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Abstract ─This paper investigates the Fast Multipole 

Method (FMM) for large-scale electromagnetics 

scattering problems for dielectric objects. The algorithm 

is implemented on a Graphical Processing Unit (GPU) 

cluster using CUDA programming and Message Passing 

Interface (MPI). Its performance is investigated in terms 

of accuracy, speedup, and scalability. The details of  

the implementation and the performance achievements 

are shown and analyzed, demonstrating a scalable 

parallelization while maintaining a good degree of 

accuracy. 

 

Index Terms ─ Dielectric objects, Fast Multipole Method 

(FMM), Graphics Processing Unit (GPU), Message 

Passing Interface (MPI). 
 

I. INTRODUCTION 
Modelling electrically large dielectric objects plays 

an important role in the research of target identification 

or the stealth and anti-stealth technology. The excessively 

heavy requirements of memory and computational 

resources of such applications pose a challenging problem 

in the computational electromagnetics community. The 

past two decades have witnessed many numerical 

techniques developed to reduce this burden without 

significant loss of accuracy, including Adaptive Integral 

Method (AIM) [1], Impedance Matrix Localization 

(IML) [2], and Fast Multipole Method (FMM) [3]. Among 

others, FMM is the most suitable technique for large-

scale problems in reducing the computational complexity 

of the conventional technique, Method of Moment 

(MoM) [4] from O(N3) to O(N1.5), where N denotes the 

number of unknowns. Some other approaches such as 

AIM and IML have the complexity of O(N1.5logN) and 

O(N2logN), respectively. Many authors have investigated 

the parallelization of FMM on CPU clusters for solving 

the dielectric problems [5]. However, to the best of our 

knowledge, FMM has not been studied for dielectric 

electromagnetics problems on GPU clusters. Recently 

our group has applied single-level FMM for perfect 

electric conductor (PEC) objects [6]-[7], and good 

speedup factors compared to the CPU implementations 

were achieved. However, our previous implementations 

focused only on PEC objects, which can be limiting for 

simulating real-life scenarios.  

In this paper, we investigate the parallelization of 

FMM for dielectric electromagnetics structures using the 

PMCHW formula [8] on a multi-node GPU cluster with 

CUDA and MPI programing. We demonstrate that the 

implementation of FMM on GPU clusters outperforms 

that of the CPU counterpart in terms of speedup and 

scalability.  

The rest of the paper is organized such that Section 

II provides an overview of FMM for dielectric objects. 

Section III describes the parallelization of FMM on GPU 

clusters. Experimental results are discussed in Section IV. 

Finally, our findings are summarized in the conclusions 

section.  

 

II. OVERVIEW OF THE FAST MULTIPOLE 

METHOD FOR DIELECTRIC OBJECTS 
In this section, we provide a brief overview to help 

our discussion on the parallel implementation of FMM 

for dielectric objects, which is presented in detail in 

Section III.  

FMM solves for the linear equation system created 

in the form of ZI = V, where I represents the unknown 

currents, V depends on the incident field, and Z is the 

impedance matrix. The main idea of FMM is the 

grouping concept as shown in Fig. 1, where N edges in 

the mesh of a given structure are categorized into M 

localized groups based on their proximity. According to 

this approach, two interaction types can be defined: near 

and far, as depicted in Fig. 1. The Z matrix is split into 

two components, Znear and Zfar, as shown in (1): 
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and m and m’ are observation and source edges in the 

mesh, respectively.  

The near term comprises of interactions between 
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spatially close edges, and is computed and stored in  

a similar manner to MoM [4]. For dielectric objects, 

PMCHW formula [8] is used in this paper and the four 

components of Znear is shown in (2)-(4): 
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The interactions between the remaining edges that 

are spatially far from each other constitute the far term. 

The advantage of separating the Z matrix into two 

components is that the Zfar matrix does not need to be 

computed and stored ahead of time. Instead it is 

factorized into the radiation, TE/TED, receive, RE, and 

translation functions, TL. Equations (5)-(11) depict these 

functions based on PMCHW formula: 
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Fig. 1. FMM grouping concept. 
 

In the equations above, the prime syntax denotes the 

source points, and i refers to the groups in the mesh. The 

unit vector k̂  denotes the K possible field directions in k 

space, f(r) denotes the basic functions, 2 ( )lh r  is the 

spherical Hankel function of the second kind, and ( )lP r  

is the Legendre polynomial. 
 

III. PARALLELIZATION OF FMM ON GPU 

CLUSTERS 
The platform utilized in our FMM implementation 

is a GPU cluster, which consists of 13 computing nodes. 

Each node has a dual 6-core 2.66 GHz Intel Xeon 

processor, 48 GB RAM along with one NVidia Tesla 

M2090 GPU running at 1.3 GHz with 6 GB memory. 

The nodes are interconnected through the infiniBand 

interconnection. The cluster populates CUDA v7.0 and 

MVAPICH2 v1.8.1. (a well-known implementation  

of Message Passing Interface (MPI)). Two parallel 

programming approaches of CUDA and MPI are 

combined to provide the use of GPU programming 

across the cluster.  

In this section, we provide an overview of our 

implementation on GPU. Figure 2 shows the main blocks 

which consist of pre-processing, processing and post-

processing, where processes which utilize GPU are 

shown in solid green line, and CPU based operations are 

shown in dashed black line. The geometry mesh data 

resulting from the pre-processing step is transferred to 

the GPU memory, and the entire computation is 

performed on the GPU. The user defined results such as 

radar cross section, scattered fields are post-processed on 

the CPU. 

The parallelization of the processing step in GPU 

cluster implementation is performed at two levels: (i) 

among computing nodes using MPI library, and (ii) 

within GPU per node using CUDA programming model. 

The workload of the computational task is equally 

distributed among the computing nodes, and the inter-

node communication is minimized. This is achieved by 

uniformly distributing the total number of groups, M, 

among the n computing nodes. We only present the far 

interactions in this paper, since the near field and V 

vector calculations implementations can be found in [6]-

[7]. 
 

A. Far interactions calculations 

This task comprises of three calculations: radiation, 

and receive functions and translation matrices. The first 

step in the far interaction calculations is the calculation 

of the radiation, TE/TED and receive, RE, functions for Zfar 

matrix as seen in Fig. 2. It is worth noting that the 

radiation and the receive functions as well as the 

translation matrix have to be evaluated at all K directions 

for the unit sphere integration. The computational 

workload is distributed across the nodes using the group-

based partitioning scheme such that Mnode groups are 

allocated for each node. K evaluations for the radiation 

and receive functions are required for each node. The 

threads are grouped into blocks such that each block of 

threads performs Ngroup radiation/receive functions at a 

given group, then a total number of blocks per node  
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equal to MnodeK. 

The second task for far interactions is the calculation 

of the translation matrix, TL. Similar to the calculation of 

the radiation/receive functions, the translation matrix has 

to be evaluated at all K directions for the unit sphere 

integration. The workload for the TL calculations is also 

distributed across the nodes following the group-based 

technique. Each CUDA block is assigned to compute one 

sparse row of the TL matrix for a given direction, and 

each thread computes one element in that row. 

 

 
 

Fig. 2. FMM flow chart implementation. 

 

B. Fast matrix-vector multiplication 

The processing step is followed by solving linear 

equation iteratively. In this paper, the Biconjugate 

Gradient Stabilized method (BICGSTAB) is employed 

where each iteration involves the Matrix-Vector 

Multiplication (MVM). In this part, MVM of the far 

interactions are focused and the calculation of ZfarI 

comprises of aggregation, translation, and disaggregation. 

By using the group-based scheme, the inter-node 

communication is required only at two steps: (i) at the 

beginning of the MVM to exchange the estimated values 

for the unknowns among the nodes, and (ii) after the 

aggregation step and before performing the translation 

step in order to update all nodes with the aggregated 

fields. The flow chart of the implementation is shown in 

Fig. 3.  
 

 
 

Fig. 3. Far-interaction flow chart implementation. 
 

Each node already calculates its own portion of the 

radiation/receive functions, and the translation matrix. In 

the aggregation stage, each unknown is multiplied with 

its corresponding radiation functions, and is summed in 

each group. The aggregation stage can be performed 

independently for all K directions, and thus can be 

performed concurrently with minimal need for inter-

node communication. An all-to-all communication is 

employed by each node to broadcast the aggregated 

fields to all other nodes. Then the received fields at each 

direction are determined by multiplying the aggregated 

fields with the translation matrix. Next the received 

fields are multiplied with the receive functions to obtain 

the field for each group at a given direction. Finally, an 

integration over the K directions of the unit sphere is 

performed to calculate the fields at each observed edge. 

The far MVM is incorporated with the near MVM to get 

the full ZI. 
 

IV. EXPERIMENTAL RESULTS 

A. Accuracy 

To validate the accuracy of FMM implementations 

on GPU clusters, we calculate the radar cross section 

(RCS) of a 14 diameter (254,274 unknowns) sphere with 

permittivity  = 4 – 0.1j. It is illuminated by a normally 

incident 1 GHz x-polarized plane wave. The RCS based 

on our GPU implementation is compared to the results 

of the analytical Mie scattering. Figure 4 shows that the 

GPU and Mie solutions achieve a good agreement. 
 

 
 

Fig. 4. RCS of a 14λ diameter dielectric sphere 
 

B. Implementation performance on GPU cluster 

Our GPU implementations is evaluated using the 

fixed-workload model in the first experiment. We choose 

a sphere diameter of 12.4, ~ 200K unknowns for the 

fixed problem size such that it demands the use of at least 

8 nodes to satisfy the required memory. Speedup and 

scalability are used to evaluate the GPU implementations. 

The speed up is defined as the ratio of time required by 

multi-node GPU implementation with respect to the 8-

node CPU implementation. Scalability is the normalized 

speedup of multiple nodes in reference to the speedup of 

8 nodes. In our analysis, we consider the total executional 

time and computational time. Figure 5 shows the 

speedup factors and the measured time of two cases. It is 

observed that the computation time achieves a speedup 

factor of 171.5 on 8 nodes, and takes 158.9 seconds. Due 

to the nature of the fixed workload model, each node 

carries less workload when the number of computing 

nodes increase. Therefore the computation time decreases 

linearly with the increase in nodes (274.5 seconds for 

computation and 229.9 seconds for total). The slightly 

smaller speedup factors for the total time as compared  

to the computation time are due to the inter-node 
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communications for transferring the data in our GPU 

implementations.  
 

 
 

Fig. 5. Speedup analysis for the fixed-workload model 

(vs. 8 nodes CPU implementation, 100 iterations) 

Computational CPU exec time = 24,421 sec, total CPU 

exec time = 26,315 sec. 
 

It is observed in Fig. 6 that both computation and 

total time scale closely to the theoretical linear expectation 

for the fixed workload problem. This good scalability 

demonstrates that our implementation has efficiently 

parallelized the algorithm and reduced the communication 

overhead.  

The second experiment is the fixed-time model. As 

the problem size is increased, the number of nodes also 

increases, so that the GPU memory in each node is  

fully utilized. Our GPU implementation can process a 

maximum problem size of 254K unknowns with a 

speedup factor of 169.6 for the computation, and 137 for 

total execution time as shown in Fig. 7.  
 

 
 

Fig. 6. Scalability analysis for the fixed-workload model. 
 

 
 

Fig. 7. Speedup analysis when the number of nodes 

increases along with problem size increases (vs. multi-

node CPU, 100 iterations). 

VI. CONCLUSION 
In this paper, the GPU implementation of FMM for 

dielectric electromagnetic scattering problems using our 

13-node GPU cluster is demonstrated. The maximum 

problem size is determined by the available on-board 

GPU memory. For the same degree of accuracy, the GPU 

implementation outperforms the CPU implementation. 

Moreover, the GPU implementation has a good scalability 

as the number of computing nodes increases. 
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