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Abstract ─ A non-intrusive arbitrary polynomial chaos 

(aPC) method is applied to a problem of a band-stop 

filter with geometrical imperfections. The construction 

of aPC scheme only requires evaluating a finite number 

of moments, and does not involve assigning analytical 

probability density functions for the uncertain parameters 

of a stochastic model. Therefore, aPC is well suited  

for applications where the uncertain parameters are 

represented by raw data samples, as with the case of 

experimental measurements. The numerical examples 

show that the aPC approach is accurate even with a 

limited number of input samples. 

 

Index Terms ─ Data-driven arbitrary polynomial chaos, 

generalized polynomial chaos, Monte Carlo sampling, 

uncertainty quantification. 

 

I. INTRODUCTION 
Methods of uncertainty quantification (UQ) have 

been widely used with computational electromagnetics 

(CEM) to address real-world problems that have 

probabilistic interpretation. Classically, the well-known 

Monte Carlo (MC) method is used to estimate the 

influence of the uncertain parameters on the output 

metrics of a stochastic model [1-3]. However, the MC 

method is a sampling method that requires large number 

of realizations to obtain accurate results. Therefore, in 

many cases applying the MC method is challenging, 

especially when incorporated with full-wave solvers. 

Alternatively, the generalized polynomial chaos (gPC) 

method [4,5] overcomes this drawback for a modest 

number of input parameters. In the gPC approach, the 

probability density function (PDF) of the output is 

interpolated by orthogonal polynomials defined uniquely 

for a given probability distribution. In [4], recursive 

relations of polynomial bases are provided for various 

types of parametric distributions. 

Recently, Oladyshkin and Nowak [6] introduced a 

moment-based polynomial chaos approach referred to as 

arbitrary polynomial chaos (aPC). The construction of 

the polynomial bases in aPC does not require an exact 

knowledge of the input distributions and depends solely 

on the input moments. This allows aPC to be used with 

a broad range of applications, including applications 

with known input distributions (as in gPC), and with 

data-driven applications where only limited data samples 

are available (usually through measurements). Another 

advantage of aPC, is that since the input data are 

processed directly in the algorithm through the input 

moments, undesirable errors related to distribution fitting 

are avoided. 

The objective of this paper is to introduce the non-

intrusive aPC method [6] in uncertainty analysis of  

CEM applications. A band-stop filter based on an 

electromagnetic band gap (EBG) cell is considered as a 

model problem. The case studies address geometrical 

imperfections induced during the manufacturing process. 

This includes imperfections in the size and the corners of 

the EBG cell. To emphasize the data-driven concept, part 

of the work considers the treatment of limited input data 

sets.  
 

II. MODEL PROBLEM 
The notch filter considered in this paper consists  

of microstrip line suspended over a mushroom-type 

electromagnetic band gap (MSEBG) cell. The filter 

configuration is shown in Fig. 1. All the metals including 

the strip, the EBG cell, and the ground are assumed as 

perfect conductors. The filter is assumed to be placed  

in freespace. This is modelled by applying radiation 

boundary conditions (RBC) on a transparent box that 

encapsulates the computational domain. The size of the 

box is chosen such that its faces are located no less than 

a quarter-wave length from the filter, except at the two 

ends of the strip line, where waveports are placed to 

excite the structure. The resonance frequency (𝑓𝑟) and 

the bandwidth (BW) are determined by computing the 

transmission coefficient (S12). This is achieved here via 

3D full-wave solver HFSS [9]. For a filter operating at 

𝑓𝑟  =  94GHz and BW =  7.62GHz, the input parameters 

(see Fig. 1 (b)) are set as: 𝑤 =  0.21mm,  𝜀1  =  𝜀2  =
 3.78, ℎ1  =  ℎ2  =  1mm, 𝑟 =  0.075mm, and 𝑡 =
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 0.05mm. Figure 2 shows the transmission coefficient of 

the filter with respect to frequency. BW is defined where 

S12 falls below −20dB.  

 

 
 (a) Filter configuration     

 
 (b) Input parameters 

 

Fig. 1. Notch filter. 

 

 
 

Fig. 2. S12 parameter. 

 

III. STATISTICAL FRAMEWORK 

A. Non-intrusive polynomial chaos 

Consider a vector of independent random variables 

𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑁}, defined on a sample space Ω, with  

a joint probability density function (PDF) 𝑓𝑿(𝒙)  =
∏ 𝑓𝑋𝑖

(𝑥𝑖)
𝑁
𝑖=1 . 𝑁 is the dimension of 𝒙 and 𝑓𝑋𝑖

 is the 

marginal PDF of 𝑥𝑖. The kth moment of 𝑥𝑖 is defined as: 

 𝜇𝑘,𝑖 = ∫ 𝑥𝑖
𝑘

Ω𝑖
𝑓𝑋𝑖

(𝑥𝑖)𝜕𝑥. (1) 

However, in some problems 𝑓𝑋𝑖
 is not known and 

only 𝑀 number of 𝑥𝑖 samples is available. In this case 

the moments are given by: 

 𝜇𝑘,𝑖 =
1

𝑀
∑ 𝑥𝑖,𝑗

𝑘𝑀
𝑗=1 . (2) 

Let 𝑦 =  𝑔(𝒙) be the model under consideration. 𝑥𝑖 

represents an input under uncertainty such as the 

geometrical sizes and the electrical parameters of the 

filter, while 𝑦 represents an output of interest, i.e.,  

the resonance frequency or the bandwidth. 𝑦 can be 

approximated by the expansion: 

𝑦(𝒙) = 𝑦(𝑥1, 𝑥2, … , 𝑥𝑁) = ∑ 𝛼𝑖Φ𝑖
Pout
𝑖=0 (𝑥1, 𝑥2, … , 𝑥𝑁), 

(3) 

where 𝛼𝑖 are unknown coefficients, and Pout refers to the 

number of terms included in the expansion. Φ𝑖 forms a 

set of multidimensional orthogonal polynomials with 

respect to 𝑓𝑿(𝒙): 

〈Φ𝑖 , Φ𝑗〉 = ∫ Φ𝑖(𝒙)Φ𝑗(𝒙)𝑓𝑿(𝒙)𝜕𝒙
Ω

= ‖Φ𝑖
2‖𝛿𝑖,𝑗.   (4) 

Based on the orthogonality condition in Eq. (4),  

the coefficients 𝛼𝑖 can be determined by the spectral 

projection method: 

𝛼𝑖 =
〈𝑦,Φ𝑖〉

‖Φ𝑖
2‖

.                               (5) 

The expression in (5) is usually handled by Gaussian 

quadrature. However, with data-driven applications the 

locations of the Gaussian weights would vary with 

different realizations of input sample sets. This can be 

challenging, especially when full-wave solvers are used 

to evaluate the system response at these points. In a more 

convenient method, 𝛼𝑖 can be determined from Pout + 1 

fixed collocation points as: 

[
 
 
 
 

Φ0(𝐱0) Φ1(𝐱0) ⋯ ΦPout
(𝐱0)

Φ0(𝐱1) Φ1(𝐱1) ⋯ ΦPout
(𝐱1)

⋮ ⋮ ⋱ ⋮
Φ0(𝐱Pout

)Φ1(𝐱Pout
)⋯ΦPout

(𝐱Pout
)]
 
 
 
 

[

𝛼0

𝛼1

⋮
𝛼Pout

] =

[
 
 
 

𝑦(𝐱0)

𝑦(𝐱1)
⋮

𝑦(𝐱Pout
)]
 
 
 

 ,  

(6) 

with 𝐱0 = {𝑥1,𝑖 , 𝑥2,𝑖 , … , 𝑥𝑁,𝑖}. The mean and the variance 

of y satisfy: 

𝜇𝑦 = 𝛼0‖Φ0‖,       𝜎𝑦
2 = ∑ 𝛼𝑖

2‖Φ𝑖
2‖Pout

𝑖=1 .         (7) 

 

B. Construction of orthogonal polynomials for an 

arbitrary distribution. 

As already mentioned aPC is a moment-based 

method. Therefore, the next step is to express the 

polynomial basis Φ𝑖 in terms of the statistical moments 

of 𝒙. To do so we first write Φ𝑖 in terms of univariate 

orthogonal polynomials using a multi-index 𝐼𝑗
𝑖 as: 

Φ𝑖(𝑥1, 𝑥2, … , 𝑥𝑁) = ∑ 𝑃
𝑗

(𝐼𝑗
𝑖)
(𝑥𝑗)

𝑁
𝑗=1 .             (8) 

𝑃𝑗
(𝑘)

 refers to the 𝑗th univariate polynomial of degree 𝑘. 

It has the form: 

𝑃𝑗
(𝑘)

(𝑥𝑗) = ∑ 𝑝𝑖,𝑗
(𝑘)

𝑥𝑗
𝑖𝑘

𝑖=0 ,                     (9) 

with 𝑝𝑖,𝑗
(𝑘)

 being the polynomial coefficients. In [6], it is 

shown that with straight forward algebra Eqs. (1), (2), 

and (4) can be used to find the coefficients 𝑝𝑖,𝑗
(𝑘)

 in terms 

of the input moments. This relation is given by the 

matrix: 

[
 
 
 
 

μ0,𝑗 μ1,𝑗 ⋯ μ𝑘,𝑗

μ1,𝑗 μ2,𝑗 ⋯ μ𝑘+1,𝑗

⋮ ⋮ ⋱ ⋮
μ𝑘−1,𝑗 μ𝑘,𝑗 ⋯ μ2𝑘−1,𝑗

0 0 0 1 ]
 
 
 
 

[
 
 
 
 
 
 𝑝0,𝑗

(𝑘)

𝑝1,𝑗
(𝑘)

⋮

𝑝𝑘−1,𝑗
(𝑘)

𝑝𝑘,𝑗
(𝑘)

]
 
 
 
 
 
 

=

[
 
 
 
 
0
0
⋮
0
1]
 
 
 
 

.      (10) 
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The moment matrix in Eq. (10) may become ill-

conditioned when high order polynomials are required. 

One way to reduce the order of the polynomials without 

affecting the accuracy of the solutions is by using the 

multi-element approach [7,8]. 
 

C. Error estimation 

In data-driven applications an input variable 𝑥𝑖 is 

given as a set of 𝑀 samples. The 𝑙-th realization of the 

input sample set can be represented as: 

𝑥𝑖(𝑙) = {𝑥𝑖,1(𝑙), 𝑥𝑖,2(𝑙), … , 𝑥𝑖,𝑀(𝑙)},   𝑙 = 1,2, … , 𝐿, (11) 

where 𝐿 is the total number of realizations. Let 𝑍𝐴𝑝𝑝𝑟𝑜𝑥(𝑙) 

be an output measure computed for the 𝑙-th realization. 

According to the central limit theorem when both 𝑀 and 

𝐿 are big 𝑍𝐴𝑝𝑝𝑟𝑜𝑥 can be approximated by a normal 

distribution with a mean value 𝜇𝑍𝐴𝑝𝑝𝑟𝑜𝑥
 and a standard 

deviation 𝜎𝑍𝐴𝑝𝑝𝑟𝑜𝑥
. Given that, the relative error of the 

output satisfy the bound: 

𝑃𝑟 (𝜖 ≤
𝑚𝑎𝑥{‖𝜇𝑍𝐴𝑝𝑝𝑟𝑜𝑥

±3𝜎𝑍𝐴𝑝𝑝𝑟𝑜𝑥
‖−𝑍𝐸𝑥𝑎𝑐𝑡}

𝑍𝐸𝑥𝑎𝑐𝑡
) = 0.9973.       

(12) 

𝑃𝑟  and 𝜖 refer to the probability operator and the relative 

error of the output, respectively. 𝑍𝐸𝑥𝑎𝑐𝑡  is computed by 

the exact distribution. In a simpler form the error in Eq. 

(12) can be approximated by the expression: 

𝜖 ≈
𝑚𝑎𝑥{‖𝜇𝑍𝐴𝑝𝑝𝑟𝑜𝑥

±3𝜎𝑍𝐴𝑝𝑝𝑟𝑜𝑥
‖−𝑍𝐸𝑥𝑎𝑐𝑡}

𝑍𝐸𝑥𝑎𝑐𝑡
.          (13) 

 

IV. NUMERICAL EXAMPLES 

A. Uncertainty in width 

First we consider variations in the patch size 𝑤 (see 

Fig. 1 (b)). In this case 𝑤 follows a normal distribution 

w~𝑁(𝜇𝑤, 𝜎𝑤
2), truncated at 3𝜎𝑤, i.e., Δ𝑤 = ±3𝜎𝑤. 𝜇𝑤 

and the other parameters of the filter are fixed at the 

values provided in Section II. Figure 3 shows the 

maximum relative error obtained for the expected  

value and the standard deviation of the model outputs  

vs. number of input samples computed at Pout  =  2  

and ∆𝑤 = ±0.1𝑡 (𝑡 is the patch thickness). As the 

convergence rate in both cases is of order ~0.5, it is clear 

that the error is due to the statistical sampling used to 

generate the input sets. However, the results show that 

acceptable accuracies are achievable with relatively 

small input sets (100 ≤ 𝑀 ≤ 1000). For this example, 

Eq. (6) shows that only 3 input points are required to 

obtain the model coefficients. Thus, it is clear that the 

time consumption in aPC is substantially lower when 

compared with Monte Carlo simulations.  
 

B. Uncertainty in corners 

In this second example we study imperfections  

in the corners of the patch. To do so, a corner is  

approximated by a cylinder of radius 𝑟𝑖, where 𝑖 =
1,2, … ,4. The configuration of this problem is shown in 

Fig. 4. The radius of the cylinders is assumed to follow  

a normal distribution 𝑟𝑖~𝑁(0,𝑤2/16), truncated on 

[0,3𝑤/4]. 
The univariate polynomials used in this example are 

of order 2. Since this is 4-th dimensional problem, the 

system response in Eq. (6) is computed at 15 points (i.e., 

Pout  =  15). Figure 5 shows the maximum relative error 

obtained for the expected value and the standard 

deviation of the model outputs vs. the total number of 

input samples generated for the 4 corners. As in the 

previous example the output error in this case study is 

also dominated by the sampling process (i.e., the 

convergence rate is of order ~0.5). The results here also 

show that good accuracies can be achieved with a 

relatively small number of input samples. 

 

 
    (a) Expected value 

 
    (b) Standard deviation 

 

Fig. 3. Convergence rate of expected value and standard 

deviation vs. number of 𝑤 samples, with ∆𝑤 = ±0.1𝑡 

and Pout = 2. 
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Fig. 4. MSEBG patch with imperfections in corners. 

 

 
  (a) Expected value 

 
  (b) Standard deviation 

 

Fig. 5. Convergence rate of expected value and standard 

deviation vs. the total number of 𝑟𝑖 samples, with 𝑖 = 4 

and Pout = 15. 

 

V. CONCLUSION 
A procedure based on data-driven arbitrary 

polynomial chaos (aPC) is introduced for uncertainty 

quantification (UQ) in filters. The filter imperfections 

are presented in terms of data samples. The main 

advantage of using this procedure is that the construction 

of the chaos polynomials is done by evaluating the input 

moments directly from the input samples without 

necessarily knowing the input distributions. In this work 

the samples are provided by distribution sampling. 

However, in real-world problems they are obtained by 

measurements. The aPC approach is validated with a 

model problem of a band stop filter. Two case studies 

addressing geometrical imperfections induced during the 

manufacturing process are considered. The results show 

that even with low-order polynomials the accuracy of the 

approach is dominated by sampling process. Therefore, 

the convergence rate of this approach is of order ~0.5. 
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