
CUDA-MPI Implementation of Fast Multipole Method on GPU Clusters for

Dielectric Objects

Nghia Tran, Tuan Phan, and Ozlem Kilic

Department of Electrical Engineering and Computer Science

The Catholic University of America, Washington, DC, 20064, USA

16tran@cua.edu, 30phan@cua.edu, kilic@cua.edu

Abstract ─This paper investigates the Fast Multipole

Method (FMM) for large-scale electromagnetics

scattering problems for dielectric objects. The algorithm

is implemented on a Graphical Processing Unit (GPU)

cluster using CUDA programming and Message Passing

Interface (MPI). Its performance is investigated in terms

of accuracy, speedup, and scalability. The details of

the implementation and the performance achievements

are shown and analyzed, demonstrating a scalable

parallelization while maintaining a good degree of

accuracy.

Index Terms ─ Dielectric objects, Fast Multipole Method

(FMM), Graphics Processing Unit (GPU), Message

Passing Interface (MPI).

I. INTRODUCTION
Modelling electrically large dielectric objects plays

an important role in the research of target identification

or the stealth and anti-stealth technology. The excessively

heavy requirements of memory and computational

resources of such applications pose a challenging problem

in the computational electromagnetics community. The

past two decades have witnessed many numerical

techniques developed to reduce this burden without

significant loss of accuracy, including Adaptive Integral

Method (AIM) [1], Impedance Matrix Localization

(IML) [2], and Fast Multipole Method (FMM) [3]. Among

others, FMM is the most suitable technique for large-

scale problems in reducing the computational complexity

of the conventional technique, Method of Moment

(MoM) [4] from O(N3) to O(N1.5), where N denotes the

number of unknowns. Some other approaches such as

AIM and IML have the complexity of O(N1.5logN) and

O(N2logN), respectively. Many authors have investigated

the parallelization of FMM on CPU clusters for solving

the dielectric problems [5]. However, to the best of our

knowledge, FMM has not been studied for dielectric

electromagnetics problems on GPU clusters. Recently

our group has applied single-level FMM for perfect

electric conductor (PEC) objects [6]-[7], and good

speedup factors compared to the CPU implementations

were achieved. However, our previous implementations

focused only on PEC objects, which can be limiting for

simulating real-life scenarios.

In this paper, we investigate the parallelization of

FMM for dielectric electromagnetics structures using the

PMCHW formula [8] on a multi-node GPU cluster with

CUDA and MPI programing. We demonstrate that the

implementation of FMM on GPU clusters outperforms

that of the CPU counterpart in terms of speedup and

scalability.

The rest of the paper is organized such that Section

II provides an overview of FMM for dielectric objects.

Section III describes the parallelization of FMM on GPU

clusters. Experimental results are discussed in Section IV.

Finally, our findings are summarized in the conclusions

section.

II. OVERVIEW OF THE FAST MULTIPOLE

METHOD FOR DIELECTRIC OBJECTS
In this section, we provide a brief overview to help

our discussion on the parallel implementation of FMM

for dielectric objects, which is presented in detail in

Section III.

FMM solves for the linear equation system created

in the form of ZI = V, where I represents the unknown

currents, V depends on the incident field, and Z is the

impedance matrix. The main idea of FMM is the

grouping concept as shown in Fig. 1, where N edges in

the mesh of a given structure are categorized into M

localized groups based on their proximity. According to

this approach, two interaction types can be defined: near

and far, as depicted in Fig. 1. The Z matrix is split into

two components, Znear and Zfar, as shown in (1):

' ' ' ' ' '

' ' '

', ',

'

', ',

,

where ,

M M M
near far

mm m mm m mm m m

m m m

mm JJ mm JM m

mm m

mm MJ mm MM m

Z I Z I Z I V

Z Z E
Z V

Z Z H

  

   
    

  

  
, (1)

and m and m’ are observation and source edges in the

mesh, respectively.

The near term comprises of interactions between

ACES JOURNAL, Vol. 33, No. 2, February 2018

Submitted On: July 14, 2016
Accepted On: August 17, 2016 1054-4887 © ACES

224

spatially close edges, and is computed and stored in

a similar manner to MoM [4]. For dielectric objects,

PMCHW formula [8] is used in this paper and the four

components of Znear is shown in (2)-(4):

', ' 1

1 '

() (,) () '
4

1
()) (,) ()) '

4

near

mm JJ m m
S S

m m
S S

j
Z G dS dS

G dS dS
j





 



  

 

 

f r r' f r

(f r r' (f r'

r'

r

, (2)

2

', ' 1

2

1 '

() (,) () '
4

()) (,) ()) '
4

near

mm MM m m
S S

m m
S S

j
Z G dS dS

G dS dS
j







 



  

 

 

f r r' f r

(f r r' (f r'

r'

r

, (3)

', ' 1

',

() (,) () '
4

near

mm MJ m m
S S

near

mm JM

Z G dS dS

Z






  

 

 f r r' f rr'
. (4)

The interactions between the remaining edges that

are spatially far from each other constitute the far term.

The advantage of separating the Z matrix into two

components is that the Zfar matrix does not need to be

computed and stored ahead of time. Instead it is

factorized into the radiation, TE/TED, receive, RE, and

translation functions, TL. Equations (5)-(11) depict these

functions based on PMCHW formula:

2

', ' ' '2
ˆ ˆ ˆ ˆ() (, ,) ()

16 im

far E E

mm JJ L ii m i

k
Z d T k R




  rk T k k r k , (5)

 2
2

', ' ' '2
ˆ ˆ ˆ ˆ() (, ,) ()

16 im

far E E

mm MM L ii m i

k
Z d T k R

 


  r

k T k k r k , (6)

 2

', ' ' '2

',

ˆ ˆ ˆ ˆ'() (, ,) ()
16 im

far ED E

mm MJ L ii m i

far

mm JM

k
Z d T k R

Z






 

 rk T k k r k
, (7)

where
 ˆ ˆ () im

im

jE

m im
S

T e dS


 
k r

r
(I - kk) f r , (8)

 ˆ () im

im

jED

m im
S

T e dS


 
k r

r
k f r , (9)

' '

' ' ' ' '() m i

m i

jE

m m i
S

R e dS


 
k r

r
f r , (10)

 (2)

' '

0

ˆ() (2 1) () ()
L

l

L l ii l ii

l

T j l h P


   k r k r . (11)

Fig. 1. FMM grouping concept.

In the equations above, the prime syntax denotes the

source points, and i refers to the groups in the mesh. The

unit vector k̂ denotes the K possible field directions in k

space, f(r) denotes the basic functions, 2 ()lh r is the

spherical Hankel function of the second kind, and ()lP r

is the Legendre polynomial.

III. PARALLELIZATION OF FMM ON GPU

CLUSTERS
The platform utilized in our FMM implementation

is a GPU cluster, which consists of 13 computing nodes.

Each node has a dual 6-core 2.66 GHz Intel Xeon

processor, 48 GB RAM along with one NVidia Tesla

M2090 GPU running at 1.3 GHz with 6 GB memory.

The nodes are interconnected through the infiniBand

interconnection. The cluster populates CUDA v7.0 and

MVAPICH2 v1.8.1. (a well-known implementation

of Message Passing Interface (MPI)). Two parallel

programming approaches of CUDA and MPI are

combined to provide the use of GPU programming

across the cluster.

In this section, we provide an overview of our

implementation on GPU. Figure 2 shows the main blocks

which consist of pre-processing, processing and post-

processing, where processes which utilize GPU are

shown in solid green line, and CPU based operations are

shown in dashed black line. The geometry mesh data

resulting from the pre-processing step is transferred to

the GPU memory, and the entire computation is

performed on the GPU. The user defined results such as

radar cross section, scattered fields are post-processed on

the CPU.

The parallelization of the processing step in GPU

cluster implementation is performed at two levels: (i)

among computing nodes using MPI library, and (ii)

within GPU per node using CUDA programming model.

The workload of the computational task is equally

distributed among the computing nodes, and the inter-

node communication is minimized. This is achieved by

uniformly distributing the total number of groups, M,

among the n computing nodes. We only present the far

interactions in this paper, since the near field and V

vector calculations implementations can be found in [6]-

[7].

A. Far interactions calculations

This task comprises of three calculations: radiation,

and receive functions and translation matrices. The first

step in the far interaction calculations is the calculation

of the radiation, TE/TED and receive, RE, functions for Zfar

matrix as seen in Fig. 2. It is worth noting that the

radiation and the receive functions as well as the

translation matrix have to be evaluated at all K directions

for the unit sphere integration. The computational

workload is distributed across the nodes using the group-

based partitioning scheme such that Mnode groups are

allocated for each node. K evaluations for the radiation

and receive functions are required for each node. The

threads are grouped into blocks such that each block of

threads performs Ngroup radiation/receive functions at a

given group, then a total number of blocks per node

TRAN, PHAN, KILIC: CUDA-MPI IMPLEMENTATION OF FMM ON GPU FOR DIELECTRIC OBJECTS 225

equal to MnodeK.

The second task for far interactions is the calculation

of the translation matrix, TL. Similar to the calculation of

the radiation/receive functions, the translation matrix has

to be evaluated at all K directions for the unit sphere

integration. The workload for the TL calculations is also

distributed across the nodes following the group-based

technique. Each CUDA block is assigned to compute one

sparse row of the TL matrix for a given direction, and

each thread computes one element in that row.

Fig. 2. FMM flow chart implementation.

B. Fast matrix-vector multiplication

The processing step is followed by solving linear

equation iteratively. In this paper, the Biconjugate

Gradient Stabilized method (BICGSTAB) is employed

where each iteration involves the Matrix-Vector

Multiplication (MVM). In this part, MVM of the far

interactions are focused and the calculation of ZfarI

comprises of aggregation, translation, and disaggregation.

By using the group-based scheme, the inter-node

communication is required only at two steps: (i) at the

beginning of the MVM to exchange the estimated values

for the unknowns among the nodes, and (ii) after the

aggregation step and before performing the translation

step in order to update all nodes with the aggregated

fields. The flow chart of the implementation is shown in

Fig. 3.

Fig. 3. Far-interaction flow chart implementation.

Each node already calculates its own portion of the

radiation/receive functions, and the translation matrix. In

the aggregation stage, each unknown is multiplied with

its corresponding radiation functions, and is summed in

each group. The aggregation stage can be performed

independently for all K directions, and thus can be

performed concurrently with minimal need for inter-

node communication. An all-to-all communication is

employed by each node to broadcast the aggregated

fields to all other nodes. Then the received fields at each

direction are determined by multiplying the aggregated

fields with the translation matrix. Next the received

fields are multiplied with the receive functions to obtain

the field for each group at a given direction. Finally, an

integration over the K directions of the unit sphere is

performed to calculate the fields at each observed edge.

The far MVM is incorporated with the near MVM to get

the full ZI.

IV. EXPERIMENTAL RESULTS

A. Accuracy

To validate the accuracy of FMM implementations

on GPU clusters, we calculate the radar cross section

(RCS) of a 14 diameter (254,274 unknowns) sphere with

permittivity  = 4 – 0.1j. It is illuminated by a normally

incident 1 GHz x-polarized plane wave. The RCS based

on our GPU implementation is compared to the results

of the analytical Mie scattering. Figure 4 shows that the

GPU and Mie solutions achieve a good agreement.

Fig. 4. RCS of a 14λ diameter dielectric sphere

B. Implementation performance on GPU cluster

Our GPU implementations is evaluated using the

fixed-workload model in the first experiment. We choose

a sphere diameter of 12.4, ~ 200K unknowns for the

fixed problem size such that it demands the use of at least

8 nodes to satisfy the required memory. Speedup and

scalability are used to evaluate the GPU implementations.

The speed up is defined as the ratio of time required by

multi-node GPU implementation with respect to the 8-

node CPU implementation. Scalability is the normalized

speedup of multiple nodes in reference to the speedup of

8 nodes. In our analysis, we consider the total executional

time and computational time. Figure 5 shows the

speedup factors and the measured time of two cases. It is

observed that the computation time achieves a speedup

factor of 171.5 on 8 nodes, and takes 158.9 seconds. Due

to the nature of the fixed workload model, each node

carries less workload when the number of computing

nodes increase. Therefore the computation time decreases

linearly with the increase in nodes (274.5 seconds for

computation and 229.9 seconds for total). The slightly

smaller speedup factors for the total time as compared

to the computation time are due to the inter-node

ACES JOURNAL, Vol. 33, No. 2, February 2018226

communications for transferring the data in our GPU

implementations.

Fig. 5. Speedup analysis for the fixed-workload model

(vs. 8 nodes CPU implementation, 100 iterations)

Computational CPU exec time = 24,421 sec, total CPU

exec time = 26,315 sec.

It is observed in Fig. 6 that both computation and

total time scale closely to the theoretical linear expectation

for the fixed workload problem. This good scalability

demonstrates that our implementation has efficiently

parallelized the algorithm and reduced the communication

overhead.

The second experiment is the fixed-time model. As

the problem size is increased, the number of nodes also

increases, so that the GPU memory in each node is

fully utilized. Our GPU implementation can process a

maximum problem size of 254K unknowns with a

speedup factor of 169.6 for the computation, and 137 for

total execution time as shown in Fig. 7.

Fig. 6. Scalability analysis for the fixed-workload model.

Fig. 7. Speedup analysis when the number of nodes

increases along with problem size increases (vs. multi-

node CPU, 100 iterations).

VI. CONCLUSION
In this paper, the GPU implementation of FMM for

dielectric electromagnetic scattering problems using our

13-node GPU cluster is demonstrated. The maximum

problem size is determined by the available on-board

GPU memory. For the same degree of accuracy, the GPU

implementation outperforms the CPU implementation.

Moreover, the GPU implementation has a good scalability

as the number of computing nodes increases.

REFERENCES
[1] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz,

“AIM: Adaptive integral method for solving large‐
scale electromagnetic scattering and radiation

problems,” Radio Science, vol. 31, no. 5, pp. 1225-

1251, 1996.

[2] F. X. Canning, “The impedance matrix localization

(IML) method for moment-method calculations,”

IEEE Antennas Propagat. Mag., vol. 32, no. 5, pp.

18-30, 1990.

[3] R. Coifman, V. Rokhlin, and S. Wandzura, “The

fast multipole method for the wave equation: A

pedestrian prescription,” IEEE Antennas Propagat.

Mag., vol. 35, no. 3, pp. 7-12, June 1993.

[4] S. M. Rao, D. R. Wilton, and A. W. Glisson,

“Electromagnetic scattering by surfaces of arbitrary

shape,” IEEE Trans. Antennas Propag., vol. AP-

30, no. 3. pp. 409-418, May 1982.

[5] O. Ergul and L. Gurel, “Efficient parallelization of

the multilevel fast multipole algorithm for the

solution of large-scale scattering problems,” IEEE

Trans. Antennas Propag., vol. 56, no. 8, pp. 2335-

2345, August 2008.

[6] Q. M. Nguyen, V. Dang, O. Kilic, and E. El-Araby,

“Parallelizing fast multipole method for large-scale

electromagnetic problems using GPU clusters,”

Antennas and Wireless Propagation Letters, IEEE,

vol. 12, pp. 868-871, 2013.

[7] V. Dang, Q. Nguyen, and O. Kilic, “Fast multipole

method for large-scale electromagnetic scattering

problems on GPU cluster and FPGA-accelerated

platforms,” Applied Computational Electromagnetics

Society Journal, vol. 28, no. 12, 2013.

[8] X. Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and

C.-C. Lu, “Solution of combined-field integral

equation using multilevel fast multipole algorithm

for scattering by homogeneous bodies,” IEEE

Transactions on Antennas and Propagation, vol.

46, no. 11, pp. 1718-1726, 1998.

TRAN, PHAN, KILIC: CUDA-MPI IMPLEMENTATION OF FMM ON GPU FOR DIELECTRIC OBJECTS 227

	FRONTAL PAGE ONE ONLY.pdf
	JOURNAL
	ISSN 1054-4887

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 640
 293

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 4
 3
 4

 1

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TR

 123
 TR
 1
 0
 629
 187
 0
 8.0000

 Odd
 128
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 128
 126
 64

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TL

 123
 TR
 1
 0
 629
 187

 0
 8.0000

 Even
 128
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 128
 127
 64

 1

 HistoryList_V1
 qi2base

