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Abstract ─ An enhanced finite-difference time-domain 

algorithm featuring the polynomial chaos representation 

is introduced in this paper for problems with stochastic 

uncertainties. Focusing on the solution of the governing 

partial differential equations, the new 3-D method uses 

the Karhunen-Loève expansion to effectively decorrelate 

random input parameters denoted by stochastic processes. 

So, the space dimension is seriously reduced and high 

accuracy levels are attained, even for media with abrupt 

and fully unknown statistical variations. These profits 

are verified via a detailed numerical study. 

Index Terms ─ Advanced FDTD methods, polynomial 

chaos, random media, stochastic process, uncertainties. 

I. INTRODUCTION
The assessment of stochastic uncertainties, inherent 

in electromagnetics, has been of pivotal significance, so 

leading to different numerical schemes. Amid them the 

Monte Carlo (MC) approach [1], albeit accurate, has 

proven time-consuming, due to its excessively many 

realizations and slow convergence to the desired result. 

Recently, efficient techniques have been presented [2-6], 

such as the generalized polynomial chaos finite-difference 

time-domain (GPC-FDTD) algorithm [7, 8]. Usually, 

uncertainties emerge from discrete stochastic variables 

or processes that vary in an unknown way. Being 

difficult to model, the latter cannot be directly plugged 

in the GPC-FDTD technique, as they require an infinite 

number of correlated random variables. 

To overcome such an issue, this paper develops a 

3-D GPC-FDTD methodology for complex materials with 

arbitrary statistically-varying index gradients. The novel 

algorithm utilizes an orthogonal field expansion over the 

space of random parameters, so minimizing the error for 

both the mean value and variance. While it is primarily 

optimized for the extraction of the first two moments, the 

approximated relation between the output and stochastic 

parameter can provide with more valuable information 

like the computation of high-order statistical moments or 

maxima/minima, useful in electromagnetic compatibility 

(EMC) applications [9, 10]. To decrease the dimension 

of space spanned by the input parameters and decorrelate 

them, the Karhunen-Loève scheme is employed. It 

transforms the infinite product space of random inputs to 

be described by a new base that can be safely truncated. 

The resulting variables are, also, uncorrelated, which for 

Gaussian processes is equivalent to independence; an 

ample claim for the GPC applicability. Numerical 

outcomes certify our method, accelerated via graphics 

processor units (GPUs), and reveal its superiority. 

II. PROPOSED METHODOLOGY

A. Generalized polynomial chaos expansion

The GPC method expands all fields in a summation

of orthogonal, under an inner product, basis functions 

over space Ω = Ωi (i = 1,2,…,D), spanned by all D 

random variables ωi (each defined in Ωi), on condition 

that they are statistically independent. The orthogonality 

is satisfied with respect to the inner product: 
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with Θa,b(ω) the basis functions, ω = [ω1,ω2,…,ωD]T the 

vector formed by ωi, δa,b the Kronecker’s delta, and w(ω) 

the distribution function of ω. Note that, in the case of a 

single random variable ωi, the most common w(ωi) are 

related to well-known polynomials like the Hermite 

(Gaussian distribution), the Jacobi (beta distribution), 

and the Legendre (uniform distribution) polynomials. 

However, in the multivariate case, Θa,b(ω) are generally 

unknown, unless a statistical independence between the 

random variables is guaranteed [8]. Only then Θa,b(ω) 

may be expressed as the product of the prior polynomials 

related to their known distributions, i.e., 
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where Θai(ωi) is a univariate basis in ωi of polynomial 

order ai. So, any electric/magnetic component F = {Ex, 

Ey, Ez, Hx, Hy, Hz} in the FDTD domain is written as: 
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with f a the corresponding coefficients and P the number 

of polynomials, calculated for the highest order N, by: 
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Note that the GPC technique can not directly treat 

cases, where stochastic processes affect the output, since 

the latter are described by an infinite series of correlated 

random variables indexed by some physical coordinate. 

In contrast, the FDTD discretization can hardly offer any 

benefit, since one ends up with a very large (although not 

infinite) number of correlated random variables. 

B. Karhunen-Loève stochastic representation

To overcome these issues, we launch the Karhunen-

Loève (KL) expansion [8] for both the dimension 

reduction and decorrelation of the stochastic processes. 

Let Yx(ω) be a stochastic process varying over coordinate 

x[p, q] bounded domain, with a covariance function of 

C(x1, x2). The KL expansion of Yx(ω) reads: 
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where m{Yx(ω)} is the mean value of Yx(ω) and Yi(ω) are 

centered, uncorrelated random variables of unit variance. 

Eigenfunctions ψi(x) and their respective eigenvalues λi 

are determined via the eigenvalue problem: 

[ , ]
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Note that for Gaussian processes, Yi(ω) are generated 

as independent random variables. Also, when the process 

is stationary, i.e., its covariance can be written as 

C(x1, x2) = C(x2 – x1), the solution of (6) is equivalent to 

the Fourier transform of C(x), assuming it is periodic 

outside [p, q]. A key trait of the KL expansion (and a 

motive for its choice in our method) is the decay of λi 

as i increases. So, it is possible to describe the entire 

stochastic process with only a small truncated series of 

Yi(ω). 

C. Enhanced GPC-FDTD update equations

The update equations of the 3-D algorithm are

extracted by plugging (3) into the leapfrog formulas [9]. 

The stochastic process (randomness source) Yx(ω), in the 

KL expansion (5), is the relative electric permittivity 

εr(ω), where x can be any coordinate. By replacing Yi(ω) 

with ωi in (5), defining Ω, and truncating the infinite sum 

up to a K (KL truncation limit), we get: 
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which is a very accurate approximation. For instance, the 

Ez coefficients are given by: 

 

 

1

1, , 1/2 , , 1/2
0 0

1/2 1/2

1/2, , 1/2 1/2, , 1/2
0

2
1/2 1/2

, 1/2, 1/2 , 1/2, 1/2
0

1

1

( ) ( )

( )

,

( )

P P
n n

a a

z a z ai j k i j k
a a

P
n n

a a

y y ai j k i j k
a

P
n n

a a

x x ai j k i j k
a

x

y

e R e

h h

R

h h



 
 

 

   


 

   








 
 

 
 


 



 
 

 





ω ω

ω

ω

 (8) 

with R1 = (2M – σ΄Δt)/(2M + σ΄Δt), R2 = 2Δt/(2M + σ΄Δt), 

and σ΄ the losses. Due to (3), only the respective ea 

coefficients are involved. To derive the update equation 

for every a, we use a Galerkin process, which takes the 

inner product, as in (1), on both sides of (8) with the 

respective basis function. Thus, one arrives at: 
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for θ = Θa(ω), Θa(ω), while similar expressions hold 

for the other components. Note that the stability of the 

algorithm is specified by the usual Courant condition, 

which yields flexible time-steps and is proven remarkably 

efficient (also stated in [7]), as no late-time instabilities 

were observed in any of our simulations. Consequently 

and along with the scheme’s enhanced dispersion 

behavior, cases with challenging variations are precisely 

handled.  

All inner products in (9) hold only in the region with 

the random medium and reduce to δa,b elsewhere. Their 

evaluation is conducted (prior the FDTD update) for 

each coordinate in the region and is trivial for up to 

second order of the KL limit K. For higher-order 

approximations, (1) may be split into 1-D integrals, on 

condition that (2) holds. Therefore, via a Taylor series 

expansion of ωi in every inner product of (9), for an 

arbitrarily large order si (even up to 10 is viewed trivial), 

we compute: 
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only once, and apply the Taylor expansion. For example, 

the second inner product in (9) is expressed as: 
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with Ts the respective Taylor coefficients and DT the 

maximum Taylor series order. As a consequence, extra 

accuracy can be consistently accomplished. 
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III. GPU/CUDA IMPLEMENTATION
For its acceleration, the 3-D algorithm is parallelized

for GPUs via the CUDA platform [11, 12], where different 

code parts are optimized for enhanced thread concurrency. 

As the coalescing mechanism is critical, all GPC 

coefficient matrices are accessed throughout the kernel 

code. Also, read-only matrices in each kernel are accessed 

through the texture buffer to increase performance. 

Then, the shared memory is used to load the pre-

calculated inner products for all threads related to spatial 

coordinates that exhibit material stochasticity. For the 

3-D convolution perfectly matched layers (CPMLs) [9],

diverse kernels are initialized for each side and field

component, executed concurrently by different streams.

Hence, the proper grid and block alignment for every

kernel is separately fulfilled. To evade errors at mesh

corners, we use advanced atomic operators [6]. The

acceleration of GPU codes compared to their conventional

CPU (serialized) realizations, exceeds the promising value

of 50 times.

IV. NUMERICAL RESULTS
The new technique is validated via 3-D setups 

terminated by 8-cell CPMLs. We examine a z-directed 

wire current source that illuminates an infinite planar 

dielectric surface at the y = 0 plane, featuring a non-

uniform (toward x direction) stochastic permittivity (Fig. 

1 (a)). The distribution function follows the Gaussian 

norm, hence Hermite polynomials are used as the basis 

functions. Also, the statistical moments of a domain 

point occupied by the random medium are m{εr} = 3 

for the mean value and σ{εr} = 0.02 m{εr} for the 

standard deviation. Our correlation function is defined as 

C(x – t) = e– (|x – t|/α), with α the correlation length, while 

higher a translate to larger variations between neighboring 

points. The problem is divided into 317317317 cells, 

whose size is fixed and equal to the one tenth of the 

wavelength corresponding to the central frequency of the 

Gaussian excitation pulse. Also, the time increment is set 

at the level of 100-150 psec via the Courant condition, 

while the MC-FDTD scheme gives the reference 

solution. It generates 5000 different stochastic processes 

for the dielectric scattering surface. The determined 

confidence intervals, considered from a 10000 realization 

reference, do not exceed the 10% and 1% mark for 1000 

and 5000 simulations respectively. Any choice beyond 

this level results in a marginal improvement. Figure 1 (a) 

depicts three stochastic processes for α = 0.5 and Fig. 

1 (b) shows the first five eigenfunctions ψi(x) produced 

by the eigenvalue problem (6). The weighted addition of 

the infinite series of polynomials gives exactly the spatial 

variation of the dielectric slab. Thus, a higher K order, 

including up to the Kth eigenfunction, accounts for larger 

spatial variations. As these play a decreasingly serious 

role due to the nature of the electromagnetic wave 

solution the truncation is safely justified. 

Fig. 1. (a) Perspective 3-D view of the simulation setup 

with the randomly generated stochastic processes, and 

(b) eigenfunctions ψi(x) for C(x – t) = e– (|x – t|/α) and α = 0.5.

We, next, solve the problem for a KL limit up to 

K = 3 (α = 0.5, N = 3). The choice of N is justified as the 

best compromise between accuracy and computational 

efficiency. Also, for larger K the system burden does not 

seem to justify the poor increase in accuracy. Figure 2 

gives the electric field variance, where the plotted curves 

are snapshotted at a time-step near the peak of the 

Gaussian pulse, along the white line of the inlet figure. 

A clear improvement is attained as K augments, yet the 

difference between the K = 2 and 3 curve is very small. 

Fig. 2. Electric field variance via 5000 MC-FDTD runs 

and the proposed method for α = 0.5 and N = 3. 

Finally, Fig. 3 presents the variance of the electric 

field for α = 0.5, yet with a prefixed K = 4 and a variety 

of GPC orders N. Apparently, convergence is slower in 

this case, revealing that the KL truncation limit has a 

more substantial impact compared to that of N. In 

contrast, it seems that the opposite situation holds for 

higher correlation length values of the random medium 

dielectric permittivity, where it is better to optimize N in 

an effort to accomplish the desired approximation. 

The main benefit of our algorithm is that via the 

GPC-KL formulation, one gets a similar approximation 
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order as with the MC-FDTD approach. While the latter 

requires thousands of FDTD solutions, the complexity of 

the former (analogous to P) is lower by two magnitude 

orders. Thus, we can reach a sufficient convergence by 

analyzing simulations with ascending K and L orders and 

keep the efficiency over an exact MC study. It is true, 

however, that memory can be up to two or even five to 

ten times higher, in relation with K and L. So, when 

memory is not an issue, the GPC-KL method is a 

powerful alternative. The GPU/CUDA implementation, 

while it does not add to the theoretical analysis, it is 

essential for the results assessment in rational times and 

so it is fully preferred over CPU for both methods. 

Fig. 3. Electric field variance via 5000 MC-FDTD runs 

and the proposed method for α = 0.5 and K = 4. 

V. CONCLUSION
The rigorous modeling of inhomogeneous materials 

with complex statistical index gradients, is presented in 

this paper via a consistent 3-D GPC-FDTD method. The 

3-D technique utilizes the efficient Karhunen-Loève

expansion to handle the arbitrary stochastic processes.

Results prove the profits of the proposed concept.
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