited memory size, are copied in and out at each

iteration so that they are accessible to the MPI routines.

Each enclosed code block in the MOT-TDVIE solver is

annotated with #pragma acc kernels and offloaded to the

assigned GPU. The code blocks implementing the

computation of Ak ,l
 consist of two nested loops yielding

a quadratic computational complexity. The second loop

is further annotated with #pragma acc loop reduction

and the associated variables to further optimize the sum

operation of all source contributions. The OpenACC

standard offers the ability to further tune loop execution

using the gang and vector clauses, which can be used to

modify the number of blocks of threads and threads per

block to be executed, respectively. Since there are only

two nested loops in the kernels of the parallel MOT-

TDVIE solver, values assigned to these two parameters

by the compiler already result in good performance

improvements. Having said that, tuning these parameters

in the presence of three or more nested loops may

significantly increase the performance. Indeed, this was

demonstrated for the serial version of the code, with

structured grid, when executed on single GPUs. The

tuning of these two parameters improved the acceleration

performance by up to 23X [10]. For some of the loops

that are not parallelized by the compiler due to perceived

false data dependencies, the code block is annotated with

the loop pragma accompanied with the independent

clause to avoid unnecessary synchronization between the

loop iterations in absence of data dependencies. Note

that, the code design using multi-GPU kernels allows for

MPI synchronizations and communications to take place

between the compute kernels as necessary. That is the

case with the rotating tiles communications implemented

to compute Ak ,l
, and the halo cells exchange

communications implemented to compute Ek ,n
using FD.

Fig. 1. Pseudo code for the implementation of the MOT-

TDVIE solver using MPI and OpenACC.

IV. NUMERICAL EXPERIMENTS
The test bed used for performance evaluation

consists of a system of two nodes connected using an

Infiniband FDR high-speed network. Each node is a dual

socket CPU system hosting four NVIDIA Kepler K20c

GPUs. Each socket is an eight-core Sandy Bridge

// Get number of MPI processes = # of GPUs
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
// Assign each MPI process to a GPU
acc_set_device_num(rank%ngpus,acc_device_nvidia);

#pragma acc data present_or_copyin(input
arrays) present_or_copyout(output arrays)

for (int t=0; t<nt; ++t) { // time loop
 for(rot=0; rot<=size; ++rot){
 // MPI communication for rotating tiles
 MPI_Sendrecv();
 MPI_Barrier();
 #pragma acc kernels
 // Spatio-temporal convolutions

 for (int k=0; k<Ne; ++k){
#pragma acc loop reduction
for (int l=0; l<Ne; ++l){

A[t][k] = A[t-tkl][l] + ...
 } }
 MPI_Barrier();
 // Loops with no data dependencies

 #pragma acc kernels
 #pragma acc loop independent
 for(i=0; i<ni; ++i){

 }
 } // end rotation

 // MPI communication for Halo Exchange
 MPI_Sendrecv();
 MPI_Barrier();
 #pragma acc kernels
 // spatial finite difference operations

 for (int k=0; k<Ne; ++k){

 B[t][k] = A[t][k] +
 }
} // end time loop

FEKI, ET AL.: PORTING EXPLICIT TDVIE SOLVER ONTO MULTIPLE GPUS USING MPI AND OPENACC 131

Intel(R) Xeon(R) CPU E5-2650.

In our performance evaluation, as shown in Fig. 2,

a significant speedup ranging from 7.4X to 11.2X

is recorded comparing the MPI and OpenMP

implementation on 16 cores SandyBridge to the MPI and

OpenACC implementation on four K20c GPUs. It is

also observed that as Ne
 increases, higher speedup is

achieved. This is due to the fact that the GPUs are

supplied with larger computational loads; therefore,

taking better advantage of its computational capacity. It

has been shown before that the MPI implementation

demonstrated a great scalability on large super-computers

[8-9]. Figure 3 shows the parallel efficiency of the MPI

and OpenACC implementation executed on two and

eight GPUs, which ranges from 82% to 94%. Another

advantage of using NVIDIA GPUs is their energy

efficiency as the simulation consumed 2.4X less energy

on GPUs than on CPUs. For all of the above, the GPUs

are identified as the preferred computing platform in our

overall performance analyses of the explicit MOT-

TDVIE solver.

Fig. 2. Performance speedup of MPI and OpenACC on

four K20c GPUs compared to MPI and OpenMP on 16

cores SandyBridge CPU.

Fig. 3. Parallel efficiency of the MPI and OpenACC

implementation scaling from two to eight GPUs.

V. CONCLUSION
The porting of the explicit MOT-TDVIE solver

using MPI and OpenACC to multi-GPUs resulted in a

highly efficient implementation. The simulations

executed on multi-GPUs were faster by up to an order of

magnitude compared to those executed on CPUs (using

the MPI and OpenMP version of the code). The OpenACC

API has the advantage of easily porting the MPI code

to multi-GPU environment; therefore, increases the

developer productivity while keeping the legacy of the

original CPU code. Furthermore, the parallelization

allows the explicit TDVIE solver to efficiently simulate

transient electromagnetic wave interactions on electrically

large structures discretized using a large number of

spatial elements on GPUs.

REFERENCES
[1] CUDA, www.nvidia.com, 2016.

[2] OpenCL, www.khronos.org/opencl, 2016.

[3] OpenACC, www.openacc-standard.org, 2016.

[4] OpenMP, www.openmp.org, 2016.

[5] A. Al-Jarro, M. A. Salem, H. Bagci, T. M. Benson,

P. Sewell, and A. Vukovic, “Explicit solution of

the time domain volume integral equation using a

predictor-corrector scheme,” IEEE Trans. Antennas

Propag., vol. 60, no. 11, pp. 5203-5214, 2012.

[6] N. T. Gres, A. A. Ergin, E. Michielssen, and B.

Shanker, “Volume-integral-equation-based analysis

of transient electromagnetic scattering from three-

dimensional inhomogeneous dielectric objects,”

Radio Sci., vol. 36, no. 3, pp. 379-386, May 2001.

[7] Y. Liu, A. Al-Jarro, H. Bagcı, and E. Michielssen,

“Parallel PWTD-accelerated explicit solution of

the time domain electric field volume integral

equation,” IEEE Trans. Antennas Propag., vol. 64,

no. 6, pp. 2378-2388, 2016.

[8] A. Al-Jarro, M. Cheeseman, and H. Bagci, “A

distributed-memory parallelization of the explicit

time-domain volume integral equation solver using

a rotating tiles paradigm,” in Proc. 28th Int. Review

of Progress in Appl. Comp. Electromagn., 2012.

[9] A. Al-Jarro and H. Bagci, “An unstructured mesh

partitioning scheme for efficiently parallelizing an

explicit time domain volume integral equation

solver,” in Proc. 29th Int. Review of Progress in

Appl. Comp. Electromagn., 2013.

[10] S. Feki, A. Al-Jarro, A. Clo, and H. Bagci, “Porting

an explicit time-domain volume-integral-equation

solver on GPUs with OpenACC,” IEEE Antennas

Propag. Mag., vol. 56, pp. 265-277, 2014.

[11] S. Feki, A. Al-Jarro, and H. Bagci, “Multi-GPU-

based acceleration of the explicit time domain

volume integral equation solver using MPI-

OpenACC,” in Proc. IEEE Int. Symp. Antennas

Propag. and USNC/URSI National Radio Sci.,

Meet., 2013.

6

7

8

9

10

11

12

77K 176K 571K 1.09M

S
p

ee
d

u
p

Ne

0%

20%

40%

60%

80%

100%

77K 176K 571K 1.09M

P
ar

al
le

l
ef

fi
ci

en
cy

Ne

132 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016

