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Abstract-  The computational power and memory 
bandwidth of graphics processing units (GPUs) 
have turned them into attractive platforms for 
general-purpose applications at significant speed 
gains versus their CPU counterparts [1]. In 
addition, an increasing number of today's state-of-
the-art supercomputers include commodity GPUs 
to bring us unprecedented levels of performance in 
terms of raw GFLOPS and GFLOPS/cost. Inspired 
by the latest trends and developments in GPUs, we 
propose a new paradigm for implementing on 
GPUs some of the major aspects of 
electromagnetic simulations, a domain 
traditionally used as a benchmark to run codes in 
some of the most expensive and powerful 
supercomputers worldwide. After reviewing 
related achievements and ongoing projects, we 
provide a guideline to exploit SIMD parallelism 
and high memory bandwidth using the CUDA 
programming model and hardware architecture 
offered by Nvidia graphics cards at an affordable 
cost. As a result, performance gains of several 
orders of magnitude can be attained versus thread-
level methods like pthreads used to run those 
simulations on emerging multicore architectures  
  
Index Terms -  Graphics processors, electro-
magnetic simulations, CUDA, GPGPU. 
 

I. INTRODUCTION 
 

Graphics processors are usually characterized 
by parallelism, pipelining and bandwidth. After 
completing a steady transition from mainframes to 
workstations to PC cards, Graphics Processing 
Units (GPUs) emerge nowadays like a solid and 
compelling alternative to traditional computing, 
delivering extremely high floating point 
performance for those applications which can be 

arranged to fit and exploit the inherent parallelism 
and high memory bandwidth [2]. The newest 
versions of programmable graphics processing 
units (GPUs) have consistently demonstrated an 
outstanding performance in many applications 
beyond graphics, including data mining [3,4], 
computer vision [5], signal and image processing 
and segmentation [6,7,8], numerical methods [9], 
and assorted simulations [10,11,12]. 

This fact has attracted many other researchers 
and encouraged the use of GPUs in a broader 
range of applications, where developers will need 
to leverage this technology with new programming 
models which ease the developer's task of writing 
programs to run efficiently on GPUs. Nvidia and 
ATI/AMD, manufacturers of the popular GeForce 
and Radeon sagas of graphics cards, have released 
software components which provide simpler 
access to GPU computing power than that realized 
by treating the GPU as a traditional graphics 
processor. CUDA (Compute Unified Device 
Architecture) [13] is Nvidia's solution as a simple 
block-based API for programming; AMD's 
alternative is called Stream Computing and 
includes technologies such as the Brook+ compiler 
[14] and the Compute Abstraction Layer, both of 
which allow the developer to work in a high-level 
language which abstracts away GPUs' specifics. 
Those companies have also developed hardware 
products aimed specifically at the General Purpose 
GPU (GPGPU) computing market: The Tesla 
products [15] are from Nvidia, and Firestream [16] 
is AMD's product line. 

Between Stream Computing and CUDA, we 
chose the latter to program the GPU for being 
more popular and providing more mechanisms to 
optimize general-purpose applications which do 
not entirely fit into the more traditional graphics 
processing paradigm. More recently, Apple's 
OpenCL framework [17] emerges as an attempt to 
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unify those two models with a superset of features, 
but since it is closer to CUDA and inherits most of 
its mechanisms, we are confident on an eventual 
portability for the methods described throughout 
this paper without loss of generality. 

Novel scientific applications are good 
candidates to take the opportunity offered by 
CUDA and counterparts (see Fig. 1), and 
electromagnetic simulations is clearly one of them 
for three primary reasons:  
1. This field has traditionally proven to be of great 
success for GPUs during its evolution towards 
high-performance general-purpose computing.  
2. The increasing complexity of recent electro-
magnetic algorithms has made simulation part of 
the workflow in both academia and industry to be 
very computationally demanding.  
3. Traditional architectures reveal themselves as 
inefficient solutions for this class of applications. 

Electromagnetic simulations are memory 
intensive applications containing assorted access 
patterns where memory optimizations play a 
primary role. Fortunately, CUDA provides a set of 
powerful low-level mechanisms for controlling the 
use of memory and the behavior of its hierarchy. 
This affects performance severely at the expense 
of a considerable programming effort, which we 
describe throughout this paper.  

The rest of the paper is organized as follows. 
Section II reviews the most recent results obtained 
by GPUs on electromagnetic simulations. Section 
III focuses on the specifics of the GPU 
programming with CUDA, and Section IV 
describes optimization strategies particularly 
oriented to simulation codes. Section V concludes. 
 
II. THE GPU ON ELECTROMAGNETIC 

SIMULATIONS 
 
A. Related Work 

Over the past few decades, the increase of 
overall computing power coupled with the 
maturation of many electromagnetic algorithms 
has produced a blooming on the simulation side. 
Many explorations focused on 2D first, were later 
extended to 3D, and even were modeled as so-
called 2.5D problems. 

In response to that evolution, a number of 
approaches to hardware acceleration of electro-
magnetic simulations have been investigated in the 

past five years. Those approaches can be classified 
into two main categories: 
1. Stand-alone computing devices like ASICS, 
which represent the highest achievable 
acceleration but quickly becomes too expensive 
due to the massive hardware required. 
2. Co-processors with their own memory and 
connected to a host PC via an input/output bus or 
socket interface. Within this category, we may 
find Field Programmable Gate Arrays (FPGAs) 
[18] and Graphics Processing Units (GPUs) [19]. 

GPUs stand out in a unique way from all these 
innovative solutions because they are produced as 
commodity processors and their floating point 
performance has significantly outpaced that of any 
other processor. In addition, GPUs have become 
easier to program, which allows developers to 
effectively exploit their computational power. 

Modern GPUs have been at the leading edge 
of increasing chip-level parallelism over the past 
five years. Scaling from 8 to 240 processors in the 
most popular saga of Nvidia GPUs, they have 
completed a steady transition from multi-core to 
many-core processors. The high degree of 
parallelism achieved, combined with their wide 
availability and affordable budget, has ultimately 
confirmed GPUs as a popular platform among 
universities and students to run computationally 
expensive simulations [1]. 

More recently, several companies that supply 
leading edge electromagnetic simulation software 
have joined this movement to ease code transition 
to the GPU for all kind of users belonging to this 
area regardless of their programming skills. Some 
illustrative examples are Acceleware and CST, 
which have announced a new GPU-based solution 
for accelerating lengthy electromagnetic design 
simulations, reporting performance gains of up to 
40% compared to previous products [20,21]. This 
software uses CUDA, a programming interface 
particularly designed to solve complex 
computational general-purpose problems, which 
we describe later in Section III. Large corporations 
and research institutions have also been able to tap 
into clusters of GPUs for large scale simulations 
[22], enabling a step forward in performance while 
maintaining a limited budget. This way, the GPU 
technology aspires to have a tremendous impact 
on engineering electromagnetic education, as 
universities and research centers worldwide will 
be able to simulate realistic problems with 
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affordable GPU-based hardware platforms, which 
will also be available to students on their own 
personal computers. 

Successful implementations of electro-
magnetic algorithms on GPUs can be seen as the 
key for the integration of simulators into design 
and optimization tools [23]. The GPU power may 
be combined here with the development of 
behavioral models and multi-grid, graded mesh 
and multi-resolution techniques for boosting the 
performance of electromagnetic simulations. 

 

 
 

Fig. 1. An overview of general purpose 
applications evaluated by GPU 
performance according to two major 
features: Amount of parallelism 
extracted (on X axis) and memory 
bandwidth exploitation (on Y axis). 

 
B. Characterization 

The GPU has been extensively used in 
scientific computing over the past five years, but 
the degree of success has been different depending 
on algorithm features and how they meet GPU 
hardware idiosyncrasies. Nvidia [13,24] has 
reported a list of illustrative examples. Just to 
mention a few involving simulations, we have: 
molecular dynamics (36x), fluid dynamics (17x), 
multi-fluid (50x), astrophysics (100x), multi-body 
mechanical (13x), financial (149x), oil and gas 
(18x), DNA and liquids (18x), and interactive 
visualization of volumes (146x). 

In general, expectations for a particular 
algorithm to reach certain levels of speedup factor 
when running on GPUs depend on a number of 
features which conform a list of requirements to be 
fulfilled. From less to more important, we have: 
1. Small local data requirements (memory and 
registers). 

2. Stream computing (non-recursive algorithms). 
3. Arithmetic intensity (high data reuse). 
4. Bandwidth (fast data movement). 
5. Data parallelism (data independency). 

The two key factors are analyzed in Fig. 1, 
where some of the most popular applications are 
placed in conjunction with electromagnetic 
simulations to quantify the memory bandwidth and 
data parallelism each algorithm can benefit from. 
This gives us an estimation about how successfully 
each code can run on GPU platforms. 

 

C. Upsides 
Simulations usually consists of a mixture of 

fundamentally serial control logic and inherently 
parallel computation. Furthermore, those 
computations are often data-parallel in nature, 
which matches the programming model that CUDA 
adopts (see Section III-B), basically a sequential 
control thread capable of launching a series of 
parallel kernels. This makes it relatively easy to 
parallelize an application's individual components 
as kernels, rather than requiring a wholesale 
rewriting of the entire application. 

In our case of a typical electromagnetic 
simulation, the same executable is invoked multiple 
times on each parallel processor by a job-queuing 
algorithm and the results are then reassembled. This 
constitutes an embarrassingly parallel computing 
model, as it does not require much internode 
communication or global data sharing. 
Electromagnetic computations are in fact very close 
to graphics processing in this respect: Million of 
operations can be performed in parallel exhibiting a 
speed which can reach up to two orders of 
magnitude when compared to the computational 
power shown on typical quad-core CPUs. 

On the other hand, simulations often deal with a 
large amount of data, which are responsible for the 
realism and accuracy of the simulated physics. 
GPUs reach data bandwidth with video memory 
around ten times higher than CPUs with main 
memory, and because of the way data is transferred, 
regular access patterns in the code behave better 
when running on GPUs. 

A third issue is also worth mentioning: 
Arithmetic intensity. Electromagnetic simulations 
usually require the computation of complex 
mathematical formulas, which are efficiently 
mapped to the GPU platform due to the presence of 
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those units devoted to a typical graphics rendering. 
Moreover, newer generations of GPUs like GeForce 
Series 8 include internally a powerful co-processor 
devoted to the computational physics required in 
many realistic animation and effects. Such co-
processor, called PhysX [25], was originally 
invented by Ageia, whose design was inspired in 
those we found in GPUs for building arithmetic 
units and massively parallelism. 

Finally, we leave on the CPU those parts of our 
simulation that do not have high arithmetic intensity 
or do not expose substantial amounts of data or  
thread-level parallelism. This way, that tough part 
of our application remains unchanged and can 
benefit from overlapping computations on a bi-
processor CPU-GPU platform. 

 
D. Downsides 

For the GPU to succeed as the favourite 
platform to run electromagnetic simulations in the 
future, we still envision two main challenges in the 
horizon: Accuracy and memory capacity. 
Accuracy. The lack of 32-bit floating-point 
precision was a major drawback in many 
application areas during the first half of this decade. 
Starting in 2008 with the GT 200 series from 
Nvidia, the situation has reversed and all major 
GPU vendors now offer 64-bit massively parallel 
hardware which will further enhance modelling and 
simulation capabilities. For example, the Tesla 
T10P GPU from Nvidia provides full IEEE 
rounding, fused multiply-add, and denormalized 
number support for double precision.  
      The problem arises when you look at execution 
times, since in most cases performance drops from 
five to ten times when you migrate your algorithm 
from single to double precision. This is mainly due 
to the reduced degree of parallelism we can exploit 
in the architecture, as usually the ratio of single to 
double precision floating-point arithmetic units 
available in a typical GPU is four to one or even 
eight to one. In the past, the primary argument for 
not to overcome this lack was that classical 
rendering did not require such enhancement. With 
the recent movements towards general-purpose 
GPU-like architectures,  double precision floating-
point will be offered at a much lighter performance 
penalty as more applications demand it. 
 
 

E. Memory size 
    Some of the large scale simulations are not 
necessary complicated in nature, but they require a 
large amount of memory space. For example, 
modelling of the near electromagnetic fields around 
antennas fall into this category, and more in general, 
field and signal analysis for high-speed electronic 
circuits and systems has become increasingly 
difficult due to the complexity of new electronic 
devices. GPU memory has progressed at a higher 
speed rate than the CPU counterpart over the last 
decade, and GDDR5, the video memory currently 
available, keeps consistently two generations ahead 
versus CPU DDR3 memory placed on the 
mainboard. But when it comes to capacity, the 
reduced form factor (size) of the graphics card in 
conjunction with its wider bus width versus the 
GPU, introduce serious routing problems which 
prevent video memory capacity from growing at the 
same rate. We believe that the solution to this 
problem lies more in the software layer, particularly 
in programmer's hands, who has to be able to 
partition data efficiently and ultimately perform 
computations through a blocking strategy to 
overcome memory constraints. 
 

III. CUDA 
 

The Compute Unified Device Architecture 
(CUDA) [13] is a programming interface and set 
of supported hardware to enable general-purpose 
computation on Nvidia GPUs. 

The CUDA programming interface is ANSI C 
extended by several keywords and constructs 
which derive into a set of C language library 
functions as a specific compiler generates the 
executable code for the GPU in conjunction with 
the counterpart version running on the CPU acting 
as a host.  

Since CUDA is particularly designed for 
generic computing, it can leverage special 
hardware features not visible to more traditional 
graphics-based GPU programming, such as small 
cache memories, explicit massive parallelism and 
lightweight context switch between threads. 
 
A. Hardware Platforms 

All the latest Nvidia developments on graphics 
hardware are compliant with CUDA: For low-end 
users and gamers, we have the GeForce series 
starting from its 8th generation; for high-end users 
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and professionals, the Quadro FX 5600/4600 
series; for general-purpose computing, the Tesla 
boards. Focusing on Tesla, the C870 is an 
homogeneous CMP endowed with 128 cores and 
1.5 GB of video memory to deliver a theoretical 
peak performance of 518 GFLOPS (single 
precision), a peak on-board memory bandwidth of 
76.8 GB/s and a peak main memory bandwidth of 
4 GB/s under its PCI-express x16 interface. 

 

 
Fig. 2. The CUDA hardware interface. 

 
B. Execution Modes 

The G80 parallel architecture is a SIMD 
(Single Instruction Multiple Data) processor 
endowed with 128 cores. Cores are organized into 
16 multiprocessors, each having a large set of 
8192 registers, a 16 KB shared memory very close  
to registers in speed (both 32 bits wide), and 
constants and texture caches of a few kilobytes. 
Each multiprocessor can run a variable number of 
threads, and the local resources are divided among 
them. In any given cycle, each core in a 
multiprocessor executes the same instruction on 
different data based on its threadID, and 
communication between multiprocessors is 
performed through global memory (see Fig. 3). 

Future architectures from Nvidia will support 
the same CUDA executables, but they will be run 
faster in order to include more multiprocessors per 
die, or more cores, registers or shared memory per 
multiprocessor. For example, the GT200 
architecture contains 30 multiprocessors for a total 
of 240 cores, while registers and shared memory 
per multiprocessor remain the same. 

The CUDA programming model guides the 
programmer to expose fine-grained parallelism as 

required by massively multi-threaded GPUs, while 
at the same time providing scalability across the 
broad spectrum of physical parallelism available in 
the range of GPU devices. 

 

 
Fig. 3. The CUDA programming model.  

 
C. Memory Spaces 
      The CPU host and the GPU device maintain 
their own DRAM and address space, referred to as 
host memory and device memory (on-board 
memory). The latter can be of three different 
types. From inner to outer, we have constant 
memory, texture memory and global memory. 
They all can be read from or written to by the host 
and are persistent through the life of the 
application. Texture memory is the more versatile 
one, offering different addressing modes as well as 
data filtering for some specific data formats. 
Global memory is the actual on-board video 
memory, usually exceeding 1 GB of capacity and 
embracing GDDR3/GDDR5 technology. Constant 
memory has regular size of 64 KB and latency 
time close to a register set. Texture memory is 
cached to a few kilobytes. Global and constant 
memories are not cached at all. 
 
D. Programming Elements 
      There are some important elements involved in 
the conception of a CUDA program that are key 
for understanding the programming model as well 
as the optimizations we have carried out during the 
implementation phase. We describe them below 
and Fig. 3 summarizes their relations. 
      A program is decomposed into blocks running 
in parallel. Assembled by the developer, a block is 
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a group of threads that is mapped to a single 
multiprocessor, where they can share 16 KB of 
memory (see Fig. 2). All the threads in blocks 
concurrently assigned to a single multi-processor 
divide the multiprocessor's resources equally 
amongst themselves. The data is also divided 
amongst all of the threads in SIMD fashion 
explicitly managed by the developer. 
      A warp is a collection of 32 threads that can 
physically run concurrently on all of the 
multiprocessors. The size of the warp is less than 
the total number of cores due to memory access 
limitations. The developer has the freedom to 
determine the number of threads to be executed, 
but if there are more threads than the warp size, 
they are time-shared on the actual hardware 
resources. This can be advantageous, since time-
sharing the ALU resources amongst multiple 
threads can overlap the memory latencies when 
fetching ALU operands. 
      A kernel is a code function compiled to the 
instruction set of the device, downloaded on it and 
executed by all of its threads. Threads run on 
different processors of the multiprocessors sharing 
the same executable and global address space, 
though they may not follow the same path of 
execution, since conditional execution of different 
operations on each multiprocessor can be achieved 
based on a unique threadID. Threads also work 
independently on different data according to the 
SIMD model described in Section III-B. A kernel 
is organized into a grid as a set of thread blocks. 
      A grid is a collection of all blocks in a single 
execution, explicitly defined by the application 
developer, which is assigned to a multiprocessor. 
The parameters invoking a kernel function call 
define the sizes and dimensions of the thread 
blocks in the grid thus generated, and the way 
hardware groups threads in warps affects 
performance, so it must be accounted for.  
      A thread block is a batch of threads executed 
on a single multiprocessor. They can cooperate 
together by efficiently sharing data through its 
shared memory, and synchronize their execution 
to coordinate memory accesses using the 
__syncthreads() primitive. Synchronization across 
thread blocks can only be safely accomplished by 
terminating a kernel. Each thread block has its 
own threadID, which is the number of the thread 
within a 1D, 2D or 3D array of arbitrary size. The 
use of multidimensional identifiers helps to 

simplify memory addressing when processing 
multidimensional data. Threads placed in different 
blocks from the same grid cannot communicate, 
and threads belonging to the same block must all 
share the 8K registers and 16 KB of shared 
memory on a given multiprocessor. This tradeoff 
between parallelism and thread resources must be 
wisely solved by the programmer to maximize 
performance on a certain architecture given its 
limitations. 
At the highest level, a program is decomposed into 
kernels mapped to the hardware by a grid 
composed of blocks of threads scheduled in warps.  
No inter-block communication or specific 
schedule-ordering mechanism for blocks or 
threads is provided, which guarantees each thread 
block to run on any multiprocessor, even from 
different devices, at any time.  
The number of blocks in a thread block is limited 
to 512. Therefore, blocks of equal dimension and 
size that execute the same kernel can be batched 
together into a grid of thread blocks. This comes at 
the expense of reduced thread cooperation, 
because threads in different thread blocks from the 
same grid cannot communicate and synchronize 
with each other. Again, each block is identified by 
its blockID, which is the number of the block 
within a 1D or 2D array of arbitrary size for the 
sake of a simpler addressing to memory. 
Kernel threads are extremely lightweight, i.e.  
creation overhead and context switching between 
threads and/or kernels is negligible. 

 
IV. OPTIMIZATIONS 

Once that major hardware and software 
limitations have been introduced, it becomes clear 
that managing those limits is critical when 
optimizing applications. Programmers still have a 
great degree of freedom, though side effects may 
occur when deploying strategies to avoid one 
limit, causing other limits to be hit. 

We consider two basic pillars when 
optimizing an application to run on CUDA GPUs: 
First, organize threads in blocks to maximize 
parallelism, enhance hardware occupancy and 
avoid memory banks conflicts. Second, access to 
shared memory wisely to maximize arithmetic 
intensity and reduce global memory usage. We 
address each of these issues separately now. 
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A. Threads Deployment 
Each multiprocessor contains 8192 registers 

which will be split evenly among all the threads of 
the blocks assigned to that multiprocessor. Hence, 
the number of registers needed in the computation 
will affect the number of threads which can be 
executed simultaneously, and the management of 
registers becomes important as a limiting factor 
for the amount of parallelism we can exploit. 

The CUDA documentation suggests a block to 
contain between 128 and 256 threads to maximize 
execution efficiency. A tool developed by Nvidia, 
the CUDA Occupancy Calculator, may also be 
used as guidance to attain this goal. For example, 
when a kernel instance consumes 16 registers, 
only 512 threads can be assigned to a single 
multiprocessor. This can be achieved by using one 
block with 512 threads, two blocks of 256 threads, 
and so on.  

We followed an iterative process to achieve 
the lowest execution time: First, the initial 
implementation was compiled using the CUDA 
compiler and a special -cubin flag that outputs the 
hardware resources (memory and registers) 
consumed by the kernel. Using these values in 
conjunction with the CUDA Occupancy 
Calculator, we were able to analytically determine 
the number of threads and blocks that were needed 
to use a multiprocessor with maximum efficiency. 

 
B. Memory Usage 

Even though video memory delivers a 
magnificent bandwidth, it is still a frequent 
candidate to hold the bottleneck when running the 
application because of its poor latency (around 
400 times slower compared to shared memory) 
and the high floating-point computation 
performance of the GPU. Attention must be paid 
to how the threads access the 16 banks of shared 
memory, since only when the data resides in 
different banks can all of the available ALU 
bandwidth truly be used. 

Each bank only supports one memory access 
at a time; simultaneous memory bank accesses are 
serialized, stalling the rest of the multiprocessor's 
running threads until their operands arrive. The 
use of shared memory is explicit within a thread, 
which allows the developer to solve bank conflicts 
wisely. Although such optimization may represent 
a daunting effort, sometimes can be very 
rewarding: Execution times may decrease by as 

much as 10x for vector operations and latency 
hiding may increase by up to 2.5x. 

Another critical issue related to memory 
performance is data coalescing. A coalesced 
access involves a contiguous region of global 
memory where the starting address must be a 
multiple of region size and the kth thread in a half-
warp must access the kth element in a block being 
read. This way, the hardware can serve completely 
two coalesced accesses per clock cycle, 
maximizing memory bandwidth, bus usage and 
throughput. It is programmer's responsibility to 
organize memory accesses in such a way, though 
CUDA has relaxed the conditions to be fulfilled 
for coalescing in their latest versions (from 
Compute Capabilities 1.2 on). 

 
V. CONCLUDING REMARKS 

We have presented the CUDA programming 
model and hardware interface as a very 
compelling alternative for high-performance 
computing when applied to electromagnetic 
simulations. Particular features of these 
simulations are identified and a number of 
techniques and optimizations are introduced to 
wrench the full performance out of the GPU 
resources for a large class of important scientific 
applications, even unveiling opportunities for 
further innovation. 

GPUs are highly scalable and become more 
valuable for general-purpose computing. We 
envision electromagnetic simulations as one of the 
most exciting fields able to benefit from GPUs in 
the future of this emerging architecture. 
Additionally, new tools like CUDA and OpenCL 
may assist non-computer scientists with a 
friendlier interface for adapting these applications 
to GPUs. This computational power may then be 
multiplied on a cluster of GPUs to enhance 
parallelism and provide even faster responses to 
electromagnetic simulations at a very low cost. 

Alternatively, we may think of a CPU-GPU 
hybrid system where an application can be 
decomposed into two parts to take advantage of 
the benefits of this bi-processor platform, and the 
programming models must evolve to include 
programming heterogeneous manycore systems 
including both CPUs and GPUs. 

GPUs will continue to adapt to the usage 
patterns of both graphics and general-purpose 
programmers, with a focus on additional processor 
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cores, number of threads and memory bandwidth 
available for electromagnetic simulations. In 
addition, the programming models must evolve to 
include programming heterogeneous manycore 
systems including both CPUs and GPUs. 
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