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Abstract ─ This paper proposes improved 
analytical expressions of the torque on cuboidal 
permanent magnets. Expressions are valid for any 
relative magnet position and for any polarization 
direction. The analytical calculation is made by 
replacing polarizations by distributions of magnetic 
charges on the magnet poles (coulombian 
approach). The torque exerted on the second 
magnet is calculated by Lorentz force formulas for 
any arbitrary position. The three components of the 
torque are written with functions based on 
logarithm and arc-tangent. Results have been 
verified and validated by comparison with finite-
element calculation. Further, the torque can be 
obtained with respect to any reference point. 
Although these equations seem rather complicated, 
they enable an extremely fast and accurate 
calculation of the torque exerted between two 
permanent magnets. 

Index Terms ─ Analytical calculation, coulombian 
approach, force, permanent magnet, torque. 

I. INTRODUCTION 
Analytical expressions are very powerful, 

giving a very fast method to calculate magnetic 
interactions. It is why the analytical expressions of 
all the interactions, energy, forces, and torques 
between two cuboidal magnets are very important 

results. Many problems can be solved by the 
addition of element interactions. 

Up to now, for the torque components, the 
calculations were first realized for a system of two 
magnets with parallel polarization direction by 
Allag [1] and Janssen [2]. For the perpendicular 
case the results have been recently published [3]. 

In this paper, we develop the calculation for 
systems with two magnets with inclined 
polarization direction. The torque expressions are 
valid for any given point in the space, not only 
around the center of the moving magnet. The 
expressions of the torque components are obtained 
using the Lorentz force method [4]. A comparison 
with numerical results using the commercial 
software Flux3D validates our analytical 
calculation of the torque exerted between two 
permanent magnets. 

II. MATHEMATICAL MODEL
We study the interaction between two 

parallelepiped magnets, as presented in Fig. 1. The 
polarizations J and J’ are supposed to be rigid and 
uniform in each magnet. The difference is that J’ 
are arbitrary oriented in the YZ plane. The model 
can be replaced by distributions of magnetic 
charges on the poles, generally called coulombian 
approach. For simplifying calculation, the 
polarization J’ will be decomposed into parallel 
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component J’// and perpendicular one J’┴ (Fig. 2).

Fig. 1. System with two magnets.

Fig. 2. Polarization decomposition.

A. Parallel polarizations 
The first 3-D fully analytical expressions of the 

energy and force were presented at the 1984 
INTERMAG Conference, Hamburg, Germany [5]. 
The forces were analytically calculated for two 
cuboidal magnets with parallel polarization 
directions (Fig. 3). 

Fig. 3. Parallel polarizations.

The energy expressions are: 
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The obtained expressions of the interaction 
energy are: 
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For the torque calculation, the first magnet is 
supposed to be fixed and the second magnet is free 
to move in any direction. The torque is calculated 
for a movement around the point OT. The OT

position is defined by its coordinates (Dx, Dy, Dz) in 
the reference axes of the second magnet OXYZ. 
View from O, the centre of the fixed permanent 
magnet, the OT position is defined by (Dx+�, Dy,+
,
Dz+	).

The torque exerted in the second magnet at OT

is calculated by Lorentz formulas [2, 3, 4]: 
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The torque can be also written as: 
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The distance r is always the same (see equation 
(2)), and DX, DY and DY are the projections of the 
distance between the centre of the moving magnet 
and the point of torque calculation OT. 

After the analytical integrations, the torque is 
given by: 
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And the functions � are respectively: 
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It is easy to identify the link between the 
expressions of the torque (12) and the force 
components �//X, �//Y, �//Z from (7). Therefore we can 
write: 
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B. Perpendicular polarizations 

For the perpendicular polarizations case, the 
chosen system is presented in Fig. 4, in which the 
polarization of a second magnet is collinear with the 
Y axis. 

The analytical expressions of the interaction 
energy and the forces components for this system 
were previously developed [6, 7]. The difference is 

in the Z integration: 
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The distance r is given by: 
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After analytical integration, the energy is given 
by: 
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Fig. 4. System with perpendicular polarizations. 
 

The ┴ function depends on the geometrical 
parameters (U, V, W, r): 
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The variables U, V, W are given by (5). 
The force components can be calculated from 

the gradient of energy: 
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For Fx, the function �┴x is given by: 
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Similarly to the parallel polarization case, the 
torque exerted on the second magnet at OT (Fig. 4) 
is expressed by: 
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The torque can be also written as: 
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The final result is given by: 
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For the torque component �┴x, parallely 
oriented to the Ox axis, the �┴x function is given by:
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The torque components in perpendicular case 
are also function of the force ones (�┴X, �┴Y and 
�┴Z).

III. TORQUE CALCULATION FOR 
INCLINED POLARIZATION

DIRECTION 
For an inclined polarization J’ as presented on 

Fig. 1 and Fig. 2. It can be represented as:
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Therefore the total torque will be: 
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The components of //�  and ��  are given by 
equations (12), (13) and (24).
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IV. APPLICATION AND RESULTS 
The following example presents the torque 

calculation between two magnets. These magnets 
are identical; two cubes of 1 cm edge. The lower 
magnet has a vertical polarization (oriented in Z 
direction). For the second magnet, its polarization 
is inclined in the YZ plane (Fig. 5). The intensity of 
polarization is 1 Tesla for the two magnets. The 
upper magnet moves in translation along the Ox 
axis above the lower fixed one. The vertical 
distance between them (air gap when the upper 
magnet is above the fixed magnet) is 0.01 m (β = 0 
m and γ = 0.02 m). 
 

 
 
Fig. 5. Geometrical disposition of the magnets. 
 

For the first application, the second magnet 
polarization is inclined (θ = 45°). The torque is 
calculated in the centre of the second magnet (Dx, 
Dy and Dz are equal to zeros). The results from 
analytical and numerical model using Flux3D are 
given in Fig. 6, proving a good accuracy of our 
approach. 

We let the same physical and geometrical 
parameters as in previous example, except for the 
degree of inclination which is changed to θ = 30°. 
In this case also, the results are compared with 
Flux3D finite element software (Fig. 7). 

In the second application, the second magnet is 
fixed at α = 0.0025 m, β = 0 m, γ = 0.02 m. We 
simulate and calculate the torque for one complete 
rotation of polarization (Fig. 8). The torque is 
computed at the centre of the magnet and its three 

components are presented in Fig. 9. 
We can also calculate the torque components at 

any position of OT, the next results concern the 
calculation of the torque at the position shown in 
Fig. 10, corresponding to Dx = -2 α, Dy = 0 and Dz 
= 0. The dimensions α, β and γ are the same as the 
last application (α = 0.0025 m, β = 0 m, γ = 0.02 
m).The result in this case is presented as a function 
of a rotation angle θ on Fig. 11. 
 

 
 
Fig. 6. Torque components for 45° inclined 
polarization of PM2. 
 

 
 
Fig. 7. Torque components for 30° inclined 
polarization of PM2 (second magnet). 
 

 
 
Fig. 8. Magnet position and polarization directions. 
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Fig. 9. Torque components calculation for one 
rotation of inclined polarization of PM2 (α = 0.0025 
m, β = 0 m, γ = 0.02 m).

Fig. 10. Localization of the torque calculation point.

Fig. 11. Torque calculation at Dx = -0.005 m, Dy = 
0 m and Dz = 0 m, as function of rotation angle θ.

V. CONCLUSION 
This paper presents a new contribution in 

analytical torque calculations for cuboidal 
permanent magnets with inclined polarizations 

from any position. These investigations allow the 
direct calculation of many systems working by the 
forces or the torques between magnetized cuboidal 
elements (magnetic bearings, Halbach arrays….). 
These results can also be used for many other 
calculations, like complex shapes of magnets which 
can be replaced by a combination of several 
parallelogram ones.
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