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Abstract ─ A scalable parallelization algorithm to port 

an explicit marching-on-in-time (MOT)-based time 

domain volume integral equation (TDVIE) solver onto 

multi-GPUs is described. The algorithm makes use of 

MPI and OpenACC for efficient implementation. The 

MPI processes are responsible for synchronizing and 

communicating the distributed compute kernels of the 

MOT-TDVIE solver between the GPUs, where one MPI 

task is assigned to one GPU. The compiler directives of 

the OpenACC are responsible for the data transfer and 

kernels’ offloading from the CPU to the GPU and their 

execution on the GPU. The speedups achieved against 

the MPI/OpenMP code execution on multiple CPUs and 

parallel efficiencies are presented. 

Index Terms ─ Explicit marching-on-in-time scheme, 

GPU, MPI, OpenACC, time-domain volume integral 

equation. 

I. INTRODUCTION
The use of hardware accelerators, including multi 

and many-core architectures, has been increasing in 

many emerging applications of high performance 

computing (HPC) as they provide cost effectiveness, 

power efficiency, and physical density. Nevertheless, 

one of the limiting factors to a wider spread use of multi-

core accelerators, such as GPUs, is the human-labor 

intensive porting process required by low-level 

programming models, such as CUDA [1] and OpenCL 

[2]. To overcome this limit, HPC research has focused 

on developing high-level directive based programming 

models, such as OpenACC [3], which provide compiler 

directives and clauses to annotate codes originally 

developed for CPUs in a manner similar to how OpenMP 

[4] is used on codes executed on multicore CPU

architectures. This high-level approach, when carefully

implemented, significantly reduces the re-programming 

efforts while maintaining the efficiency of the resulting 

codes.  

In this work, we report on our recent efforts on 

parallelizing a fully explicit marching-on-in-time (MOT)-

based time-domain volume integral equation (TDVIE) 

solver [5] for efficient execution on multiple GPUs. 

The MOT-TDVIE solvers are becoming attractive 

alternatives to finite difference time domain (FDTD) 

schemes for analyzing transient electromagnetic 

scattering from inhomogeneous dielectric objects [5, 6]. 

However, their effective use in practical problems of 

photonics, optoelectronics, and bio-electromagnetics, 

where electrically large scatterers need to be discretized 

with millions of degrees of freedom, relies on 

acceleration algorithms such as the plane-wave time 

domain (PWTD) method [7] and/or hardware-based 

acceleration [8-11].  

Our recent research has focused on the latter; we 

developed highly scalable parallelization algorithms [8, 

9] to enable the explicit MOT-TDVIE solver of [5] in

analyzing scattering from electrically large structures.

Additionally, we used OpenACC to enable the execution

of the same solver on GPUs [10, 11]. Significant

performance improvements with up to 30X and 11X

speedups relative to the sequential and multi-threaded

CPU codes were achieved. Furthermore, we demonstrated

that the (single) GPU-accelerated MOT-TDVIE solver

could leverage energy consumption gains on the order of

3X relative to its multi-threaded CPU version [10]. In

this paper, we describe in detail the process of porting

the same MOT-TDVIE solver onto multi-GPUs using

MPI/OpenACC. Additionally, we present numerical

results, which demonstrate that the ported code executes

up to 11.2X faster on multi-GPUs than on conventional

CPUs.
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II. MOT-TDVIE SOLVER 

A. MOT-TDVIE algorithm 

Let V  represent the volumetric support of dielectric 

scatterer with permittivity ( ) r  residing in an unbounded 

background medium with permittivity 
0 . The scatterer 

is excited by a band-limited incident electric field 

0 ( , ).tE r  Upon excitation, scattered field sca ( , )tE r   

is generated. Scattered and incident fields satisfy 

   
E(r,t) = E

0
(r,t) + E

sca (r,t), where ( , )tE r  is the unknown 

“total” field. One can construct a TDVIE as [5, 6]: 

 2

0 0( , ) ( , ) ( , ),  ,tt t c t V     E r E r A r r  (1) 

where ( , )tA r  is given by: 

 0 0

0

( )( ) ( , )
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4V

t R c
t dv V

R

 


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r E r
A r r  (2) 

Here, 0c  is the speed of light in the background medium, 

and R  r r  is the distance between points r  and .r  

TDVIE (1) is solved by time marching, which makes use 

of an explicit predictor-corrector algorithm as described 

next [5]. First V is discretized using 
eN  cubic elements. 

Let kr , 
  
k = 1: N

e
, and t  represent the centers of these 

elements and time step size..Assume n  represents the 

index of the “current” time step. At the predictor step, first 

, ( , )k n k n t A A r  are computed using 
, ( , ),l m l m t E E r  

  
l = 1: N

e
, max(1, ) :gm n N n t   , in the integral given 

in (2). For this operation, 
,( , ) l mm t E r E  is assumed 

within cubic element l  and linear interpolation is used to 

approximate 
0( , / )l kln t R c E r , where 

kl k lR  r r , from 

, 1l mE  and El ,m  for 
0[ 1] / .klm t n t R c m t        Note 

that here max 0/ 2gN R c t     , where 
  
R

max
= max{R

kl
}, 

for any , .k l Vr r  Then, finite differences (FD), which 

approximate the spatial derivative operator “”, are 

applied to 
,k nA  to yield “predicted” samples , .k nE  

Differentiation “ 2t ” in (1) is approximated using 

backward FD for pairs ( , )k lr r  that satisfy 
02klR c t   

and using central FD for all other pairs. At the corrector 

step, differentiation “ 2t ” is recomputed using a central 

difference formula for pairs ( , )k lr r  that only satisfy 

02 .klR c t   Note that use of central FD is now allowed 

since field samples that are not known at the predictor 

step (due to causality) can now be replaced by the 

predicted fields’ samples. At the end of time step ,n  

,k mE  are stored as part of the “history” of field samples 

to be used in the computation of Ak ,n+1
. 

Note that FD evaluations and corrector updates are 

spatially local operations while computation of Ak ,n
, 

k = 1: Ne
, is global. Samples El ,m

 that satisfy the 

condition 
0[ ] kln m c t R    do not contribute to Ak ,n

 

since the fields radiated from point rl  at time m t  have 

not yet reached point rk  at time n t . This also means 

that for 
gn N , all fields radiated from all points reach 

to all other points. Consequently, they all contribute to 

all samples Ak ,n
, k = 1: Ne

, rendering the computational 

cost of the integral evaluation O(Ne

2 ) per time step for 

all gn N . As Ne  increases, the cost of computing Ak ,n
 

limits the solver’s applicability to electrically large 

problems. This limitation can be overcome by using 

acceleration algorithms such as the PWTD method [6-7] 

and/or highly scalable parallelization algorithms [8-11]. In 

this work, we implement and fine-tune the parallelization 

algorithm of [8, 9], which is originally developed for 

CPUs, for multi-GPUs to further increase the applicability 

of the MOT-TDVIE solver to electrically large problems. 

 
B. MPI parallelization 

Operations required by the MOT-TDVIE solver at 

each time step can be grouped into two: (i) computation 

of Ak ,l
, 1: ek N , which requires access to samples 

,l n mE , l = 1: Ne
, 1: min( 1, )gm n N   and (ii) 

computation of samples Ek ,n
 by applying FD to Ak ,n

. 

The parallelization scheme used here, first, ensures the 

even distribution of the memory via application of the 

graph-based partitioning scheme to the distribution of 

the points 
kr , k = 1: Ne, representing the discretization of 

V . This results in an unstructured partitioning of the 

points 
kr  [9]. In this partitioning, each process stores 

only 
,k nE  and 

,l n mE  that belong to the partition 

assigned to it. The computational load of step (i) is 

distributed using a one-way pipeline communication 

strategy, so-called the “rotating tiles” paradigm [8]. The 

test tiles (partitions that contain test points) are initially 

same as the source titles (partitions that contain source 

points) at the beginning of the rotation but they are 

rotated among the processors during the computation of 

Ak ,l
. When a processor receives a test tile, it first adds 

the contribution from the source titles it stores to Ak ,l
 

associated with the received test tile, then it passes the 

(updated) tile to its “neighboring” processor. At the end 

of a full rotation all contributions to Ak ,l
 are computed. 

It is noted here that, this strategy eliminates the need for 

globally executed collective routines such as MPI_Reduce 

[8]. The computational load of step (ii) is distributed 

using the same grouping of the test points provided  

by the graph-partitioning algorithm. This reduces the 

communication costs associated with spatial FD 

computations by ensuring that the data communication 

only happens between points residing on the boundary of 

any two partitions [9].  

 

III. PORTING TO MULTIPLE GPUS 

The state-of-the-art GPU-nodes can include up to 8 

K80 GPUs, which is essentially equivalent to having 16 

independent GPUs. On the other hand, OpenACC 

standard, as a stand-alone programming model, provides 

very limited support for code development on multiple 

devices. Therefore, one typically relies on using 

OpenACC/OpenMP together with the MPI standard to 

port codes onto a cluster of nodes equipped with multiple 

GPUs/multicore CPUs. In this work, OpenACC is used 

to accelerate the time marching loop of the MOT-TDVIE  

130 ACES EXPRESS JOURNAL, VOL. 1, NO. 4, APRIL 2016



solver. Both memory- and compute-bound operations 

are executed on GPUs, which benefit from the improved 

memory bandwidth and higher flop rate, respectively. 

However, because the amount of compute-bound 

operations is significantly higher that memory-bound 

operations, benefits from increased memory bandwidth 

might be considered negligible. The main advantages of 

OpenACC over CUDA are the significantly increased 

programming efficiency and code portability on different 

hardware platforms. More specifically, OpenACC offers 

an easy way to port codes onto accelerators using simple 

descriptive compiler directives. Additionally, the same 

OpenACC-annotated code can be compiled on different 

hardware platforms, including the host itself (multicore 

CPU architecture) as well as any other accelerator 

supported by the OpenACC standard. In contrast, the 

CUDA programming model is more tedious to 

implement and can be used on only NVIDIA GPUs. 

The code is designed such that the number of MPI 

processes spawn on each node is equal to the number of 

GPUs per node. Each MPI process is assigned to a GPU 

using the runtime API function acc_set_device_num to 

set the GPU target to the MPI rank modulo the number 

of GPUs per node, as shown in the pseudo code in Fig. 

1. The data directive #pragma acc data is applied to the

outermost time loop in order to minimize data transfers

between the host and the device. Input and output arrays

are annotated with clauses present_or_copyin and

present_or_copyout, respectively. However, the arrays

needed for the MPI communications, which are of very

limited memory size, are copied in and out at each

iteration so that they are accessible to the MPI routines.

Each enclosed code block in the MOT-TDVIE solver is

annotated with #pragma acc kernels and offloaded to the

assigned GPU. The code blocks implementing the

computation of Ak ,l
 consist of two nested loops yielding

a quadratic computational complexity. The second loop

is further annotated with #pragma acc loop reduction

and the associated variables to further optimize the sum

operation of all source contributions. The OpenACC

standard offers the ability to further tune loop execution

using the gang and vector clauses, which can be used to

modify the number of blocks of threads and threads per

block to be executed, respectively. Since there are only

two nested loops in the kernels of the parallel MOT-

TDVIE solver, values assigned to these two parameters

by the compiler already result in good performance

improvements. Having said that, tuning these parameters

in the presence of three or more nested loops may

significantly increase the performance. Indeed, this was

demonstrated for the serial version of the code, with

structured grid, when executed on single GPUs. The

tuning of these two parameters improved the acceleration

performance by up to 23X [10]. For some of the loops

that are not parallelized by the compiler due to perceived

false data dependencies, the code block is annotated with

the loop pragma accompanied with the independent 

clause to avoid unnecessary synchronization between the 

loop iterations in absence of data dependencies. Note 

that, the code design using multi-GPU kernels allows for 

MPI synchronizations and communications to take place 

between the compute kernels as necessary. That is the 

case with the rotating tiles communications implemented 

to compute Ak ,l
, and the halo cells exchange

communications implemented to compute Ek ,n
using FD.

Fig. 1. Pseudo code for the implementation of the MOT-

TDVIE solver using MPI and OpenACC. 

IV. NUMERICAL EXPERIMENTS
The test bed used for performance evaluation 

consists of a system of two nodes connected using an 

Infiniband FDR high-speed network. Each node is a dual 

socket CPU system hosting four NVIDIA Kepler K20c 

GPUs. Each socket is an eight-core Sandy Bridge 

// Get number of MPI processes = # of GPUs 
MPI_Init(&argc, &argv); 
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
// Assign each MPI process to a GPU 
acc_set_device_num(rank%ngpus,acc_device_nvidia); 

#pragma acc data present_or_copyin(input 
arrays) present_or_copyout(output arrays) 

for (int t=0;  t<nt; ++t) {  // time loop 
  for(rot=0; rot<=size; ++rot){ 
    // MPI communication for rotating tiles 
    MPI_Sendrecv(); 
    MPI_Barrier(); 
    #pragma acc kernels 
    // Spatio-temporal convolutions  

   for (int k=0; k<Ne; ++k){  
#pragma acc loop reduction 
for (int l=0; l<Ne; ++l){  

A[t][k] = A[t-tkl][l] + ... 
  }   } 
  MPI_Barrier(); 
    // Loops with no data dependencies 

 #pragma acc kernels 
    #pragma acc loop independent 
    for(i=0; i<ni; ++i){ 

    } 
  } // end rotation 

  // MPI communication for Halo Exchange 
  MPI_Sendrecv(); 
  MPI_Barrier(); 
  #pragma acc kernels 
  // spatial finite difference operations 

  for (int k=0; k<Ne; ++k){   

    B[t][k] = A[t][k] + .... 
  } 
} // end time loop 
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Intel(R) Xeon(R) CPU E5-2650. 

In our performance evaluation, as shown in Fig. 2, 

a significant speedup ranging from 7.4X to 11.2X 

is recorded comparing the MPI and OpenMP 

implementation on 16 cores SandyBridge to the MPI and 

OpenACC implementation on four K20c GPUs. It is 

also observed that as Ne
 increases, higher speedup is 

achieved. This is due to the fact that the GPUs are 

supplied with larger computational loads; therefore, 

taking better advantage of its computational capacity. It 

has been shown before that the MPI implementation 

demonstrated a great scalability on large super-computers 

[8-9]. Figure 3 shows the parallel efficiency of the MPI 

and OpenACC implementation executed on two and 

eight GPUs, which ranges from 82% to 94%. Another 

advantage of using NVIDIA GPUs is their energy 

efficiency as the simulation consumed 2.4X less energy 

on GPUs than on CPUs. For all of the above, the GPUs 

are identified as the preferred computing platform in our 

overall performance analyses of the explicit MOT-

TDVIE solver. 

Fig. 2. Performance speedup of MPI and OpenACC on 

four K20c GPUs compared to MPI and OpenMP on 16 

cores SandyBridge CPU. 

Fig. 3. Parallel efficiency of the MPI and OpenACC 

implementation scaling from two to eight GPUs. 

V. CONCLUSION
The porting of the explicit MOT-TDVIE solver 

using MPI and OpenACC to multi-GPUs resulted in a 

highly efficient implementation. The simulations 

executed on multi-GPUs were faster by up to an order of 

magnitude compared to those executed on CPUs (using 

the MPI and OpenMP version of the code). The OpenACC 

API has the advantage of easily porting the MPI code 

to multi-GPU environment; therefore, increases the 

developer productivity while keeping the legacy of the 

original CPU code. Furthermore, the parallelization 

allows the explicit TDVIE solver to efficiently simulate 

transient electromagnetic wave interactions on electrically 

large structures discretized using a large number of 

spatial elements on GPUs. 
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