
Using GPUs for Accelerating Electromagnetic Simulations

Manuel Ujaldon

Department of Computer Architecture
University of Malaga, Malaga 29071, Spain

ujaldon@uma.es

Abstract- The computational power and memory
bandwidth of graphics processing units (GPUs)
have turned them into attractive platforms for
general-purpose applications at significant speed
gains versus their CPU counterparts [1]. In
addition, an increasing number of today's state-of-
the-art supercomputers include commodity GPUs
to bring us unprecedented levels of performance in
terms of raw GFLOPS and GFLOPS/cost. Inspired
by the latest trends and developments in GPUs, we
propose a new paradigm for implementing on
GPUs some of the major aspects of
electromagnetic simulations, a domain
traditionally used as a benchmark to run codes in
some of the most expensive and powerful
supercomputers worldwide. After reviewing
related achievements and ongoing projects, we
provide a guideline to exploit SIMD parallelism
and high memory bandwidth using the CUDA
programming model and hardware architecture
offered by Nvidia graphics cards at an affordable
cost. As a result, performance gains of several
orders of magnitude can be attained versus thread-
level methods like pthreads used to run those
simulations on emerging multicore architectures

Index Terms - Graphics processors, electro-
magnetic simulations, CUDA, GPGPU.

I. INTRODUCTION

Graphics processors are usually characterized
by parallelism, pipelining and bandwidth. After
completing a steady transition from mainframes to
workstations to PC cards, Graphics Processing
Units (GPUs) emerge nowadays like a solid and
compelling alternative to traditional computing,
delivering extremely high floating point
performance for those applications which can be

arranged to fit and exploit the inherent parallelism
and high memory bandwidth [2]. The newest
versions of programmable graphics processing
units (GPUs) have consistently demonstrated an
outstanding performance in many applications
beyond graphics, including data mining [3,4],
computer vision [5], signal and image processing
and segmentation [6,7,8], numerical methods [9],
and assorted simulations [10,11,12].

This fact has attracted many other researchers
and encouraged the use of GPUs in a broader
range of applications, where developers will need
to leverage this technology with new programming
models which ease the developer's task of writing
programs to run efficiently on GPUs. Nvidia and
ATI/AMD, manufacturers of the popular GeForce
and Radeon sagas of graphics cards, have released
software components which provide simpler
access to GPU computing power than that realized
by treating the GPU as a traditional graphics
processor. CUDA (Compute Unified Device
Architecture) [13] is Nvidia's solution as a simple
block-based API for programming; AMD's
alternative is called Stream Computing and
includes technologies such as the Brook+ compiler
[14] and the Compute Abstraction Layer, both of
which allow the developer to work in a high-level
language which abstracts away GPUs' specifics.
Those companies have also developed hardware
products aimed specifically at the General Purpose
GPU (GPGPU) computing market: The Tesla
products [15] are from Nvidia, and Firestream [16]
is AMD's product line.

Between Stream Computing and CUDA, we
chose the latter to program the GPU for being
more popular and providing more mechanisms to
optimize general-purpose applications which do
not entirely fit into the more traditional graphics
processing paradigm. More recently, Apple's
OpenCL framework [17] emerges as an attempt to

294

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

unify those two models with a superset of features,
but since it is closer to CUDA and inherits most of
its mechanisms, we are confident on an eventual
portability for the methods described throughout
this paper without loss of generality.

Novel scientific applications are good
candidates to take the opportunity offered by
CUDA and counterparts (see Fig. 1), and
electromagnetic simulations is clearly one of them
for three primary reasons:
1. This field has traditionally proven to be of great
success for GPUs during its evolution towards
high-performance general-purpose computing.
2. The increasing complexity of recent electro-
magnetic algorithms has made simulation part of
the workflow in both academia and industry to be
very computationally demanding.
3. Traditional architectures reveal themselves as
inefficient solutions for this class of applications.

Electromagnetic simulations are memory
intensive applications containing assorted access
patterns where memory optimizations play a
primary role. Fortunately, CUDA provides a set of
powerful low-level mechanisms for controlling the
use of memory and the behavior of its hierarchy.
This affects performance severely at the expense
of a considerable programming effort, which we
describe throughout this paper.

The rest of the paper is organized as follows.
Section II reviews the most recent results obtained
by GPUs on electromagnetic simulations. Section
III focuses on the specifics of the GPU
programming with CUDA, and Section IV
describes optimization strategies particularly
oriented to simulation codes. Section V concludes.

II. THE GPU ON ELECTROMAGNETIC

SIMULATIONS

A. Related Work

Over the past few decades, the increase of
overall computing power coupled with the
maturation of many electromagnetic algorithms
has produced a blooming on the simulation side.
Many explorations focused on 2D first, were later
extended to 3D, and even were modeled as so-
called 2.5D problems.

In response to that evolution, a number of
approaches to hardware acceleration of electro-
magnetic simulations have been investigated in the

past five years. Those approaches can be classified
into two main categories:
1. Stand-alone computing devices like ASICS,
which represent the highest achievable
acceleration but quickly becomes too expensive
due to the massive hardware required.
2. Co-processors with their own memory and
connected to a host PC via an input/output bus or
socket interface. Within this category, we may
find Field Programmable Gate Arrays (FPGAs)
[18] and Graphics Processing Units (GPUs) [19].

GPUs stand out in a unique way from all these
innovative solutions because they are produced as
commodity processors and their floating point
performance has significantly outpaced that of any
other processor. In addition, GPUs have become
easier to program, which allows developers to
effectively exploit their computational power.

Modern GPUs have been at the leading edge
of increasing chip-level parallelism over the past
five years. Scaling from 8 to 240 processors in the
most popular saga of Nvidia GPUs, they have
completed a steady transition from multi-core to
many-core processors. The high degree of
parallelism achieved, combined with their wide
availability and affordable budget, has ultimately
confirmed GPUs as a popular platform among
universities and students to run computationally
expensive simulations [1].

More recently, several companies that supply
leading edge electromagnetic simulation software
have joined this movement to ease code transition
to the GPU for all kind of users belonging to this
area regardless of their programming skills. Some
illustrative examples are Acceleware and CST,
which have announced a new GPU-based solution
for accelerating lengthy electromagnetic design
simulations, reporting performance gains of up to
40% compared to previous products [20,21]. This
software uses CUDA, a programming interface
particularly designed to solve complex
computational general-purpose problems, which
we describe later in Section III. Large corporations
and research institutions have also been able to tap
into clusters of GPUs for large scale simulations
[22], enabling a step forward in performance while
maintaining a limited budget. This way, the GPU
technology aspires to have a tremendous impact
on engineering electromagnetic education, as
universities and research centers worldwide will
be able to simulate realistic problems with

295UJALDON: USING GPUS FOR ACCELERATING ELECROMAGNETIC SIMULATIONS

affordable GPU-based hardware platforms, which
will also be available to students on their own
personal computers.

Successful implementations of electro-
magnetic algorithms on GPUs can be seen as the
key for the integration of simulators into design
and optimization tools [23]. The GPU power may
be combined here with the development of
behavioral models and multi-grid, graded mesh
and multi-resolution techniques for boosting the
performance of electromagnetic simulations.

Fig. 1. An overview of general purpose
applications evaluated by GPU
performance according to two major
features: Amount of parallelism
extracted (on X axis) and memory
bandwidth exploitation (on Y axis).

B. Characterization

The GPU has been extensively used in
scientific computing over the past five years, but
the degree of success has been different depending
on algorithm features and how they meet GPU
hardware idiosyncrasies. Nvidia [13,24] has
reported a list of illustrative examples. Just to
mention a few involving simulations, we have:
molecular dynamics (36x), fluid dynamics (17x),
multi-fluid (50x), astrophysics (100x), multi-body
mechanical (13x), financial (149x), oil and gas
(18x), DNA and liquids (18x), and interactive
visualization of volumes (146x).

In general, expectations for a particular
algorithm to reach certain levels of speedup factor
when running on GPUs depend on a number of
features which conform a list of requirements to be
fulfilled. From less to more important, we have:
1. Small local data requirements (memory and
registers).

2. Stream computing (non-recursive algorithms).
3. Arithmetic intensity (high data reuse).
4. Bandwidth (fast data movement).
5. Data parallelism (data independency).

The two key factors are analyzed in Fig. 1,
where some of the most popular applications are
placed in conjunction with electromagnetic
simulations to quantify the memory bandwidth and
data parallelism each algorithm can benefit from.
This gives us an estimation about how successfully
each code can run on GPU platforms.

C. Upsides
Simulations usually consists of a mixture of

fundamentally serial control logic and inherently
parallel computation. Furthermore, those
computations are often data-parallel in nature,
which matches the programming model that CUDA
adopts (see Section III-B), basically a sequential
control thread capable of launching a series of
parallel kernels. This makes it relatively easy to
parallelize an application's individual components
as kernels, rather than requiring a wholesale
rewriting of the entire application.

In our case of a typical electromagnetic
simulation, the same executable is invoked multiple
times on each parallel processor by a job-queuing
algorithm and the results are then reassembled. This
constitutes an embarrassingly parallel computing
model, as it does not require much internode
communication or global data sharing.
Electromagnetic computations are in fact very close
to graphics processing in this respect: Million of
operations can be performed in parallel exhibiting a
speed which can reach up to two orders of
magnitude when compared to the computational
power shown on typical quad-core CPUs.

On the other hand, simulations often deal with a
large amount of data, which are responsible for the
realism and accuracy of the simulated physics.
GPUs reach data bandwidth with video memory
around ten times higher than CPUs with main
memory, and because of the way data is transferred,
regular access patterns in the code behave better
when running on GPUs.

A third issue is also worth mentioning:
Arithmetic intensity. Electromagnetic simulations
usually require the computation of complex
mathematical formulas, which are efficiently
mapped to the GPU platform due to the presence of

296 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

those units devoted to a typical graphics rendering.
Moreover, newer generations of GPUs like GeForce
Series 8 include internally a powerful co-processor
devoted to the computational physics required in
many realistic animation and effects. Such co-
processor, called PhysX [25], was originally
invented by Ageia, whose design was inspired in
those we found in GPUs for building arithmetic
units and massively parallelism.

Finally, we leave on the CPU those parts of our
simulation that do not have high arithmetic intensity
or do not expose substantial amounts of data or
thread-level parallelism. This way, that tough part
of our application remains unchanged and can
benefit from overlapping computations on a bi-
processor CPU-GPU platform.

D. Downsides

For the GPU to succeed as the favourite
platform to run electromagnetic simulations in the
future, we still envision two main challenges in the
horizon: Accuracy and memory capacity.
Accuracy. The lack of 32-bit floating-point
precision was a major drawback in many
application areas during the first half of this decade.
Starting in 2008 with the GT 200 series from
Nvidia, the situation has reversed and all major
GPU vendors now offer 64-bit massively parallel
hardware which will further enhance modelling and
simulation capabilities. For example, the Tesla
T10P GPU from Nvidia provides full IEEE
rounding, fused multiply-add, and denormalized
number support for double precision.
 The problem arises when you look at execution
times, since in most cases performance drops from
five to ten times when you migrate your algorithm
from single to double precision. This is mainly due
to the reduced degree of parallelism we can exploit
in the architecture, as usually the ratio of single to
double precision floating-point arithmetic units
available in a typical GPU is four to one or even
eight to one. In the past, the primary argument for
not to overcome this lack was that classical
rendering did not require such enhancement. With
the recent movements towards general-purpose
GPU-like architectures, double precision floating-
point will be offered at a much lighter performance
penalty as more applications demand it.

E. Memory size
 Some of the large scale simulations are not
necessary complicated in nature, but they require a
large amount of memory space. For example,
modelling of the near electromagnetic fields around
antennas fall into this category, and more in general,
field and signal analysis for high-speed electronic
circuits and systems has become increasingly
difficult due to the complexity of new electronic
devices. GPU memory has progressed at a higher
speed rate than the CPU counterpart over the last
decade, and GDDR5, the video memory currently
available, keeps consistently two generations ahead
versus CPU DDR3 memory placed on the
mainboard. But when it comes to capacity, the
reduced form factor (size) of the graphics card in
conjunction with its wider bus width versus the
GPU, introduce serious routing problems which
prevent video memory capacity from growing at the
same rate. We believe that the solution to this
problem lies more in the software layer, particularly
in programmer's hands, who has to be able to
partition data efficiently and ultimately perform
computations through a blocking strategy to
overcome memory constraints.

III. CUDA

The Compute Unified Device Architecture
(CUDA) [13] is a programming interface and set
of supported hardware to enable general-purpose
computation on Nvidia GPUs.

The CUDA programming interface is ANSI C
extended by several keywords and constructs
which derive into a set of C language library
functions as a specific compiler generates the
executable code for the GPU in conjunction with
the counterpart version running on the CPU acting
as a host.

Since CUDA is particularly designed for
generic computing, it can leverage special
hardware features not visible to more traditional
graphics-based GPU programming, such as small
cache memories, explicit massive parallelism and
lightweight context switch between threads.

A. Hardware Platforms

All the latest Nvidia developments on graphics
hardware are compliant with CUDA: For low-end
users and gamers, we have the GeForce series
starting from its 8th generation; for high-end users

297UJALDON: USING GPUS FOR ACCELERATING ELECROMAGNETIC SIMULATIONS

and professionals, the Quadro FX 5600/4600
series; for general-purpose computing, the Tesla
boards. Focusing on Tesla, the C870 is an
homogeneous CMP endowed with 128 cores and
1.5 GB of video memory to deliver a theoretical
peak performance of 518 GFLOPS (single
precision), a peak on-board memory bandwidth of
76.8 GB/s and a peak main memory bandwidth of
4 GB/s under its PCI-express x16 interface.

Fig. 2. The CUDA hardware interface.

B. Execution Modes

The G80 parallel architecture is a SIMD
(Single Instruction Multiple Data) processor
endowed with 128 cores. Cores are organized into
16 multiprocessors, each having a large set of
8192 registers, a 16 KB shared memory very close
to registers in speed (both 32 bits wide), and
constants and texture caches of a few kilobytes.
Each multiprocessor can run a variable number of
threads, and the local resources are divided among
them. In any given cycle, each core in a
multiprocessor executes the same instruction on
different data based on its threadID, and
communication between multiprocessors is
performed through global memory (see Fig. 3).

Future architectures from Nvidia will support
the same CUDA executables, but they will be run
faster in order to include more multiprocessors per
die, or more cores, registers or shared memory per
multiprocessor. For example, the GT200
architecture contains 30 multiprocessors for a total
of 240 cores, while registers and shared memory
per multiprocessor remain the same.

The CUDA programming model guides the
programmer to expose fine-grained parallelism as

required by massively multi-threaded GPUs, while
at the same time providing scalability across the
broad spectrum of physical parallelism available in
the range of GPU devices.

Fig. 3. The CUDA programming model.

C. Memory Spaces
 The CPU host and the GPU device maintain
their own DRAM and address space, referred to as
host memory and device memory (on-board
memory). The latter can be of three different
types. From inner to outer, we have constant
memory, texture memory and global memory.
They all can be read from or written to by the host
and are persistent through the life of the
application. Texture memory is the more versatile
one, offering different addressing modes as well as
data filtering for some specific data formats.
Global memory is the actual on-board video
memory, usually exceeding 1 GB of capacity and
embracing GDDR3/GDDR5 technology. Constant
memory has regular size of 64 KB and latency
time close to a register set. Texture memory is
cached to a few kilobytes. Global and constant
memories are not cached at all.

D. Programming Elements
 There are some important elements involved in
the conception of a CUDA program that are key
for understanding the programming model as well
as the optimizations we have carried out during the
implementation phase. We describe them below
and Fig. 3 summarizes their relations.
 A program is decomposed into blocks running
in parallel. Assembled by the developer, a block is

298 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

a group of threads that is mapped to a single
multiprocessor, where they can share 16 KB of
memory (see Fig. 2). All the threads in blocks
concurrently assigned to a single multi-processor
divide the multiprocessor's resources equally
amongst themselves. The data is also divided
amongst all of the threads in SIMD fashion
explicitly managed by the developer.
 A warp is a collection of 32 threads that can
physically run concurrently on all of the
multiprocessors. The size of the warp is less than
the total number of cores due to memory access
limitations. The developer has the freedom to
determine the number of threads to be executed,
but if there are more threads than the warp size,
they are time-shared on the actual hardware
resources. This can be advantageous, since time-
sharing the ALU resources amongst multiple
threads can overlap the memory latencies when
fetching ALU operands.
 A kernel is a code function compiled to the
instruction set of the device, downloaded on it and
executed by all of its threads. Threads run on
different processors of the multiprocessors sharing
the same executable and global address space,
though they may not follow the same path of
execution, since conditional execution of different
operations on each multiprocessor can be achieved
based on a unique threadID. Threads also work
independently on different data according to the
SIMD model described in Section III-B. A kernel
is organized into a grid as a set of thread blocks.
 A grid is a collection of all blocks in a single
execution, explicitly defined by the application
developer, which is assigned to a multiprocessor.
The parameters invoking a kernel function call
define the sizes and dimensions of the thread
blocks in the grid thus generated, and the way
hardware groups threads in warps affects
performance, so it must be accounted for.
 A thread block is a batch of threads executed
on a single multiprocessor. They can cooperate
together by efficiently sharing data through its
shared memory, and synchronize their execution
to coordinate memory accesses using the
__syncthreads() primitive. Synchronization across
thread blocks can only be safely accomplished by
terminating a kernel. Each thread block has its
own threadID, which is the number of the thread
within a 1D, 2D or 3D array of arbitrary size. The
use of multidimensional identifiers helps to

simplify memory addressing when processing
multidimensional data. Threads placed in different
blocks from the same grid cannot communicate,
and threads belonging to the same block must all
share the 8K registers and 16 KB of shared
memory on a given multiprocessor. This tradeoff
between parallelism and thread resources must be
wisely solved by the programmer to maximize
performance on a certain architecture given its
limitations.
At the highest level, a program is decomposed into
kernels mapped to the hardware by a grid
composed of blocks of threads scheduled in warps.
No inter-block communication or specific
schedule-ordering mechanism for blocks or
threads is provided, which guarantees each thread
block to run on any multiprocessor, even from
different devices, at any time.
The number of blocks in a thread block is limited
to 512. Therefore, blocks of equal dimension and
size that execute the same kernel can be batched
together into a grid of thread blocks. This comes at
the expense of reduced thread cooperation,
because threads in different thread blocks from the
same grid cannot communicate and synchronize
with each other. Again, each block is identified by
its blockID, which is the number of the block
within a 1D or 2D array of arbitrary size for the
sake of a simpler addressing to memory.
Kernel threads are extremely lightweight, i.e.
creation overhead and context switching between
threads and/or kernels is negligible.

IV. OPTIMIZATIONS

Once that major hardware and software
limitations have been introduced, it becomes clear
that managing those limits is critical when
optimizing applications. Programmers still have a
great degree of freedom, though side effects may
occur when deploying strategies to avoid one
limit, causing other limits to be hit.

We consider two basic pillars when
optimizing an application to run on CUDA GPUs:
First, organize threads in blocks to maximize
parallelism, enhance hardware occupancy and
avoid memory banks conflicts. Second, access to
shared memory wisely to maximize arithmetic
intensity and reduce global memory usage. We
address each of these issues separately now.

299UJALDON: USING GPUS FOR ACCELERATING ELECROMAGNETIC SIMULATIONS

A. Threads Deployment
Each multiprocessor contains 8192 registers

which will be split evenly among all the threads of
the blocks assigned to that multiprocessor. Hence,
the number of registers needed in the computation
will affect the number of threads which can be
executed simultaneously, and the management of
registers becomes important as a limiting factor
for the amount of parallelism we can exploit.

The CUDA documentation suggests a block to
contain between 128 and 256 threads to maximize
execution efficiency. A tool developed by Nvidia,
the CUDA Occupancy Calculator, may also be
used as guidance to attain this goal. For example,
when a kernel instance consumes 16 registers,
only 512 threads can be assigned to a single
multiprocessor. This can be achieved by using one
block with 512 threads, two blocks of 256 threads,
and so on.

We followed an iterative process to achieve
the lowest execution time: First, the initial
implementation was compiled using the CUDA
compiler and a special -cubin flag that outputs the
hardware resources (memory and registers)
consumed by the kernel. Using these values in
conjunction with the CUDA Occupancy
Calculator, we were able to analytically determine
the number of threads and blocks that were needed
to use a multiprocessor with maximum efficiency.

B. Memory Usage

Even though video memory delivers a
magnificent bandwidth, it is still a frequent
candidate to hold the bottleneck when running the
application because of its poor latency (around
400 times slower compared to shared memory)
and the high floating-point computation
performance of the GPU. Attention must be paid
to how the threads access the 16 banks of shared
memory, since only when the data resides in
different banks can all of the available ALU
bandwidth truly be used.

Each bank only supports one memory access
at a time; simultaneous memory bank accesses are
serialized, stalling the rest of the multiprocessor's
running threads until their operands arrive. The
use of shared memory is explicit within a thread,
which allows the developer to solve bank conflicts
wisely. Although such optimization may represent
a daunting effort, sometimes can be very
rewarding: Execution times may decrease by as

much as 10x for vector operations and latency
hiding may increase by up to 2.5x.

Another critical issue related to memory
performance is data coalescing. A coalesced
access involves a contiguous region of global
memory where the starting address must be a
multiple of region size and the kth thread in a half-
warp must access the kth element in a block being
read. This way, the hardware can serve completely
two coalesced accesses per clock cycle,
maximizing memory bandwidth, bus usage and
throughput. It is programmer's responsibility to
organize memory accesses in such a way, though
CUDA has relaxed the conditions to be fulfilled
for coalescing in their latest versions (from
Compute Capabilities 1.2 on).

V. CONCLUDING REMARKS

We have presented the CUDA programming
model and hardware interface as a very
compelling alternative for high-performance
computing when applied to electromagnetic
simulations. Particular features of these
simulations are identified and a number of
techniques and optimizations are introduced to
wrench the full performance out of the GPU
resources for a large class of important scientific
applications, even unveiling opportunities for
further innovation.

GPUs are highly scalable and become more
valuable for general-purpose computing. We
envision electromagnetic simulations as one of the
most exciting fields able to benefit from GPUs in
the future of this emerging architecture.
Additionally, new tools like CUDA and OpenCL
may assist non-computer scientists with a
friendlier interface for adapting these applications
to GPUs. This computational power may then be
multiplied on a cluster of GPUs to enhance
parallelism and provide even faster responses to
electromagnetic simulations at a very low cost.

Alternatively, we may think of a CPU-GPU
hybrid system where an application can be
decomposed into two parts to take advantage of
the benefits of this bi-processor platform, and the
programming models must evolve to include
programming heterogeneous manycore systems
including both CPUs and GPUs.

GPUs will continue to adapt to the usage
patterns of both graphics and general-purpose
programmers, with a focus on additional processor

300 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

cores, number of threads and memory bandwidth
available for electromagnetic simulations. In
addition, the programming models must evolve to
include programming heterogeneous manycore
systems including both CPUs and GPUs.

REFERENCES

[1] GPGPU, “General-purpose computation

using graphics hardware”,
http://www.gpgpu.org, 2009.

[2] J. D. Owens, D. Luebke, N. Govindaraju, M.
Harris, J. Kruger, A. E. Lefohn, and T. J.
Purcell, “A survey of general-purpose
computation on graphics hardware,” Journal
of Computer Graphics Forum, vol. 26, pp.
21–51, 2007.

[3] S. Guha, S. Krisnan, and S.
Venkatasubramanian, “Data visualization
and mining using the GPU,” Tutorial at 11th
ACM Intl. Conference on Knowledge
Discovery and Data Mining, 2005.

[4] N. K. Govindaraju, B. LLoyd, W. Wang, M.
Lin, and D. Manocha, “Fast Computation of
Database Operations Using Graphics
Processors,” ACM SIGMOD International
Conference on Management of Data, pp.
215–226, 2004.

[5] R. Yang and M. Pollefeys, “A Versatile
Stereo Implementation on Commodity
Graphics Hardware”, Real Time Imaging,
vol. 11, no. 1, pp. 7–18, February 2005.

[6] T. Sumanaweera and D. Liu, “Medical
Image Reconstruction with the FFT,” GPU
Gems, March 2004.

[7] I. Viola, A. Kanitsar, and M. E. Groller,
“Hardware Based Nonlinear Filtering and
Segmentation Using High-Level Shading
Languages,” IEEE Visualization, pp. 309–
316, October 2003.

[8] M. Hadwiger, C. Langer, H. Scharsach, and
K. Buhler, “State of the art report on GPU-
based segmentation,” VRVis Research
Center, Tech. Rep. TR-VRVIS-2004-17,
2004.

[9] W. Wu and P. Heng, “A hybrid condensed
finite element model with GPU acceleration
for interactive 3D soft tissue cutting:
Research articles”, Computer Animation and
Virtual Worlds, vol. 15, no. 3-4, pp. 219–
227, 2004.

[10] M. Harris, “Fast Fluid Dynamics Simulation
on the GPU,” GPU Gems, 2004.

[11] P. Sander, N. Tartachuk, and J. L. Mitchell,
“Explicit Early-Z Culling for Efficient Fluid
Flow Simulation and Rendering”, ATI
Research Journal Technical Report, August
2004.

[12] Y. Zhao, Y. Han, Z. Fan, F. Qiu, Y. Kuo,
Kaufman, and K. A., Mueller, “Visual
simulation of heat shimmering and mirage,”
IEEE Trans. on Visualization and Computer
Graphics, vol. 13, no. 1, pp. 179–189, 2007.

[13] CUDA, “Home page maintained by Nvidia”
http://developer.nvidia.com/object/cuda.html.

[14] Brook+, “Web Page maintained by AMD”,
http://ati.amd.com/technology/streamcomputi
ng/AMD-Brookplus.pdf, 2009.

[15] “Nvidia Tesla GPU computing solutions for
HPC” http://www.nvidia.com/object/tesla_
computing_ solutions.html, 2009.

[16] Firestream, “AMD Stream Computing”,
http://ati.amd.com/technology/streamcomputi
ng.

[17] T. K. Group, “The OpenCL Core API
Specification, Headers and Documentation,”
http://www.khronos.org/registry/cl, 2009.

[18] E. Kelmelis, J. Durbano, P. Curt, and J.
Zhang, “Field-programmable gate array
accelerates FDTD calculations,” Laser Focus
World, September 2006.

[19] S.E. Krakiwsky, L.E. Turner, M.M.
Okoniewski“, Acceleration of finite-
difference time-domain (FDTD) using
graphics processing units (GPU),” IEEE
MTT- S Int. Conference, June 2004.

[20] http://www.acceleware.com/em
[21] http://www.cst.com/
[22] T. Hartley, U. Catalyurek, A. Ruiz, M.

Ujaldon, F. Igual, and R. Mayo“,
“Biomedical Image Analysis on a
Cooperative Cluster of GPUs and
Multicores,” 22nd ACM Intl. Conf. on
Supercomputing, 2008.

[23] P. So, “EM-based simulation tools for signal
and systems analysis”, International
Symposium on Signals, Systems and
Electronics, August 2007.

[24] M. Harris, “Manycore parallel computing
with CUDA”, Keynote Session at the 22nd
ACM Intl. Conference on Supercomputing,
June 2008.

301UJALDON: USING GPUS FOR ACCELERATING ELECROMAGNETIC SIMULATIONS

[25] Ageia, “The PhysX co-processor”,
http://www.nvidia.com/object/nvidia_physx.
html.

[26] T. R. Halffill, “Parallel Processing with
CUDA”, MicroProcessor Report Online,
January 2008.

[27] Nvidia Compute Unified Device
Architecture (CUDA) Programming Guide
v. 1.1, Nov. 2007.

[28] Nvidia CUDA CUBLAS Library v. 1.1, Sep.
2007.

[29] Nvidia CUDA CUFFT Library v. 1.1, Oct.
2007.

Manuel Ujaldon received
his B.S. degree in
Computer Science from the
Univ. of Granada (Spain,
1991) and his M.S. and
Ph.D. degrees in Computer
Science from the Univ. of
Malaga (Spain, 1993 and
1996). During 1994 and
1995 he was a Research
Assistant in the Computer

Architecture Dept. at the University of Malaga,
where he became Assistant Professor in 1996 and
Associate Professor in 1999.
 Dr. Ujaldon was a predoctoral and postdoctoral
researcher at the Computer Science Dept. of the
University of Maryland (USA, 1994, 1996/97) and
Biomedical Informatics Department of the Ohio
State University (USA, 2003-08).
 He has published 8 books on computer
architecture and more than 50 papers in
international peer-reviewed journals and
conferences. His research interest includes
streaming architectures as well as compiler and
software development for running general-purpose
scientific applications on GPUs.

302 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

