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Abstract ─ Computer simulation of cardiac 

electrophysiology is now considered a powerful tool for 

exploring the causes of cardiac arrhythmias. Cardiac 

electric propagation has been studied using the 

monodomain model to describe wave propagation of 

action potential in the heart. The governing nonlinear 

reaction-diffusion partial differential equation is solved 

with the semi-implicit (implicit-explicit) method that 

does not have the stability limit of the explicit time-

stepping scheme. Both first order and second order 

semi-implicit techniques for temporal discretization are 

considered in this paper. Second order finite difference 

technique is used to discretize the spatial derivatives. 

An explicit finite difference scheme with 512×512 

nodes and 0.1 μs time step is used as the benchmark for 

error calculation. APPSPACK, a parallel pattern search 

optimization software, is used to obtain the optimal 

semi-implicit parameters that give the lowest root-mean-

square error. Results are presented for the semi-implicit 

techniques with or without the operator split or protective 

zone method. They demonstrate that the optimized 

second order semi-implicit method gives the best overall 

performance.  

Index Term ─ Derivative-free optimization method, 

monodomain model, operator split method, pattern 

search algorithm, semi-implicit scheme. 

I. INTRODUCTION
The complex bidomain model is arguably the most 

comprehensive mathematical model for simulating 

electrical activities in the heart [1]. According to this 

model, the cardiac tissue is considered as two overlapping 

continuous domains, representing the interstitial and 

intracellular regions illustrated in Fig. 1. An electric 

potential, known as the transmembrane potential or action 

potential, is produced between these two domains when 

an electrical stimulus is applied. With the propagation of 

this action potential across the cardiac tissue, an electric 

field is generated at the surface of the human body, 

giving rise to the electrogram. The bidomain model consists 

of coupled nonlinear reaction-diffusion and elliptical 

equations. Disregarding the interstitial region transforms 

the bidomain model into a simplified monodomain model, 

also known as the reaction-diffusion or cable model, 

which involves a single nonlinear reaction-diffusion 

equation [2]. The simplification of the bidomain model 

leads to a significantly less intensive computational 

solution, and recently Potse et al. showed that the 

discrepancy in simulated action potential propagation 

between the two models is negligible [3]. This confirms 

the use of the monodomain model as a preliminary step 

to develop new numerical techniques.   

Fig. 1. Illustration of the intracellular, interstitial, and 

extracellular region. 

The cardiac monodomain equation consists of a 

temporal derivative, a spatial Laplacian, and nonlinear 

ionic current terms. The central finite difference technique 

with second-order accuracy has been used to approximate 

the Laplacian. The ionic current introduces nonlinearity 

and is represented as a complex nonlinear function of 

the action potential. The temporal derivative has been 

commonly discretized with the explicit method [1], 

though it has a stability constraint that seriously limits 

the time step size. In this work, temporal discretization 

is achieved with the semi-implicit or implicit-explicit 

scheme, in which the implicit method is used for the 
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spatial Laplacian but the explicit method is employed for 

the ionic current. This mixed approach eliminates the 

stability limit of the explicit method, while avoiding 

the expensive solution of a nonlinear matrix equation 

required in a fully implicit method. Both first and 

second order semi-implicit techniques with one and 

two discretization coefficients, respectively, have been 

implemented. 

A major objective of this study is to find the above 

coefficients that give the best results, i.e., the lowest 

root-mean-square (RMS) error potential. The pattern 

search algorithm has been applied to find these optimal 

parameters by using the asynchronous parallel pattern 

search package, APPSPACK. APPSPACK uses derivative-

free optimization to minimize the objective function by 

changing the design variables [4]. To our knowledge, 

this is the first time a second order technique or 

parameter optimization is considered in semi-implicit 

finite difference modeling of cardiac propagation. 

II. CARDIAC MONODOMAIN MODEL
The monodomain model is a mathematical model

that describes the flow of electrical current in the heart. 

The governing monodomain equation is given by: 
∂𝑉𝑚

∂t
  = 

1

𝐶𝑚
{
1

β
 [∇∙(𝜎�̿�  ∇𝑉𝑚) + Isi ] − ΣIion },  (1)   

where 𝑉𝑚 is the action potential, i.e., the difference

between the intracellular and interstitial potentials, 𝐶𝑚 is

the cell membrane capacitance per unit area, β is the 

membrane area per unit volume, and 𝜎�̿� denotes the

intracellular conductivity tensor. Isi is the intracellular 

source current that initiates the activation, and ΣIion 
represents the total ionic current through the membrane.  

In this study, the ionic current ΣIion is obtained as the 

sum of six different types of ionic currents using the Luo-

Rudy model [5]. The Luo-Rudy model is a comprehensive 

ionic current model that is capable of reproducing 

electrocardiograms similar to those recorded from 

patients. 

III. SEMI-IMPLICIT MONODOMAIN

FORMULATION 
Both the first and second order semi-implicit methods 

have been derived from the formulation proposed by 

Ascher et al. [6] for partial differential equations. The 

update equation for the first order semi-implicit temporal 

discretization is given by: 

{[𝐼] −  
θ∆𝑡

𝐶𝑚𝛽
[𝐷𝑜]}⏟        

[𝐴]
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[𝐷𝑜]�̅�𝑚
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1
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𝐼�̅�𝑖
 𝑛+1 −

1

𝐶𝑚
∑ 𝐼̅̅ ̅̅ 𝑖𝑜𝑛

𝑛
]

⏟                           
�̅�

,   (2) 

where [I] is the identity matrix, 0    1 is the 

discretization coefficient, t is the time step size, n is 

the time step index, the bar designates a vector containing 

all the nodal values of the corresponding quantity, and 

[𝐷𝑜]�̅�𝑚 represents the finite difference approximation of

the Laplacian. Equation (2) represents a matrix equation, 

which is solved with the Jacobi preconditioned conjugate 

gradient iterative technique.  

The second order semi-implicit discretization of the 

monodomain equation can be derived as: 

{(θ +
1

2
)[I ] −  

∆t (θ +
c
2

)

Cmβ
[Do]} 

⏟        
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�̅�𝑚
𝑛+1⏟
�̅�

= 
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2
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,(3) 

where θ and c are second order semi-implicit temporal 

discretization coefficients. 

A. Pattern search algorithm

The pattern search algorithm [4] is used to implement

the optimization of the temporal coefficients in (2) and 

(3). The algorithm is based on the univariate or cyclic 

coordinate descent method, which uses the design 

variables, θ and c in the present case, as coordinate 

directions [7]. The search direction is computed by 

cycling through the 𝑛 design variables, yielding 𝑛 

iterations for each direction search cycle. As the 

monodomain equation involves the nonlinear ionic 

current, the pattern search produces a zigzag pattern as it 

approaches the solution. To alleviate the zigzag path’s 

effect, the pattern search algorithm has been set to use 

𝑛 + 1 iterations for each direction search cycle. This 

minor modification assembles a linear combination of 

the previous 𝑛 search directions and the optimum value 

of the step size for that direction in the additional 

iteration step.  

An asynchronous parallel pattern search package, 

APPSPACK, is used to implement the pattern search 

algorithm and obtain the optimum semi-implicit 

coefficients [8]. Developed at Sandia National 

Laboratories, APPSPACK minimizes an objective 

function with an unconstrained or bound-constrained 

input; 

min
𝑙≤𝑥≤𝑢

𝑓(𝑥) =  √
∑ (𝑉𝑚

𝐵𝑀− 𝑉𝑚
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)2𝑁

𝑛=1

𝑁
. (4) 

In the above equation, the bound of 𝑥 is an 𝑛-

dimensional vector, where 𝑙 and 𝑢 are its lower and 

upper bound. The objective function is obtained as the 

RMS difference between the simulated action potential, 

𝑉𝑚
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑, and the benchmark solution, 𝑉𝑚

𝐵𝑀. The

bounded constraints of the design variables are set to be 

0 ≤ θ ≤ 1 and 0 ≤ 𝑐 ≤ 1. The optimum solution is obtained 

with an asynchronous parallel set search that satisfies the 

bounded constraints by choosing appropriate search 

directions.   
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B. Operator split and protective zone method

In the operator split method, the update of unknown

𝑉𝑚 is divided into multiple steps and the time derivative

is considered as the sum of several components [9]. For 

the semi-implicit operator split method, the update of the 

Laplacian and ionic current terms are performed in 

alternate steps with different time steps sizes ∆t and ∆ti, 

respectively. As the ionic current involves nonlinearity 

and relatively fast temporal variation, it is updated with 

smaller time steps, i.e., ∆ti < ∆t. In the protective zone 

method, the ionic current in the operator split scheme is 

updated with smaller time steps only when the action 

potential has the fastest rate of change. The operator split 

as well as the protective zone method was found to 

improve computational efficiency [10].  

IV. RESULTS AND DISCUSSION
The dimensions of the cardiac tissue are 0.5 cm in 𝑥 

(horizontal) direction, and 0.1667 cm in 𝑦 (vertical) 

direction and the anisotropic tissue conductivities are 

0.174 and 0.0193 S/m in x and y directions, respectively. 

A point stimulation current pulse located at the left 

bottom corner of the tissue and constant in time, with 

duration of 1 ms, is used to excite a propagating action 

potential. The three different grid sizes considered are 

36, 72 and 144 nodes in each direction, and a period of 

12 ms is simulated. The optimization iteration stops 

when the variation in RMS error between the calculated 

and benchmark solution is less than 0.001.  

A. Methods without operator split or protective zone

The optimal θ and 𝑐 values (θopt and copt) have been

obtained for the three different grid sizes and 𝑡 = 0.05 

ms and 0.01 ms for the first and second order semi-

implicit method. Note that for the first order method,  = 

0 and 0.5 correspond to the explicit and Crank-Nicolson 

method, respectively. As shown in Table 1, for the first 

order method, θopt varies from approximately 0 to 1. For 

the second order method, copt is approximately zero for 

all the cases, but θopt varies from 0.0820 to 0.443. The 

RMS error decreases by 1.76–4.18 times when 𝑡 is 

varied from 0.05 to 0.01 ms, depending on the order and 

grid size. As expected, the error decreases when the grid 

size is increased, e.g., for t = 0.01 ms, it decreases by a 

factor of 2.21 and 3.02 for the first and second order 

method, respectively, when the grid size is changed from 

362 to 1442. Compared to the first order method, the 

second order method reduces the error by 14.2–35.7%. 

The use of optimized parameters also allows us to achieve 

accuracies higher than those obtained with the common 

numerical schemes, with little impact on the solution 

time. For example, with a 1442 grid and t = 0.01 ms, the 

error for the optimized first order method is 16.4% and 

19.1% lower than that for the explicit and Crank-Nicolson 

method, respectively.  

Table 1: RMS error and optimum coefficients for first 

and second order method without operator split or 

protective zone 

Grid Size, t First Order Second Order 

362, 0.05 ms 
25.1 mV at 

θopt = 0.998 

21.6 mV at θopt = 0.227 

& copt = 0.0500 

722, 0.05 ms 
22.2 mV at 

θopt = 1.00 

17.6 mV at θopt = 0.385 

& copt = 0.00 

1442, 0.05 ms 
21.9 mV at 

θopt = 1.00 
17.0 mV at θopt = 0.443 

& copt = 0.0100 

362, 0.01 ms 
13.9 mV at 

θopt = 1.00 
12.3 mV at θopt = 0.0820 

& copt = 0.00 

722, 0.01 ms 
7.32 mV at 

θopt = 0.00200 
5.43 mV at θopt = 0.210 

& copt = 0.00100 

1442, 0.01 ms 
6.31 mV at 

θopt = 0.324 
4.06 mV at θopt = 0.370 

& copt = 0.00400 

B. Methods with operator split

The operator split scheme has been implemented

such that ∆ti for ionic current is five times smaller 

than ∆t for the Laplacian term. Table 2 demonstrates 

the RMS error and optimum θ and 𝑐 values for operator 

split method with different grid sizes and time steps. 

The operator split improves the accuracy significantly, 

reducing the error by 5.91–11.3 times. However, the 

solution time also increases by a factor of 5.79–8.38. For 

the first order method, θopt varies from 0.00 to 0.583. For 

the second order method, θopt varies from 0.287 to 0.500 

while copt is still nearly zero. Except for the 362 grid with 

the larger 𝑡 = 0.05 ms, θopt and copt values are close to 

those for the Crank-Nicolson Adams-Bashforth method 

(θ = 0.5, c = 0). When t is varied from 0.05 to 0.01 ms, 

the error reduces by a factor of 2.05–5.05. At the same 

time, the error reduces by an average of 6.99% when 

second order instead of first order method is used. It 

should be noted that increasing the grid size or decreasing 

the time step, while reducing the error, also increases the 

solution time correspondingly. Changing from first order 

to second order method, however, has a negligible effect 

on the solution time. Furthermore, the use of optimized 

coefficients can again lead to error minimization, e.g., 

for a 362 grid and t = 0.05 ms, the error for the optimized 

second order method is 20.6% lower than that for the 

Crank-Nicolson Adams-Bashforth technique.     

C. Protective zone method

In the protective zone method, the ionic current is

updated with a smaller time step if |
𝜕𝑉𝑚

𝜕𝑡
| > 0. While this 

only causes an insignificant increase in the error, it reduces 

the solution time of the operator split approach by a factor 

of 2.23–2.57. According to Table 3, the effects of the 

different parameters with protective zone method follow 

the same trend seen previously in results obtained without 

the protective zone scheme. 
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Table 2: RMS error and optimum coefficients for first 

and second order method with operator split 

Grid Size, t First Order Second Order 

362, 0.05 ms 
3.38 mV at 

θopt = 0.285 

3.41 mV at θopt = 0.287 

& copt = 0.00700 

722, 0.05 ms 
3.28 mV at 

θopt = 0.483 

2.83 mV at θopt = 0.460 

& copt = 0.0750 

1442, 0.05 ms 
3.32 mV at 

θopt = 0.583 
2.87 mV at θopt = 0.461 

& copt = 0.0600 

362, 0.01 ms 
1.65 mV at 

θopt = 0.00 
1.59 mV at θopt = 0.497 

& copt = 0.00200 

722, 0.01 ms 
0.650 mV at 

θopt = 0.527 
0.604 mV at θopt = 0.500 

& copt = 0.0685 

1442, 0.01 ms 
0.693 mV at 

θopt = 0.516 
0.658 mV at θopt = 0.500 

& copt = 0.0507 

Table 3: RMS error and optimum coefficients for first 

and second order method with protective zone 

Grid Size, t First Order Second Order 

362, 0.05 ms 
3.42 mV at 

θopt = 0.270 

3.50 mV at θopt = 0.530 

& copt = 0.0730 

722, 0.05 ms 
3.29 mV at 

θopt = 0.527 

2.95 mV at θopt = 0.462 

& copt = 0.0100 

1442, 0.05 ms 
3.34 mV at 

θopt = 0.566 
2.87 mV at θopt = 0.455 

& copt = 0.0500 

362, 0.01 ms 
1.63 mV at 

θopt = 0.0460 
1.69 mV at θopt = 0.625 

& copt = 0.418 

722, 0.01 ms 
0.656 mV at 

θopt = 0.268 
0.728 mV at θopt = 0.510 

& copt = 0.0370 

1442, 0.01 ms 
0.701 mV at 

θopt = 0.445 
0.658 mV at θopt = 0.500 

& copt = 0.0519 

V. CONCLUSION
Optimization of the temporal discretization 

coefficients for semi-implicit finite difference modeling 

of cardiac propagation has been implemented with a 

pattern search algorithm. The proposed second order 

semi-implicit technique provides higher computational 

efficiency than the first order method used in previous 

studies. The operator split and protective zone schemes 

developed for the first order method also work for the 

second order method, which allows an effective tradeoff 

between accuracy and solution time. Moreover, the 

optimized coefficients result in error minimization with 

negligible effect on the solution time. The optimized 𝑐 
coefficient is close to zero for all the cases, while the 

other optimal coefficients show varying degrees of 

dependence on grid size and time step. The computational 

cost in finding these optimized coefficients can be 

amortized over the repeated simulations in physiological 

studies that use the same coefficients. Future research 

may involve the extension of the current study to higher 

order semi-implicit schemes and three-dimensional 

realistic cardiac geometries.   
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