
Multi-level Fast Multipole Algorithm for 3-D Homogeneous Dielectric Objects

Using MPI-CUDA on GPU Cluster

Tuan Phan, Nghia Tran, and Ozlem Kilic

Department of Electrical Engineering and Computer Science

The Catholic University of America, Washington, DC, 20064, USA

30phan@cua.edu, 16tran@cua.edu, kilic@cua.edu

Abstract ─ The implementation of Multi-level Fast

Multipole Algorithm (MLFMA) on a 13-node Graphical

Processing Unit (GPU) cluster using Message Passing

Interface (MPI) and CUDA programming is presented.

The performance achievements are investigated in terms

of accuracy, speed up, and scalability. The experimental

results demonstrate that our MLFMA implementation on

GPUs is much faster than (up to 66x) that of the CPU

implementation without trading off the accuracy.

Index Terms ─ Graphics Processing Unit (GPU),

Multilevel Fast Multipole Algorithm (MLFMA).

I. INTRODUCTION
In the last two decades, many authors have been

investigating solving large scale electromagnetics

problems using numerical techniques such as Method

of Moments (MoM), Fast Multipole Method (FMM)

and Multi-level Fast Multipole Algorithm (MLFMA).

Modeling large-scale objects requires large memory

resources and computational time. Among these methods,

the MLFMA has the least computational complexity

O(NlogN), while MoM and FMM have the complexity

of O (N3) and O(N3/2), respectively.

MLFMA has successfully been implemented in

parallel on CPU clusters to solve up to few hundreds

millions of unknowns [1]. The CPU cluster-based

parallel implementation has advantages of large memory

resources, but their speed is relatively slow in comparison

with GPU cluster-based implementations. In the past,

our group has implemented a parallel version of MLFMA

on GPUs clusters to solve for perfect electric conductor

(PEC) objects [2]. This paper continues our efforts to

investigate the implementation of MLFMA on GPU

cluster platform for solving large scale dielectric objects.

The platform we employ is a 13-node GPU cluster, which

utilizes NVidia Tesla M2090 GPU. An MVAPICH2

implementation of Message Passing Interface (MPI) is

used for parallel programming.

In this work, a workload partitioning technique,

namely group-based distribution is investigated among

the 13 computing nodes. This technique is applied for the

tree structure in MLFMA as will be discussed in details

in the implementation section. The rest of the paper is

organized as follows. An overview of MLFMA for

homogeneous dielectric objects is provided in Section

2. Section 3 presents the parallel implementation of

MLFMA on GPU clusters. Simulation results are

discussed in Section 4, followed by the conclusions in

Section 5.

II. OVERVIEW OF THE MULTILEVEL

FAST MULTIPOLE ALGORITHM ON

DIELECTRIC OBJECTS
In this section, we provide a brief overview to help

our discussion on the parallel implementation of dielectric

MLFMA, which is presented in Section III. Numerical

techniques such as MoM, FMM, and MLFMA are

invented to solve for the linear equation system ZI = V,

where I represents the unknown currents, V depends on

the incident field, and Z is the impedance matrix. For an

arbitrary structure meshed with M-edges the conventional

MoM requires the computation of all direct interactions

among the edges (MxM), while FMM accelerates the

matrix-vector product by using an approximate multiple

expansion of the fields to divide structure into near and

far group interaction concept [3]. MLFMA is based on

FMM, but it relies on forming hierarchical groupings to

render reactions with far groups more efficiently. The

main idea of the grouping concept of MLFMA is shown

in Fig. 1, where M edges are categorized into an N-level

tree structure. For the sake of simplicity and convenience,

the oct-tree structure is used for grouping in MLFMA

[4].

The near interactions among edges in spatially

nearby groups are computed and stored using the

conventional MoM [5], while the far interactions are

calculated in a group-by-group manner consisting of

three stages, namely, aggregation, translation, and

disaggregation.

In our previous work on FMM for a homogeneous

dielectric object (permittivity
2 , permeability

2)

ACES EXPRESS JOURNAL, VOL. 1, NO. 8, AUGUST 2016 216

1054-4887 © 2016 ACES

Submitted On: July 16, 2016
Accepted On: October 4, 2016

immersed in an infinite homogeneous medium

(permittivity
1 , permeability

1), the basic formulas are

given as:

 1 2

, ' ' '2
ˆ ˆ ˆ ˆ() (, ,) ()

16 im

E E

ij JJ L ii m i

k
Z d T k R

 rk T k k r k , (1)

2

1 2

, ' ' '2
ˆ ˆ ˆ ˆ() (, ,) ()

16 im

E E

ij MM L ii m i

k
Z d T k R

 r

k T k k r k , (2)

 1 2

, ' ' '2

1

,

ˆ ˆ ˆ ˆ'() (, ,) ()
16

,

im

ED E

ij MJ L ii m i

ij JM

k
Z d T k R

Z

 rk T k k r k
 (3)

where
 ˆ ˆ () im

im

jE

m im
S

T e dS

k r

r
(I - kk) f r , (4)

 ˆ () im

im

jED

m im
S

T e dS

k r

r
k f r , (5)

 ' '

' ' ' ' '() m i

m i

jE

m m i
S

R e dS

k r

r
f r , (6)

 (2)

' '

0

ˆ() (2 1) () ()
L

l

L l ii l ii

l

T j l h P

 k r k r , (7)

In the above equations, L denotes for multipole expansion

number, (2)

lh identifies the second kind of Hankel

function, Pl stands for Legendre polynomial of degree l

terms. By the changing the sub and superscripts “1” to

“2” in Equations (1) to (7), we can complete the 2N

linear equations. The same idea applies for MLFMA to

solve for dielectric object [6].

Fig. 1. MLFMA general grouping concepts.

III. GPU CLUSTER IMPLEMENTATION OF

MLFMA
In this section, a detailed implementation of MLFMA

is provided. The implementation is divided into three

main blocks, which consist of pre-processing, processing

and post-processing.

While the pre-processing and post processing

processes utilize CPU, the processing are based on GPU

cluster. The main purpose of the pre-processing step is

to read the geometry mesh data, to set up the data

structure, and to construct the oct-tree. Results from this

process are transferred to the GPU memory, and the

entire computation is performed on the GPU clusters.

The user interested quantities such as scattered fields,

radar cross section, are post-processing and handled on

CPU. The processing step is the most time consuming in

the algorithm. Hence, we focus our parallel programming

of MLFMA on the most computationally intensive step,

i.e., the processing. The details of this process is shown

in Fig. 2.

Fig. 2. A detail implementation of processing phase.

In the processing phase, the computational tasks are

assigned to all computing nodes in a balanced manner

such that each node holds the same amount of workload,

and the inter-node communication is minimized. This is

achieved by uniformly distributing the total number of

groups of all levels except level 1 and 2, G, among the

n computing nodes. We define this technique of data

distribution among computing nodes as the group-based

distribution. Two levels of parallelization are performed

in this stage: among the n computing nodes using MPI

library, and within the GPU per node using CUDA

programming model. The CUDA thread-block model is

utilized to calculate the assigned workload within a node.

In this paper, only the far interactions is presented, and

the near field and V vector calculation implementations

can be found in [7].

The GPU cluster used for this work has 13

computing nodes. Each node has a dual 6-core 2.66 GHz

Intel Xeon processor, 48 GB RAM along with one

NVidia Tesla M2090 GPU running at 1.3 GHz supported

with 6GB of GPU memory. The nodes are interconnected

through the InfiniBand interconnection. The cluster

populates CUDA v6.0 and MVAPICH2 v1.8.1 (an

implementation of MPI).

A. Far interactions calculations

There are five main steps in this stage: radiation

functions, receive function, interpolation, anterpolation

and translation matrices. The group-based technique is

performed to calculate the radiation functions, receive

functions, and translation matrices.

(i) Radiation and Receive Function Calculations

The calculation of the radiation, TE, and receive, RE,

functions for Zfar matrix are similar since RE is the

complex conjugate of TE. Following the G group

distribution as mentioned above, each computing node

handles the calculation of K directions for Gnode groups.

(ii) Translation Matrix Calculation

The workload for the TL calculations is also

distributed across the n nodes using the group-based

217 ACES EXPRESS JOURNAL, VOL. 1, NO. 8, AUGUST 2016

technique. In order to save memory, each CUDA block

is assigned to compute one sparse row of the TL matrix

for a given direction.

(iii) Interpolation and Anterpolation Matrices

Due to the differences of sampling frequencies

among the levels of the oct-tree structure, the interpolation

and anterpolation are required for the aggregation and

disaggregation stages. In this task, each node will handle

the calculations of Kchildren/node rows of the interpolation

matrix Kchildren * Kparent, where Kchildren and Kparent are the

number of directions of finer and coarser level,

respectively. The blocks of a maximum of 1024 threads

are utilized in the CUDA kernel once it is launched. The

anterpolation is simply the transpose of the interpolation.

Thus, their implementations are similar.

B. Matrix-vector multiplication

The matrix-vector multiplication (MVM) method is

an important technique to accelerate the computational

time, which can be found in detail in [8]. An iterative

method; i.e., the biconjugate gradient stabilized method

(BiCGSTAB), is used to solve for the linear system. The

computation of ZfarI is shown in Fig. 3, where the

unknown current vector I is distributed among the 13

nodes using the group-based technique [9].

Fig. 3. The parallelization of matrix-vector multiplication

for ZfarI.

First, in the aggregation stage, at level max, (N),

each node computes the radiated fields for its assigned

groups by multiplying the current I with the radiation

functions, TE, and accumulating within each group.

Then, all-to-all communication is required to broadcast

the data to all nodes. For the remaining levels (up to level

2), the radiated field is the result of multiplying

interpolation matrices with radiated fields of its direct

children groups.

In the translation stage, at each level (except levels

0 and l) the radiated fields for each group are calculated

by multiplying the translation matrix with the radiated

fields.

In the disaggregation stage, going down from level

2 to level N, the radiated fields at each group are

added with the inherited fields from its parents using

anterpolation. At the maximum level (N), the received

fields are multiplied with their corresponding receive

functions, and integrated over K directions. Then, the

near components and far components of MVM are

incorporated to complete the full matrix. In the end of

this process, the results from all nodes are summed and

updated.

IV. EXPERIMENTAL RESULTS

A. Accuracy

The accuracy of the method is verified by comparing

the Radar Cross Sections (RCSs) of 9-diameter dielectric

sphere with analytical technique, Mie scattering, and a

10-height by 4-radius dielectric cone with commercial

simulation software, FEKO. In two cases, the results

verify our method’s accuracy, as observed in Fig. 4 and

Fig. 5, respectively.

Fig. 4. RCS of a 9 diameter dielectric sphere

(ε = 4 – 0.1i) with 105,000 unknowns.

Fig. 5. RCS of 10 height and 4 radius dielectric cone

(ε = 4 – 0.1i) with 109,000 unknowns.

B. Performance on GPU cluster

We conducted two experiments to investigate the

speed-up, scalability using a fixed-workload model

(Amdahl’s Law) and maximum problem size. The speed-

up is defined as the ratio of time required by multi-node

GPU implementation with respect to the 8-node CPU

implementation. The scalability is the normalized speed-

up of multiple nodes in reference to the speed-up of 8

nodes. Finally, we fully utilized the memory available of

13 nodes to investigate the maximum number of

unknowns we can handle.

In the first experiment, a 16.74 -diameter dielectric

PHAN, TRAN, KILIC: MLFMA FOR DIELECTRIC OBJECTS USING MPI-CUDA ON GPU CLUSTER 218

sphere (320k unknowns) which requires the memory of

at least 8 nodes is used. The results are evaluated in terms

of speed-up and scalability. As shown in Fig. 6, the

speed-up for process of matrix-vector products and

matrix fill increases from 45.6 for 8 nodes to 66.4 for 13

nodes. The GPU execution time decreases as the number

of nodes increases because of less workload per node.

Fig. 6. Speedup analysis for the fixed-workload model

(vs. 8 nodes CPU implementation, 100 iterations).

For the scalability, we keep the problem size constant

and compare how the speed-up improves with increasing

number of nodes, Fig. 7. It shows a good agreement

between our implementation and the theoretical

expectation.

In the second experiment, we try to solve for the

largest problem size using the maximum memory

available to us in each node. As the number of nodes

increases, we increase the problem size to fully utilize

the available memory. As shown in Fig. 8, we can

process a maximum problem size of 439k unknowns

with a speed-up of 46.

Fig. 7. Scalability analysis for the fixed-workload model.

Fig. 8. Speed-up analysis for increasing number of nodes

along with problem size increases.

V. CONCLUSION
In this paper,MLFMA for homogeneous dielectric

objects has bee implemented using GPU clusters. Our

13-node GPU cluster is able to solve 426k unknowns

utilizing the available on-board GPU memory. It

demonstrates that the GPU implementation is much

faster than CPU implementation while keeping a same

degree of accuracy.

REFERENCES
[1] O. Ergul and L. Gurel, “Efficient parallelization of

the multilevel fast multipole algorithm for the

solution of large-scale scattering problems,” IEEE

Trans. Antennas Propag., vol. 56, no. 8, pp. 2335-

2345, August 2008.

[2] N. Tran and O. Kilic, “Parallel implementations of

multilevel fast multipole algorithm on graphical

processing unit cluster for large-scale electro-

magnetics objects,” ACES Express Journal, vol. 1,

no. 4, April 2016.

[3] R. Coifman, V. Rokhlin, and S. Wandzura, “The

fast multipole method for the wave equation: A

pedestrian prescription,” IEEE Antennas Propagat.

Mag., vol. 35, no. 3, pp. 7-12, June 1993.

[4] H. Samet, An Overview of Quadtrees, Octrees, and

Related Hierarchical Data Structures. NATO ASI

Series, vol. F40, Springer-Verlag Berlin Heidelberg,

1988.

[5] S. M. Rao, D. R. Wilton, and A. W. Glisson,

“Electromagnetic scattering by surfaces of arbitrary

shape,” IEEE Trans. Antennas Propag., vol. AP-

30, no. 3. pp. 409-418, May 1982.

[6] J.-Y. Li and L.-W. Li, “Characterizing scattering

by 3-D arbitrarily shaped homogeneous dielectric

objects using fast multipole method,” IEEE

Antennas and Wireless Propagation Letters, vol. 3,

2004.

[7] Q. M. Nguyen, V. Dang, O. Kilic, and E. El-Araby,

“Parallelizing fast multipole method for large-scale

electromagnetic problems using GPU clusters,”

Antennas and Wireless Propagation Letters, IEEE,

vol. 12, pp. 868-871, 2013.

[8] V. Dang, Q. Nguyen, and O. Kilic, “Fast multipole

method for large-scale electromagnetic scattering

problems on GPU cluster and FPGA-accelerated

platforms,” Applied Computational Electro-

magnetics Society Journal, vol. 28, no. 12, 2013.

[9] V. Dang, Q. M. Nguyen, and O. Kilic, “GPU

cluster implementation of FMM-FFT for large-

scale electromagnetic problems,” IEEE Antennas

and Wireless Propagation Letters, vol. 13, 2014.

219 ACES EXPRESS JOURNAL, VOL. 1, NO. 8, AUGUST 2016

