
A Practical Look at GPU-Accelerated FDTD Performance

Mike Weldon1, Logan Maxwell1, Dan Cyca1, Matt Hughes1,
Conrad Whelan1, Michal Okoniewski1,2

1 Acceleware Corp. 1600 – 37th St. SW, Calgary, AB T3C 3P1, Canada
logan.maxwell@acceleware.com, mike.weldon@acceleware.com

2 Department of Electrical and Computer Engineering
University of Calgary, Calgary, Alberta T2N 1N4, Canada

Abstract─ This paper outlines several key features
and conditions that impact the performance of
FDTD on GPUs. It includes relevant performance
measurements as well as practical suggestions on
how to mitigate their impact. Among these factors
are: PML depth, the number of unique materials,
dispersive materials, the impact of field
reads/observations, simulation orientation, and
domain decomposition using multiple GPUs. The
paper shows that the performance of FDTD on
GPUs can be limited in certain extreme cases, but
with proper care on the part of the designer these
cases can be managed and maximum performance
guaranteed.

Index Terms─ GPU, acceleration, FDTD, CPML,
dispersive materials.

I. INTRODUCTION

 For several years, running FDTD (Finite
Difference Time Domain) [1] on graphical
processing units, or GPUs, accelerators has been
shown as a successful technique to reduce run
times [2-4]. The fine-grained parallelism of FDTD
maps well to the several hundreds of
computational streaming processor cores available
on modern GPU hardware. The faster memory
bandwidth from GPU RAM to the GPU
processing elements is also largely responsible for
the observed performance gain versus traditional
CPU (central processing unit) architectures.

The complexity involved when writing GPU-
enabled FDTD codes involves making sure that
the processing elements are not data starved. This
is done through effective memory, cache and
memory bandwidth management. This complexity

must be addressed for every feature of FDTD, not
just the basic [1] Yee updates.

Section II of this paper will introduce and
explain the basics of FDTD performance on GPUs
from an end user perspective. It will also detail
the general limiting cases of this performance
caused by the GPU architecture mentioned above.
 The body of the paper, Sections III through IX,
will build on this overview and introduce more
advanced features and their impact on
performance. These features are: PML (Perfectly
Matched Layer) boundary conditions, the number
of unique materials, dispersive materials,
simulation orientation, observation/modification of
field data during the simulation, and domain
decomposition across multiple GPUs. In each
case, the performance of the feature or concept is
illustrated with a graph and explained in words. In
addition, practical suggestions are offered for
ensuring maximum performance and mitigating
any adverse effects.

To illustrate these effects, Acceleware’s
FDTD library, version 9.x, implemented in CUDA
and running NVIDIA Tesla C1060 are the
software and GPU platforms of choice.

II. FUNDAMENTALS OF
FDTD PERFORMANCE ON GPU

The graph below is an overview that illustrates

the performance of Acceleware’s FDTD library on
both multi-core CPU and GPU hardware. The
CPU hardware used throughout the paper is AMD
OpteronTM 2214 2.2GHz, and Intel® Xeon® CPU
X5550 @ 2.67GHz code-named ‘Nehalem’. The
GPU hardware is NVIDIA Tesla C1060 GPU

1054-4887 © 2010 ACES

315ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

cards connected via PCI Express x16 t
system.

Memory bandwidth is perhaps
determinant of FDTD performance
hardware perspective. The memory ban
the C1060 architecture is 102GB/S,
X5550 architecture is 32GB/s, and th
2214 architecture is 11.8GB/s. Thes
roughly correlate with the peak pe
observed for FDTD in Figure 1 below
generations of both CPU and GPU har
continue to increase memory bandwidth

Fig. 1. FDTD performance – CPU v

CPU performance versus simul
ramps up relatively quickly and reaches
steady state limited by the finite
bandwidth, and provided the CPU mem
exceeded. The GPU performance curv
dramatic, and shows several key operati
which are noted in Fig. 1 and explained

Ramp Up - In this range the GPU is no
of its compute resources and memory
efficiently. PML may also take up a lar
of the total simulation size and acts to
total simulation throughput.

Knee - The knee is the point at
performance levels off and the GPU
optimally.

Optimal Range - This is the optimal ra
GPU as processing resources are b
utilized and the impact of data transfer m
The goal of any GPU FDTD code is to
the breadth and magnitude of this region

0

200

400

600

800

1000

0 25 50 75 100

Pe
rf

or
m

an
ce

 (M
ce

ll/
s)

Simulation Size (Mcell)

GPU (10 Series)
CPU (Nehalem)
CPU (Non-Nehalem)

Optimal Range Soft MRamp Up

Knee

M

to the host

the key
e from a
ndwidth of
the Xeon

he Opteron
se numbers
erformance
w. Newer
rdware will
h.

vs. GPU.

lation size
s a constant
e memory
mory is not
ve is more
ing regimes
below.

ot using all
bandwidth
rge portion
o slow the

which the
is running

ange for the
being fully
minimized.
o maximize
n.

GPU Memory Limit - This is the po
the GPU runs out of memory. There i
dramatic performance impact beyon
due to FDTD updates shifting to the C
the amount of GPU RAM is fixed,
limit as measured by the number o
change depending on the materials an
the simulation.

‘Soft Memory’ - In this area the CPU
the remaining calculations that the GP
have memory for. As simulation size
into soft memory, the performance w
that of the CPU.

The performance in MCells/s of th
the paper is calculated as follows:

In the above calculations, the ‘simu
does not include any PML cells u
simulation, while the ‘simulation time
elapsed from the beginning of the time

Unless being treated as an
variable or otherwise noted, the
results in this document have 1
materials, four-layer CPML (c
perfectly matched layer) [5], are cubi
field observations disabled. This i
results in Fig. 1. While 16 materia
layer CPML may be a simplistic cas
with more advanced simulations whic
of each, the effect on performance is e
representative of a broad range of
The precise dependence on more CPM
materials are both examined in
sections.

Finally, results in this paper are
for single precision, floating-point
representation of field and material d
has the advantage that the numerical
usually more significant than any sing
error. This is fortuitous since the doub
performance of GPUs has, until recen
order of magnitude slower than single

125 150

Memory

Memory Limit

oint at which
is a clear and
d this point
CPU. While
the memory

of cells will
d features of

U is solving
PU does not
goes further

will approach

hroughout

(1)

ulation size’
used in the
e’ is the time
e stepping.

independent
performance
6 dielectric
onvolutional
ic, and have
includes the

als and four-
se compared
ch use more
enough to be
simulations.

ML and more
subsequent

all reported
t numerical
data. FDTD
dispersion is
gle precision
ble precision
ntly, been an
precision.

316 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

III. PERFECTLY MATCHED L
 (PML)

Adding absorbing CPML (con

perfectly matched layer) boundary laye
to truncate the overall simulation
Computation of these cells is made mor
due to the recursive convolution perfor
number of layers required depends on t
reflection coefficient from the bound
done at the discretion of the designer.
five to ten layers are used, with five
-30dB or better reflection. [5]

While reducing reflections, these
also reduce simulation performance by
50% [6], especially for small simulation
The maximum simulation size the GPU
of running will also be partially reduced
cells require more memory than non-CP
They also are more expensive to comp
is why the performance is reduced.

Figure 2 below shows GPU-accelera
performance for simulations with
amounts of CPML. Note that
performance and maximum GPU-a
simulation size are affected. Also noti
point at which the GPU enters the so
limit is reduced. This is a reflecti
increased memory usage of the CPML c

Fig. 2. GPU-accelerated FDTD perform
CPML layers.

Small simulations are impacted
larger simulations because CPML cells
greater majority of the computational lo

Minimizing the use of CPML as a te
preserve performance should be evide
already well known for CPU implem
How much CPML a given simulation re

0

200

400

600

800

1000

0 25 50 75 100

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Simulation Size (Mcells)

0 Layers
10 Layers
20 Layers

LAYERS

nvolutional
ers is done
n volume.
re intensive
rmed. The
the desired
ary and is
 Typically

e providing

layers can
as much as
n volumes.

U is capable
d, as CPML
PML cells.

pute, which

ated FDTD
different

both the
accelerated
ice that the
oft-memory
ion of the
cells.

mance with

more than
represent a
ad.
echnique to
ent, and is
mentations.
equires can

only be understood by the designe
balance reflections, accuracy and perfo

IV. NUMBER OF UNIQUE MA

The number of materials, defined
with unique permeability, permittivity,
magnetic conductivity, can have a larg
performance - up to a 20% decrease. In
Acceleware’s implementation, this is
the way these properties are stored fo
GPU.

Acceleware’s library employs the
look-up table method to save memor
unnecessary copies of material dat
technique, the look-up table index is p
computational kernel which in turn
material parameters before completing
This works well (uses the least m
simulations where the number of uniq
is much less than the number of
simulations with very large numbers
it becomes more advantageous from
perspective to send the material
directly to the kernel. While ther
performance impact to doing so, it m
memory efficient. This so called dire
can also support unique E and H ma
the number of cells in the simulation.

The performance is illustrated belo
and shows that there is indeed a
impact for the C1060 GPU hard
moving from the look-up table me
direct method. The number of uniq
materials is also shown to have an
and additive effect on simulation perfo

Fig. 3. GPU-accelerated FDTD perform
versus the number of materials.

125 150

0

100

200

300

400

500

600

1 32 1024

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Unique Materials (#)

E Materials

H Materials

E and H Materials

er, who will
ormance.

ATERIALS

as materials
, electric and
ge impact on
n the case of
s a result of
or use on the

well known
ry and avoid
ta. In this
passed to the

fetches the
g the update.
memory) for
que materials

cells. For
of materials,

m a memory
parameters

re can be a
may be more
ect technique
aterials up to

ow in Fig. 3
performance

dware when
ethod to the
que E and H

independent
ormance.

mance

32768

317WELDON, MAXWELL, CYCA, HUGHES, WHELAN, OKONIEWSKI: GPU-ACCELERATED FDTD PERFORMANCE

The choice of 1024 is somewhat arbitrary and
unique to the Acceleware library. Other
implementations may use a different break point
or use the look-up table method or the direct
method exclusively. On different GPU hardware,
the direct and look-up table methods perform
differently, which adds further complexity to
understanding the performance.

The general end user recommendations should
be to simply keep an awareness of the number of
unique materials in your simulation and ensure
they are not an unnecessary cause of simulation
slow down. Many applications add arbitrary
complexity by allowing for continuous variation of
the material parameters.

For FDTD developers, additional intelligence
in the library itself may also more automatically
optimize the material storage and access a priori
depending on the number of materials, hardware,
and kernel implementations available. This would
ensure an optimal performance where the
simulation is not memory limited and maximum
simulation size where it is.

V. DISPERSIVE MATERIALS

Simulating materials with dispersive properties
can have an even more significant impact on
simulation performance and maximum simulation
size. Both the order of the dispersive materials
(number of poles) and the total volume of
dispersive material need to be considered. For a
given cell, adding a single dispersive pole to
describe its behavior will increase the memory
requirement of the cell and increase the required
number of flops for additional material current
calculation. This increases proportionally with the
number of poles. Simulations with larger volumes
and more higher-order poles will hence show more
pronounced degradation of performance and more
reduced simulation size. Several relevant cases
are shown in Fig. 4 below.

The above effect applies to all dispersive
materials types: Drude, Debye, Lorentz, Drude-
Lorentz, etc. Simulations with dispersive
materials also run slower on the CPU, so the
'speed up factor' when using GPUs is roughly the
same as for non-dispersive simulations.

Managing the effect of dispersive materials
involves using only the minimum volume and
order required to achieve your desired result. As

is illustrated comparing cases four with five, and
two with three, the distribution of dispersive
materials does not significantly affect the
performance; it is the overall volume and order
that counts.

Fig. 4. GPU-accelerated FDTD performance for
several cases of dispersive material usage.

Case 1 – 1600 non-dispersive materials

distributed evenly thought the entire
simulation space.

Case 2 – 1 single-pole dispersive material
occupies 40% of the total volume
contiguously.

Case 3 – 1 single-pole dispersive distributed
evenly throughout the entire volume, 40%
of the total volume is made up of
dispersive materials.

Case 4 – 1600 Multi-pole dispersive materials
distributed contiguously throughout 40%
of the total volume.

Case 5 – 1600 Multi-pole dispersive materials
distributed evenly throughout the entire
volume, 40% of the total volume is made
up of dispersive materials.

VI. READS AND READ REGIONS

(WRITES AND WRITES REGIONS)

Moving field data between GPU and CPU
system memory during a simulation can
dramatically impact performance and has been
discussed as a limitation of GPU FDTD
implementations. For the purpose of this discussion
we will refer to these data moves as reads and
writes. Field data is read when calculating relevant
outputs like SAR, far field patterns, optical
generation, special updates for assessing
convergence, and in other regards. Field data is

0

200

400

600

800

0 25 50 75 100 125 150

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Simulation Size (Mcells)

Case 1
Case 2
Case 3
Case 4
Case 5

318 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

written in cases like soft or customized excitations
or active materials.

The two critical factors affecting performance
for reads and writes are: how much of the volume is
read/written and how frequently. Figure 5 below
shows performance for different read volumes
based on a percentage of the total volume. All six
fields are read for each cell in the volume. The
number of time steps between each volume read is
swept and shown on the horizontal axis.

Fig. 5. GPU-accelerated FDTD performance for
different field observations.

The above volume reads are made for
contiguous volumes within the simulation space
which is a simplified though still realistic case. The
other extreme would be a large number of
individual point reads dispersed evenly through a
volume or plane. Individually reading these points
one by one would further reduce the performance
given the overhead attached with each read and
their disparate locations in physical memory.
Acceleware has implemented a strided region
function as one technique to eliminate this
overhead. An exhaustive study of all possible read
patterns and techniques is a significant effort in
itself and beyond the scope of this paper.

The general suggestions to manage the impact
of field observations are relevant in all cases. They
are: keep the read volume to a minimum, only
observe the region (volume) that is of direct
interest, and read only as frequently as is necessary
to achieve accurate power, DFT, SAR, optical
generation or other results. For steady state
measurements like optical generation, far field etc.
only start to read after a simulation has converged.

VII. SIMULATION ORIENTATION

Single-GPU simulations where the number of
cells on one particular axis is significantly smaller
than the others will experience a decrease in
simulation performance and maximum simulation
size. ‘Significant’ in this case is defined as a
dimension that is 20% or less of the size of the
other dimensions. For the Acceleware library, the
particular dimension is Z, but this is
implementation dependent.

This behavior is related to the way in which
memory is optimally accessed for a given 3D
layout in memory. This problem is not unique to
GPU FDTD solutions; it is also present in
vectorized CPU-only FDTD solvers.

The example illustrated in Fig. 6 and plotted in
Fig. 7 shows an extreme case, 10:10:1, of smallest
dimension. For less extreme cases the decrease in
performance and max simulation size is
proportionally smaller.

Fig. 6. Illustration of an extreme simulation
orientation case.

Fig. 7. GPU-accelerated FDTD performance for
various extreme simulation orientations.

An important note is that partitioning across
multiple GPUs will change the effective
simulation dimensions on each GPU, and hence
the performance, which is an important fact to
consider.

0

100

200

300

400

500

600

0 20 40 60 80 100

Pe
rf

or
m

an
ce

 (M
C

el
ls

/s
)

All Fields Read Every X Time Steps

0%
25%
50%
75%
100%

% of Volume Read

0

200

400

600

800

1000

0 25 50 75 100 125 150

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Simulation Size (Mcells)

Cubic
X Smallest
Y Smallest
Z Smallest

 X Y Z
X Smallest (a, b, b)
Y Smallest (b, a, b)
Z Smallest (b, b, a) a

b

b

319WELDON, MAXWELL, CYCA, HUGHES, WHELAN, OKONIEWSKI: GPU-ACCELERATED FDTD PERFORMANCE

To manage the effects of simulation
orientation, simply rotate the simulation so that the
Z (or critical) axis is not the smallest dimension.
Avoid extreme differences in dimensions between
the axis, if possible. Cubic simulation sizes will
show the best performance.

VIII. MULTI-GPU SYSTEMS

Using multiple GPUs in concert on a single
problem will increase both performance as well
the maximum simulation size that can be run in
full accelerated mode. Doing this requires
significant additional complexity in the code, as it
is not handled automatically at the hardware or
driver level. The performance curve shown in
Figure 1 for one GPU is now extended to show
two, four and eight GPUs and plotted in Figure 8.

Fig. 8. GPU-Accelerated FDTD performance on
multiple GPUs.

In the Acceleware implementation, the scaling
with the number of GPUs depends on the
simulation size. Small simulations in the ramp up
range will experience a smaller scaling factor than
simulations in the optimal range. For a simulation
of 100 MCells, scaling is on the order of 80-90
percent up to four GPUs with diminishing returns
going above four. However, if one considers the
maximum throughput of each configuration, the
scaling remains over 70 percent all the way up to
eight GPUs. The scaling is plotted in Figure 9
below.

Fig. 9. GPU-Accelerated FDTD performance
scaling across multiple GPUs. Peak performance
observed.

Scaling beyond eight GPUs is also possible,

but necessitates the use of an MPI or cluster layer
above the GPU code. Clusters of up to 64 GPUs
have been demonstrated at Acceleware and more
details can be found in [8]. In general, GPU cluster
scaling remains above 60% and well above that of
CPU performance for large numbers of cores.

IX. OTHER CONSIDERATIONS

There are several other practical

considerations to be aware of when running GPU
accelerated FDTD. It is common to see GPUs
used for FDTD computation also used to drive a
display device either directly or indirectly.
Display and computational work contesting for the
same GPU resources can negatively impact
performance. The two most common ways this
can happen are with graphically intensive
applications or screen savers, and with remote
desktop applications.

Screen savers are not that impactful to
simulation performance, typically less than 5%,
but running a blank or non-3D screen saver will
ensure maximum simulation performance.

Remote desktop applications on the other hand
can have a severe, >50%, impact on performance
and also prevent simulations from running. The
best way to avoid this problem is to use a KVM,
Keyboard-Video-Mouse, as it does not require any
additional GPU resources. Next to that, IP-based
remote desktop applications such as UltraVNC are
another solution but can still reduce performance
by 10-30%.

0
500

1000
1500
2000
2500
3000
3500
4000

0 200 400 600 800 1000 1200

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Simulation Size (Mcells)

Dual NVIDIA® Tesla™ S1070s (8 GPUs)
NVIDIA® Tesla™ S1070 (4 GPUs)
NVIDIA® Quadro® Plex 2200 D2 (2 GPUs)
NVIDIA® Tesla™ C1060 (1 GPU)

0

1000

2000

3000

4000

5000

6000

1 2 4 8

Pe
rf

or
m

an
ce

 (M
C

el
ls

/s
)

Number of GPUs

100MCells
Peak
Theoretical Linear

320 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

X. CONCLUSION

As GPU-accelerated FDTD has become an
accepted and advantageous computational
technique, its use is becoming more and more
widespread. With increased usage, several
practical limitations have been exposed. Most of
these are in extreme cases and depend heavily on
the particular implementation of accelerated
FDTD functions as well as the hardware itself.

This paper looked at several of the most
common practical limitations and suggested
techniques to prevent them from excessively
impacting performance. These included the
number of materials, dispersive materials, PML
absorbing boundaries, the extent of field
observations, simulation orientation, and the use of
multiple GPUs. Performance reductions vary
from 5% to 50% versus a similar simulation in a
less extreme case.

It is demonstrated that with proper care on the
part of the end user, any performance degradation
can be mitigated or eliminated to achieve the
maximum benefit of running on GPUs. From both
a SW and HW development perspective it also
exposes potential architectural limitations of GPUs
and should be a call to developers and designers to
examine their code and hardware to further
improve performance in these extreme cases.

REFERENCES

[1] K. S. Yee, “Numerical Solution of Initial

Boundary Value Problems Maxwell’s
Equation in Isotropic Media”, IEEE Trans.
Antennas and Prop., Vol. 14, No. 3, pp. 302-
307, 1966.

[2] S. E. Krakiwsky, L. E. Turner, M.
Okoniewski, “Acceleration of Finite-
Difference Time-Domain (FDTD) Using
Graphics Processor Units (GPU)”, IEEE MTT-
S Int. Symposium Digest, Vol. 2, pp. 1033-
1036, 2004.

[3] P. F. Curt, J. P. Durbano, M. R. Bodnar, S.
Shi, M. S. Mirotznik “Enhanced Functionality
for Hardware-Based FDTD Accelerators,”
ACES Journal, Vol. 22 No. 1, 2007.

[4] P. Sypek, M. Mrozowski, "Optimization of a
FDTD code for graphical processing units,"
The 17th. Int. Conf. on Microwaves, Radar

and Wireless Communications, MIKON, May
2008.

[5] A. Taflove, S. Hagness. Computational
Electrodynamics: The Finite-Difference Time-
Domain Method, 3rd ed., Artech House, 2005.

[6] M. J. Inman, A. Z. Elsherbeni, J. G. Maloney,
and B.N. Baker, “GPU Based FDTD Solver
with CPML Boundaries,” IEEE Antennas and
Propagation Society International Symposium,
pp. 5255- 5258, 2007.

[7] J. A. Roden and S. D. Gedney, “Convolutional
PML (CPML): An efficient FDTD
implementation of the CFS-ML for arbitrary
media”, IEEE Transactions on Antennas and
Propagation, Vol. 50, 2002, pp. 258-265.

[8] C. Ong, M. Weldon, D. Cyca, and M.
Okoniewski, “Acceleration of large-scale
FDTD simulations on high performance GPU
clusters,” IEEE Antennas and Propagation
Society International Symposium, APSURSI
'09, pp. 1 – 4, 2009.

Mike Weldon has an MSEE
from the University of Calgary /
TRLabs where he researched
RF to optical conversion
techniques for wireless network
infrastructure. He also spent
five years as an RF

development engineer working on broadband
Doherty power amplifiers at Nortel. He is
currently a product manager at Acceleware
responsible for the GPU-accelerated, RF/optical
FDTD product.

Logan Maxwell is presently
an intern at Acceleware and
will graduate next year with
a BSc in Electrical
Engineering from the
University of Calgary.

321WELDON, MAXWELL, CYCA, HUGHES, WHELAN, OKONIEWSKI: GPU-ACCELERATED FDTD PERFORMANCE

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5171722&queryText%3DFDTD+GPU%26openedRefinements%3D*%26searchField%3DSearch+All�
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5171722&queryText%3DFDTD+GPU%26openedRefinements%3D*%26searchField%3DSearch+All�
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5171722&queryText%3DFDTD+GPU%26openedRefinements%3D*%26searchField%3DSearch+All�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5154401�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5154401�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5154401�

Dan Cyca has an M. Sc. in
Electrical Engineering. He has
spent six years developing GPU
computing products at
Acceleware.

Matt Hughes is currently a
senior software developer with
Acceleware, working on
various Professional Services
projects. He was the team lead
for Acceleware's FDTD product
prior to heading up the linear
algebra team. Prior to joining

Acceleware in 2005, Matt completed a M.A.Sc in
Electrical Engineering at the University of
Victoria, where he studied optical transmission
through thin metal films using FDTD simulations
on shared memory and distributed computers. He
obtained a B.Sc in Electrical Engineering from the
University of Calgary in 2003.

Conrad Whelan studied
Electrical and Computer
Engineering at the
University of Calgary
where he was awarded
BSc and MSc degrees.
During his time with the
applied electromagnetics
group, he investigated

conformal methods for reducing the run time of
patch antenna simulations. This segued right into
his work with Acceleware where he has been a
member of the FDTD team for four years, seeing
the full range of transition from CPU to OpenGL
GPU computing to the arrival of CUDA and the
integration of Multi-node MPI for cluster
operations.

Michal Okoniewski, P.Eng.,
is a Professor at the
Department of Electrical and
Computer Engineering,
University of Calgary. He
holds Libin/Ingenuity Chair in
biomdeical-engineering and
Canada Research Chair in
applied electromagnetics. His

interests range from computational
electrodynamics, to tunable reflectarrays, RF
MEMS and RF micro-machined devices, as well
as hardware acceleration of computational
methods. He is also involved in bio-
electromagnetics, where he works on tissue
spectroscopy and medical imaging. Dr
Okoniewski is a fellow of IEEE and member of
IEEE AP-S AdCom. In 2004 he co-founded
Acceleware Corp.

322 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

http://m.a.sc/�

