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Abstract─ This paper outlines several key features 
and conditions that impact the performance of 
FDTD on GPUs.  It includes relevant performance 
measurements as well as practical suggestions on 
how to mitigate their impact.  Among these factors 
are: PML depth, the number of unique materials, 
dispersive materials, the impact of field 
reads/observations, simulation orientation, and 
domain decomposition using multiple GPUs.  The 
paper shows that the performance of FDTD on 
GPUs can be limited in certain extreme cases, but 
with proper care on the part of the designer these 
cases can be managed and maximum performance 
guaranteed.   
 
Index Terms─ GPU, acceleration, FDTD, CPML, 
dispersive materials.  
 

I. INTRODUCTION 
  

    For several years, running FDTD (Finite 
Difference Time Domain) [1] on graphical 
processing units, or GPUs, accelerators has been 
shown as a successful technique to reduce run 
times [2-4]. The fine-grained parallelism of FDTD 
maps well to the several hundreds of 
computational streaming processor cores available 
on modern GPU hardware.  The faster memory 
bandwidth from GPU RAM to the GPU 
processing elements is also largely responsible for 
the observed performance gain versus traditional 
CPU (central processing unit) architectures.   

The complexity involved when writing GPU-
enabled FDTD codes involves making sure that 
the processing elements are not data starved.  This 
is done through effective memory, cache and 
memory bandwidth management.  This complexity 

must be addressed for every feature of FDTD, not 
just the basic [1] Yee updates. 

Section II of this paper will introduce and 
explain the basics of FDTD performance on GPUs 
from an end user perspective.  It will also detail 
the general limiting cases of this performance 
caused by the GPU architecture mentioned above. 
     The body of the paper, Sections III through IX, 
will build on this overview and introduce more 
advanced features and their impact on 
performance.  These features are: PML (Perfectly 
Matched Layer) boundary conditions, the number 
of unique materials, dispersive materials, 
simulation orientation, observation/modification of 
field data during the simulation, and domain 
decomposition across multiple GPUs.  In each 
case, the performance of the feature or concept is 
illustrated with a graph and explained in words.  In 
addition, practical suggestions are offered for 
ensuring maximum performance and mitigating 
any adverse effects. 

To illustrate these effects, Acceleware’s 
FDTD library, version 9.x, implemented in CUDA 
and running NVIDIA Tesla C1060 are the 
software and GPU platforms of choice. 
 

II. FUNDAMENTALS OF  
FDTD PERFORMANCE ON GPU 

 
The graph below is an overview that illustrates 

the performance of Acceleware’s FDTD library on 
both multi-core CPU and GPU hardware.  The 
CPU hardware used throughout the paper is AMD 
OpteronTM 2214 2.2GHz, and  Intel® Xeon® CPU 
X5550 @ 2.67GHz code-named ‘Nehalem’. The 
GPU hardware is NVIDIA Tesla C1060 GPU 
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cards connected via PCI Express x16 t
system. 

Memory bandwidth is perhaps 
determinant of FDTD performance
hardware perspective.  The memory ban
the C1060 architecture is 102GB/S, 
X5550 architecture is 32GB/s, and th
2214 architecture is 11.8GB/s.  Thes
roughly correlate with the peak pe
observed for FDTD in Figure 1 below
generations of both CPU and GPU har
continue to increase memory bandwidth
 

Fig. 1. FDTD performance – CPU v
 

CPU performance versus simul
ramps up relatively quickly and reaches
steady state limited by the finite
bandwidth, and provided the CPU mem
exceeded.  The GPU performance curv
dramatic, and shows several key operati
which are noted in Fig. 1 and explained 
 
Ramp Up - In this range the GPU is no
of its compute resources and memory 
efficiently.  PML may also take up a lar
of the total simulation size and acts to
total simulation throughput. 
 
Knee - The knee is the point at 
performance levels off and the GPU 
optimally. 
 
Optimal Range - This is the optimal ra
GPU as processing resources are b
utilized and the impact of data transfer m
The goal of any GPU FDTD code is to
the breadth and magnitude of this region
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GPU Memory Limit - This is the po
the GPU runs out of memory.  There i
dramatic performance impact beyon
due to FDTD updates shifting to the C
the amount of GPU RAM is fixed, 
limit as measured by the number o
change depending on the materials an
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The performance in MCells/s of th
the paper is calculated as follows: 
    
 
In the above calculations, the ‘simu
does not include any PML cells u
simulation, while the ‘simulation time
elapsed from the beginning of the time

Unless being treated as an 
variable or otherwise noted, the 
results in this document have 1
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III. PERFECTLY MATCHED L
 (PML) 

 
Adding absorbing CPML (con

perfectly matched layer) boundary laye
to truncate the overall simulation
Computation of these cells is made mor
due to the recursive convolution perfor
number of layers required depends on t
reflection coefficient from the bound
done at the discretion of the designer. 
five to ten layers are used, with five
-30dB or better reflection. [5]   

While reducing reflections, these 
also reduce simulation performance by 
50% [6], especially for small simulation
The maximum simulation size the GPU
of running will also be partially reduced
cells require more memory than non-CP
They also are more expensive to comp
is why the performance is reduced.   

Figure 2 below shows GPU-accelera
performance for simulations with 
amounts of CPML.  Note that 
performance and maximum GPU-a
simulation size are affected.  Also noti
point at which the GPU enters the so
limit is reduced.  This is a reflecti
increased memory usage of the CPML c

Fig. 2. GPU-accelerated FDTD perform
CPML layers. 
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IV. NUMBER OF UNIQUE MA
 

The number of materials, defined 
with unique permeability, permittivity,
magnetic conductivity, can have a larg
performance - up to a 20% decrease. In
Acceleware’s implementation, this is
the way these properties are stored fo
GPU. 
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impact for the C1060 GPU hard
moving from the look-up table me
direct method.  The number of uniq
materials is also shown to have an 
and additive effect on simulation perfo

 

Fig. 3. GPU-accelerated FDTD perform
versus the number of materials. 
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The choice of 1024 is somewhat arbitrary and 
unique to the Acceleware library.  Other 
implementations may use a different break point 
or use the look-up table method or the direct 
method exclusively.  On different GPU hardware, 
the direct and look-up table methods perform 
differently, which adds further complexity to 
understanding the performance.  

The general end user recommendations should 
be to simply keep an awareness of the number of 
unique materials in your simulation and ensure 
they are not an unnecessary cause of simulation 
slow down.  Many applications add arbitrary 
complexity by allowing for continuous variation of 
the material parameters.   

For FDTD developers, additional intelligence 
in the library itself may also more automatically 
optimize the material storage and access a priori 
depending on the number of materials, hardware, 
and kernel implementations available.  This would 
ensure an optimal performance where the 
simulation is not memory limited and maximum 
simulation size where it is.   
 

V. DISPERSIVE MATERIALS 
 

Simulating materials with dispersive properties 
can have an even more significant impact on 
simulation performance and maximum simulation 
size. Both the order of the dispersive materials 
(number of poles) and the total volume of 
dispersive material need to be considered.  For a 
given cell, adding a single dispersive pole to 
describe its behavior will increase the memory 
requirement of the cell and increase the required 
number of flops for additional material current 
calculation.  This increases proportionally with the 
number of poles.  Simulations with larger volumes 
and more higher-order poles will hence show more 
pronounced degradation of performance and more 
reduced simulation size.  Several relevant cases 
are shown in Fig. 4 below. 

The above effect applies to all dispersive 
materials types: Drude, Debye, Lorentz, Drude-
Lorentz, etc.  Simulations with dispersive 
materials also run slower on the CPU, so the 
'speed up factor' when using GPUs is roughly the 
same as for non-dispersive simulations.   

Managing the effect of dispersive materials 
involves using only the minimum volume and 
order required to achieve your desired result.  As 

is illustrated comparing cases four with five, and 
two with three, the distribution of dispersive 
materials does not significantly affect the 
performance; it is the overall volume and order 
that counts. 

 

 
Fig. 4. GPU-accelerated FDTD performance for 
several cases of dispersive material usage. 
 
Case 1 – 1600 non-dispersive materials 

distributed evenly thought the entire 
simulation space. 

Case 2 – 1 single-pole dispersive material 
occupies 40% of the total volume 
contiguously. 

Case 3 – 1 single-pole dispersive distributed 
evenly throughout the entire volume, 40% 
of the total volume is made up of 
dispersive materials. 

Case 4 – 1600 Multi-pole dispersive materials 
distributed contiguously throughout 40% 
of the total volume. 

Case 5 – 1600 Multi-pole dispersive materials 
distributed evenly throughout the entire 
volume, 40% of the total volume is made 
up of dispersive materials. 

 
VI. READS AND READ REGIONS  

(WRITES AND WRITES REGIONS) 
 

Moving field data between GPU and CPU 
system memory during a simulation can 
dramatically impact performance and has been 
discussed as a limitation of GPU FDTD 
implementations.  For the purpose of this discussion 
we will refer to these data moves as reads and 
writes. Field data is read when calculating relevant 
outputs like SAR, far field patterns, optical 
generation, special updates for assessing 
convergence, and in other regards.  Field data is 
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written in cases like soft or customized excitations 
or active materials.   

The two critical factors affecting performance 
for reads and writes are: how much of the volume is 
read/written and how frequently. Figure 5 below 
shows performance for different read volumes 
based on a percentage of the total volume.  All six 
fields are read for each cell in the volume. The 
number of time steps between each volume read is 
swept and shown on the horizontal axis. 
 

 
Fig. 5. GPU-accelerated FDTD performance for 
different field observations. 
 

The above volume reads are made for 
contiguous volumes within the simulation space 
which is a simplified though still realistic case.  The 
other extreme would be a large number of 
individual point reads dispersed evenly through a 
volume or plane.  Individually reading these points 
one by one would further reduce the performance 
given the overhead attached with each read and 
their disparate locations in physical memory.  
Acceleware has implemented a strided region 
function as one technique to eliminate this 
overhead.   An exhaustive study of all possible read 
patterns and techniques is a significant effort in 
itself and beyond the scope of this paper. 

The general suggestions to manage the impact 
of field observations are relevant in all cases.  They 
are: keep the read volume to a minimum, only 
observe the region (volume) that is of direct 
interest, and read only as frequently as is necessary 
to achieve accurate power, DFT, SAR, optical 
generation or other results. For steady state 
measurements like optical generation, far field etc. 
only start to read after a simulation has converged.  

 

VII. SIMULATION ORIENTATION 
 

Single-GPU simulations where the number of 
cells on one particular axis is significantly smaller 
than the others will experience a decrease in 
simulation performance and maximum simulation 
size.  ‘Significant’ in this case is defined as a 
dimension that is 20% or less of the size of the 
other dimensions.  For the Acceleware library, the 
particular dimension is Z, but this is 
implementation dependent. 

This behavior is related to the way in which 
memory is optimally accessed for a given 3D 
layout in memory.  This problem is not unique to 
GPU FDTD solutions; it is also present in 
vectorized CPU-only FDTD solvers.  

The example illustrated in Fig. 6 and plotted in 
Fig. 7 shows an extreme case, 10:10:1, of smallest 
dimension. For less extreme cases the decrease in 
performance and max simulation size is 
proportionally smaller.  

 

 
Fig. 6. Illustration of an extreme simulation 
orientation case. 
 

 
Fig. 7. GPU-accelerated FDTD performance for 
various extreme simulation orientations. 
 

An important note is that partitioning across 
multiple GPUs will change the effective 
simulation dimensions on each GPU, and hence 
the performance, which is an important fact to 
consider.   

 
 

0

100

200

300

400

500

600

0 20 40 60 80 100

Pe
rf

or
m

an
ce

 (M
C

el
ls

/s
)

All Fields Read Every X Time Steps

0%
25%
50%
75%
100%

% of Volume Read

0

200

400

600

800

1000

0 25 50 75 100 125 150

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Simulation Size (Mcells)

Cubic
X Smallest
Y Smallest
Z Smallest

 X Y Z 
X Smallest (a, b, b) 
Y Smallest (b, a, b) 
Z Smallest (b, b, a) a 

b

b

319WELDON, MAXWELL, CYCA, HUGHES, WHELAN, OKONIEWSKI: GPU-ACCELERATED FDTD PERFORMANCE



To manage the effects of simulation 
orientation, simply rotate the simulation so that the 
Z (or critical) axis is not the smallest dimension. 
Avoid extreme differences in dimensions between 
the axis, if possible.  Cubic simulation sizes will 
show the best performance. 
 

VIII. MULTI-GPU SYSTEMS 
 

Using multiple GPUs in concert on a single 
problem will increase both performance as well 
the maximum simulation size that can be run in 
full accelerated mode.  Doing this requires 
significant additional complexity in the code, as it 
is not handled automatically at the hardware or 
driver level.  The performance curve shown in 
Figure 1 for one GPU is now extended to show 
two, four and eight GPUs and plotted in Figure 8. 

 

 
Fig. 8. GPU-Accelerated FDTD performance on 
multiple GPUs. 
 

In the Acceleware implementation, the scaling 
with the number of GPUs depends on the 
simulation size.  Small simulations in the ramp up 
range will experience a smaller scaling factor than 
simulations in the optimal range.  For a simulation 
of 100 MCells, scaling is on the order of 80-90 
percent up to four GPUs with diminishing returns 
going above four.  However, if one considers the 
maximum throughput of each configuration, the 
scaling remains over 70 percent all the way up to 
eight GPUs.  The scaling is plotted in Figure 9 
below. 

 
Fig. 9. GPU-Accelerated FDTD performance 
scaling across multiple GPUs. Peak performance 
observed. 

 
Scaling beyond eight GPUs is also possible, 

but necessitates the use of an MPI or cluster layer 
above the GPU code.  Clusters of up to 64 GPUs 
have been demonstrated at Acceleware and more 
details can be found in [8]. In general, GPU cluster 
scaling remains above 60% and well above that of 
CPU performance for large numbers of cores. 

 
IX. OTHER CONSIDERATIONS 

 
There are several other practical 

considerations to be aware of when running GPU 
accelerated FDTD.  It is common to see GPUs 
used for FDTD computation also used to drive a 
display device either directly or indirectly.  
Display and computational work contesting for the 
same GPU resources can negatively impact 
performance. The two most common ways this 
can happen are with graphically intensive 
applications or screen savers, and with remote 
desktop applications.   

Screen savers are not that impactful to 
simulation performance, typically less than 5%, 
but running a blank or non-3D screen saver will 
ensure maximum simulation performance.  

Remote desktop applications on the other hand 
can have a severe, >50%, impact on performance 
and also prevent simulations from running.  The 
best way to avoid this problem is to use a KVM, 
Keyboard-Video-Mouse, as it does not require any 
additional GPU resources.  Next to that, IP-based 
remote desktop applications such as UltraVNC are 
another solution but can still reduce performance 
by 10-30%. 
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X. CONCLUSION 
 

As GPU-accelerated FDTD has become an 
accepted and advantageous computational 
technique, its use is becoming more and more 
widespread.  With increased usage, several 
practical limitations have been exposed.  Most of 
these are in extreme cases and depend heavily on 
the particular implementation of accelerated 
FDTD functions as well as the hardware itself. 

This paper looked at several of the most 
common practical limitations and suggested 
techniques to prevent them from excessively 
impacting performance.  These included the 
number of materials, dispersive materials, PML 
absorbing boundaries, the extent of field 
observations, simulation orientation, and the use of 
multiple GPUs.  Performance reductions vary 
from 5% to 50% versus a similar simulation in a 
less extreme case.  

It is demonstrated that with proper care on the 
part of the end user, any performance degradation 
can be mitigated or eliminated to achieve the 
maximum benefit of running on GPUs.  From both 
a SW and HW development perspective it also 
exposes potential architectural limitations of GPUs 
and should be a call to developers and designers to 
examine their code and hardware to further 
improve performance in these extreme cases. 
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