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Abstract ─ A time-dependent discrete adjoint algorithm 

for electromagnetic problems is presented. The governing 

equations are discretized with a semi-discrete Petrov-

Galerkin method. Time advancement is accomplished 

using an implicit, second-order backward differentiation 

formula (BDF2). An all-dielectric metamaterial is 

proposed and gradient-based shape design optimization 

is conducted. Hicks-Henne functions are utilized for 

shape parameterization to ensure smooth surfaces, and 

linear elasticity employed to adapt interior mesh points 

to boundary modifications. The cost function used in the 

design optimization attempts to widen the bandwidth 

of the metamaterial over a desired frequency range. 

Optimization results demonstrate an increase of the full 

width at half maximum (FWHM) of reflection from 

111 THz to 303 THz. 

Index Terms ─ Adjoint-based sensitivity analysis, design 

optimization, finite element method, metamaterial, 

Petrov-Galerkin. 

I. INTRODUCTION
In recent years, the Petrove-Galerkin (PG) method 

has become a popular approach in solving a wide range 

of convection-dominated problems, such as computational 

fluid dynamics and electromagnetics [1, 2]. The primary 

benefits of using PG methods arise from their suitability 

for efficient parallel computing and their high 

performance of efficiency over DG methods [1]. Since 

sensitivity analysis is required for gradient-based 

optimization, the PG method has been extended to 

provide sensitivity derivatives for both steady-state and 

time-dependent problems.To this end, a discrete adjoint 

approach for time-dependent acoustic problems is 

described in [3, 4] for a Petrov-Galerkin method. 

Metamaterials [5] are artificially structured materials 

with sub-wavelength scale building blocks. The optical 

properties of metamaterials depend on the constituent 

materials and geometries of the building blocks. The 

ability to design such metamaterials opens the pathway 

for creating materials with designer optical properties. 

Over the past decade, metamaterials have shown the 

ability of controlling light propagation [6], absorption 

and emission [7, 8]. The rapid development of metamaterial 

research has lead to many scientific breakthroughs such 

as negative refraction, invisible cloaking, and ultra-

compact optical elements [5-9]. 

In this paper, the research described in [3, 10] is 

extended for optimization of metamaterials at optical 

frequencies. A time-dependent discrete adjoint method 

is employed to obtain sensitivity derivatives. An all-

dielectric metamaterial is proposed and optimization 

is conducted. To follow, the governing equations and 

discretization method, the adjoint-based sensitivity 

analysis and shape optimization algorithm, and numerical 

results are presented. 

II. GOVERNING EQUATIONS AND

DISCRETIZATION METHOD
The governing equations considered are the two-

dimensional source-free Maxwell’s equations, which 

can be written in the conservative form: 
∂q(x,t)

∂t
+

∂F(q(x,t))

∂x
+

∂G(q(x,t))

∂y
= 0, (1) 

where q, F and G are given by: 

q = {Dx, Dy, Bz}
T

,

F = {0, Bz μ⁄ , Dy ε⁄ }
T

, G

= {−Bz/μ, 0, −Dx/ε}T,

(2) 

or 

q = {Bx, By, Dz}
T

,

F = {0, −Dz/ε, −By/μ}
T

, G

= {Dz/ε, 0, Bx/μ}T,

(3) 

for a transverse-electric (TE) mode or a transverse-

magnetic (TM) mode, respectively. In the equations 

above, μ and ε represent the relative permeability and 

permittivity, respectively. These parameters are assumed 

to be constants in the current work. 

The Petrov-Galerkin discretization begins by 

formulating a weighted-integral statement of the 

governing equations by multiplying Eq. (1) by a set of 

weighting functions, and integrating within each element, 

as: 
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∫ [ϕ] (
∂q

∂t
+

∂F

∂x
+

∂G

∂y
) dΩkΩk

= 0, (4) 

where  ϕ is a weighting function defined by the 

Streamline Upwind/Petrov-Galerkn (SUPG) method 

given by: 

[ϕ] = N[I] + (
∂N

∂x
[A] +

∂N

∂y
[B]) [τ]

= N[I] + [P], 

(5) 

where [τ] represents the stabilization matrix and can be 

obtained using the following definitions: 

[τ]−1 = ∑ |
∂Nk

∂x
[A] +

∂Nk

∂y
[B]|n

k=1 , (6) 

|
∂Nk

∂x
[A] +

∂Nk

∂y
[B]| = [T][|Λ|][T]−1, (7) 

where [T] and [Λ] are the right eigenvectors and 

eigenvalues of the matrix on the left hand side of Eq. (7) 

respectively, and [T]−1 represents the inverse of [T].
Integrating Eq. (4) by parts, the weak formulation of 

the problem for each elementcan be written as: 

∫ 𝑁𝑖
𝜕𝒒𝑝

𝜕𝑡
𝑑Ω𝑘Ω𝑘

− ∫ [
𝜕𝑁𝑖

𝜕𝑥
𝐹(𝒒𝑝) +

Ω𝑘

𝜕𝑁𝑖

𝜕𝑦
𝐺(𝒒𝑝)] 𝑑Ω𝑘 + ∫ [𝑃] [

𝜕𝒒𝑝

𝜕𝑡
+

𝜕𝐹(𝒒𝑝)

𝜕𝑥
+

Ω𝑘

𝜕𝐺(𝒒𝑝)

𝜕𝑦
] 𝑑Ω𝑘 + ∫ 𝑁𝑖𝐻(𝒒𝑝

+, 𝒒𝑝
−, 𝒏)𝑑S

Γ𝑘
= 0, 

(8) 

where the solution is approximated as qp = ∑ q̃pi

M
i=1 Ni(x). 

In Eq. (8), H(qp
+, qp

−, n) represents the flux on the

element boundaries, which is determined from the data 

on either side of the interface using a Riemann solver 

described in [1]. Equation (8) can be written as an 

ordinary differential equation in time, which is integrated 

using an implicit, second-order backward difference 

formula (BDF2). 

III. ADJOINT-BASED UNSTEADY SHAPE

OPTIMIZATION 
In gradient-based optimization, sensitivity derivatives 

of the objective function are utilized to construct an 

appropriate search direction for improving the design. 

For the direct approach a linear system is formed and 

solved for each design variable. Numerical evaluation, 

such as central finite-difference, requires two high 

converged solutions for each design variable. When the 

number of design variables is greater than the number of 

objective functions, adjoint-based sensitivity analysis is 

the most efficient option for obtaining these derivatives. 

The number of linear systems requiring solution is equal 

to the number of objective functions. 

A. Design variables and shape parametrization

During a design cycle, the geometry is modified

through surface node displacements according to a 
defined parameterization. The specific method will 
dictate the set of geometric design variables. A number 
of surface parameterization methods have been utilized 
for this purpose in the literature, such as Bezier, 
B-spline, Hicks-Henne functions, basis vectors, free-

form deformation, etc. In this paper, the Hicks-Henne 

sine bump function is utilized to ensure smooth surface 

shape, given by: 

𝑏𝑖(𝑥𝑠𝑖 , 𝛽𝑚) = 𝛽𝑚𝑠𝑖𝑛4(𝜋𝑥𝑠𝑖
ln(0.5) ln(𝑥𝑠𝑚)⁄ ), (9)

where the design variables are set to be the magnitudes 

of the bump functions 𝜷 = {𝛽𝑚, 𝑚 = 1, ⋯ , 𝑁𝑑}, where

𝑁𝑑 represents the total number of design variables. In Eq.

(9), 𝑏𝑖 represents the surface node displacement at 𝑥𝑠𝑖

due to the displacement of the surface node at 𝑥𝑠𝑚, and

𝛽𝑚 denotes the 𝑚𝑡ℎ component of the design variables

associated with the surface node at 𝑥𝑠𝑚. The modified

surface coordinates are computed by: 

𝑥𝑠𝑖
𝑛𝑒𝑤 = 𝑥𝑠𝑖

𝑜𝑙𝑑 + ∑ 𝑏𝑖(𝑥𝑠𝑖 , 𝛽𝑚)
𝑁𝑑
𝑚=1 . (10)

As the surface mesh deformation is obtained, the 

interior mesh points are deformed using linear elasticity 

to prevent the generation of overlapping elements. This 

system of equations may be expressed as [𝐾]Δ𝑥 = Δ𝑥𝑠,

where [𝐾] represents the stiffness matrix as found in 

solid mechanics applications. 

For gradient-based optimization the function I 

refers to a scalar-valued objective function used for 

minimization. A general formulation for the objective 

function is expressed in terms of the design variables as 

𝐼 = 𝐼 (𝑋(𝜷), �̃�(𝑋(𝜷))), where �̃� represents the computed 

unsteady solution, 𝑋 represents the computational mesh 
and 𝜷 represents the set of design variables, which 
control the modification of the surface geometry.  

B. Adjoint-base sensitivity calculation

The unsteady residual for time step n can be

expressed as: 

𝑅𝑛(𝜷, 𝑋, �̃�𝑛 , �̃�𝑛−1, �̃�𝑛−2) = 0. (11)

The sensitivity derivative can be computed using a 

forward mode direct differentiation by examining the 

function dependencies of the objective function. The 

total differential of 𝐼 with respect to 𝛽 can be expressed 

as: 

𝑑𝐼

𝑑𝛽
=

𝜕𝐼

𝜕𝑋

𝜕𝑋

𝜕𝛽
− ∑

𝜕𝐼

𝜕𝑞𝑛 [
𝜕𝑅𝑛

𝜕𝑞𝑛]
−1

(
𝜕𝑅𝑛

𝜕𝑋

𝜕𝑋

𝜕𝛽
+

𝑛𝑐𝑦𝑐
𝑛=1

𝜕𝑅𝑛

𝜕𝑞𝑛−1

𝜕𝑞𝑛−1

𝜕𝛽
+  

𝜕𝑅𝑛

𝜕𝑞𝑛−2

𝜕𝑞𝑛−2

𝜕𝛽
). 

(12) 

The adjoint method eliminates the computational 

overhead caused by repetitive calculations of the 

solution sensitivities by transposing the inverse of the 

Jacobian matrix. While a detailed derivation of the 

procedure is given in [3], the total differential of the 

objective function may be expressed in terms of the 

adjoint vector as: 

𝑑𝐼

𝑑𝛽
=

𝜕𝐼

𝜕𝑋

𝜕𝑋

𝜕𝛽
+ ∑ ([𝜆𝑞

𝑛]
𝑇

(
𝜕𝑅𝑛

𝜕𝑋

𝜕𝑋

𝜕𝛽
))

𝑛𝑐𝑦𝑐
𝑛=1 , (13) 

where 

𝜆𝑞
𝑛 = − [

𝜕𝑅𝑛

𝜕𝑞𝑛]
−𝑇

([
𝜕𝐼

𝜕𝑞𝑛]
𝑇

+ [𝜓1
𝑛+1]𝑇 +

[𝜓2
𝑛+2]𝑇),

(14) 
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𝜓1
𝑛 = [

𝜕𝑅𝑛

𝜕𝑞𝑛−1]
𝑇

𝜆𝑞
𝑛, 𝜓2

𝑛 = [
𝜕𝑅𝑛

𝜕𝑞𝑛−2]
𝑇

𝜆𝑞
𝑛 , (15) 

are the adjoint variables. 

C. Shape optimization algorithm

Once the sensitivity derivatives of the objective

function are evaluated, they are utilized to predict an 

appropriate search direction. The basic algorithm can be 

written as: 

Algorithm. A discrete adjoint formulation for time-

dependent sensitivity derivatives: 

(1) Set ψ1
n+1, ψ2

n+1, ψ2
n+2 to be zero. Set 𝑛 to be ncyc.

(2) Solve Eq. (14) for the adjoint variable.

(3) Set the sensitivity derivatives by:
dI

dβ
=

dI

dβ
+

∂I

∂X

∂X

∂β
+ [λq

n]
T

(
∂Rn

∂X

∂X

∂β
). (16) 

(4) Set n = n − 1.

(5) Set ψ2
n+2 = ψ2

n+1, solve Eq. (15) for ψ1
n+1 and ψ2

n+1. 

(6) If n = 1, stop; otherwise go to step 2.

IV. NUMERICAL RESULTS

A. All-dielectric metamaterial and objective function

All-dielectric metamaterials offer a potential low-

loss alternative to plasmonic metamaterials at optical 

frequencies [11]. In the current work, an all-dielectric 

metamaterial made of silicon on SiO2 substrate is 

proposed as the initial design model. Figures 1 (a-b) 

illustrate the schematic of metamaterial unit cell and 

array. The silicon resonators with dimension of 

W = 200 nm and H = 100 nm are placed on top of a 

SiO2 substrate (regarded infinite) with periodicity of 

P = 300nm. As shown the Fig. 1 (a), the metamaterial 

is illuminated with polarized light. The electric field is 

polarized along the x-direction and the magnetic field 

along the y-direction with wave vector k in z-direction. 

In this case, the light transmits from the air to the SiO2 

through the silicon resonators. 

The metamaterial proposed above is modeled and 

simulated by an in-house code developed at the 

Simcenter. The results of reflection over frequency range 

of 350-650 THz are shown in Fig. 1 (c), with full width 

at half maximum (FWHM) of 111 THz (479~590 THz) 

in reflection. For comparative purposes, the current 

results are shown with those from the commercial 

software ANSYS© HFSS [12]. The reflection indicates 

that the metamaterial has the maximum reflection at 

516 THz. The electric field distribution at 516 THz, 

depicted in Fig. 1 (d), clearly illustrates this reflection.  

The objective of the current design optimization is 

to widen the bandwidth of the metamaterial. Accordingly, 

an objective function is proposed as: 

𝐼 = ∫ (1 − 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛)2𝑓2

𝑓1
𝑑𝑓, (17) 

where 𝑓1 and 𝑓2 represent the lower and upper bound of

the desired frequency range. 

B. Optimization results

In the current research the DAKOTA toolkit [13]

was utilized. DAKOTA’s optimization capabilities 

include a wide variety of optimization methods, and 

an interface to link with third-party routines. The 

optimization is performed using a quasi-Newton method 

(DAKOTA’s OPT++ library [14]) based on the 

Broyden-Fletcher-Goldfard-Shanno (BFGS) variable-

metric algorithm, and the line searching approach of 

More and Thuente [15]. 

Utilizing the objective function given in Eq. (17), 

with 𝑓1 = 300 𝑇𝐻𝑧 and 𝑓2 = 700 𝑇𝐻𝑧, the optimization

was performed using different numbers of design 

variables. Increasing the number of design variables 

allows for greater geometric flexibility. Figure 2 

illustrates the optimization results with 1, 3, and 9 design 

variables. As seen in Fig. 2 (a), at 426 THz no reflection 

can be observed from the electric field distribution for 

the initial model, while high reflection can be observed 

for the optimized geometries in Figs. 2 (b)-(d) using 

different number of design variables. 

As shown in Fig. 3, the FWHM of reflection for the 

all-dielectric metamaterial increases from 111 THz to 

277 THz, 285 THz, and 303 THz with 1, 3, and 9 design 

variables, respectively. For the optimized result with 9 

design variables, the FWHM of reflection ranges from 

376 to 679 THz. As shown in Fig. 4, the electric field 

distributions at 404 THz, 505 THz and 620 THz are 

simulated to demonstrate the high reflection property of 

the optimized metamaterial over the wide frequency 

range. 

(a) Metamaterial unit cell (b) Metamaterial array

(c) Reflection (d) Electric field at 516 THz 

Fig. 1. Proposed initial metamaterial model. 
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(a) Original (b) 1 dv (c) 3 dv (d) 9 dv

Fig. 2. Electric field distribution at 426 THz. 

Fig. 3. Comparison of reflection over 300-700 THz. 

(a) 404 THz (b) 505 THz (c) 620 THz

Fig. 4. Electric field distribution of model with 9dv. 

V. CONCLUSION
This paper presents an unsteady discrete adjoint 

approach for performing sensitivity analysis as required 

by gradient-based optimization algorithms. The simulations 

are performed by discretizing the source-free Maxwell 

equations using a Petrov-Galerkin finite-element method. 

Temporal accuracy is achieved with an implicit, 

second-order backward differentiation formula (BDF2). 

Electromagnetic shape optimization is conducted on 

an all-dielectric metamaterial working at optical 

frequencies, and considers multiple numbers of design 

variables. Furthermore, utilizing the current shape 

optimization procedure the FWHM of reflection was 

increased from 111 THz to 303 THz. 
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