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Abstract ─ The curve asymptotic phase basis 
functions (AP-CRWG) are introduced to reduce the 
number of unknowns. Moreover, the parallel ray-
propagation fast multipole algorithm (RPFMA) is
used to accelerate the far-interaction calculation. 
The translation between any two groups in the 
multilevel fast multipole algorithm (MLFMA) is 
expensive and the translator is defined on an Ewald
sphere with many k̂ directions. When two groups 
are well separated, the translation can be simplified 
by using RPFMA, where only a few sampling k̂
directions are required within a cone zone on the 
Ewald sphere. As a result, both the memory 
requirement and the CPU time can be saved 
significantly. Numerical examples are given to 
demonstrate that the proposed method is more 
efficient than both the conventional MLFMA and 
the RPFMA-MLFMA. 

Index Terms ─ Curve asymptotic phase basis 
function, electromagnetic scattering, method of 
moments (MoM), multilevel fast multipole 
algorithm (MLFMA), parallization, ray-
propagation fast multipole algorithm (RPFMA). 

I. INTRODUCTION 
The method of moments (MoM) [1-4] has been 

widely applied in a variety of electromagnetic (EM) 
radiation and scattering problems. The multilevel 
fast multipole algorithm (MLFMA) which is one of 
the most efficient approaches to solve large scale 
scattering problems can reduce both the memory 
requirement and the computational complexity. 
However, MLFMA is still expensive in solving the 
EM scattering problems for very large objects. The 
translation process is time consuming even though 

the interpolation and anterpolation are used. For 
very large-scale problems, the exact translation is 
used when two groups are close to each other. 
When groups are well separated, however, the 
translation can be simplified using a ray-
propagation fast multipole algorithm (RPFMA) [5]-
[7], where only a few sampling k̂ directions are 
required within a cone zone on the Ewald sphere. 
Combining AP-CRWG and RPFMA with 
MLFMA, the algorithm AP-RPFMA-MLFMA is
developed in this paper. It can be seen from the 
numerical results that the proposed AP-RPFMA-
MLFMA is more efficient than both the 
conventional MLFMA and the RPFMA-MLFMA 
in 3-D electromagnetic scattering and radiation for 
very large structures. 

In this paper, an efficient approach to 
accelerating the parallel curve asymptotic phase 
basis function (AP-CRWG) with the RPFMA is
proposed for large scale scattering problems. The 
remainder of this paper was organized as follows. 
The introduction of the AP-CRWG, the RPFMA 
and the parallization are given in the Section II. 
Section III presents the numerical results to 
demonstrate the accuracy and efficiency of the 
proposed method. Finally, some conclusions are 
given in section IV. 

II. THEORY 
A. Curve asymptotic phase basis function 

According to the Maxwell’s equations, the 
surface equivalence principle and the constitutive 
relation, we can get: 

,E j H*�+� �E j HHE (1)

ˆ ,J n H� �ˆJ n Hn̂ (2)
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,D E��D E (3)

where E stands for the electric field, H is the 
magnetic field, J is the electric current and D
denotes the electric flux. 

Therefore, the relationship between J and D
can be written as: 

1
ˆ ,J n D

j*��
� �+�

1
ˆJ n D1 n̂n1
ˆ (4)

where ,� �   are permittivity and permeability 

respectively. The curl of D  can be written as:
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where n̂   stands for the normal unit vector, nD   is 

the normal component of D  , tD   is the tangential 

component of D . From (4) and (5), we can get:

1 ( ).t
n

DJ D
j n*��

�
� + �

�
1J 11

(6)

In addition to the boundary conditions and the 
current continuity: 

n sD !� , (7)

t sJ j*!+ � �J j*!J . (8)

From (6), (7) and (8), we can get: 
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The solution of (9) can be written as: 
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where ik is the incident direction of propagation.
From the above analysis, the relationship is 

formed as: 
( )

ijk rJ r e�(J ( ))) e rrrjke
iki rrrrjke� . (11)

The current on ideal conductive surfaces has 
the phase characteristic, so the basis function which 
is used to approximate surface current also has 
amplitude and phase. Curved triangles are used to 
subdivide the surface of the target. Surface current 
can be expressed as follows: 

1 1
( ) ( ) ( )

N N ijk r
n n n n

n n
J r a F r a f r e� �

� �
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) ( )( )(( )( )( , (12)

where ( )( ))nf r  is CRWG basis function.

By using this basic function, the number of 
unknowns can be reduced greatly with encouraging 
accurate results when compared with the RWG 
basis functions. 

B. Ray propagation fast multipole algorithm 
(RPFMA) 

The scalar Green’s function for 3-D problems 
can be expanded: 
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where the integral is defined on a unit sphere ES , 

the Ewald sphere, and ,i jr r  are the observation 

point vector and the source point vector 
respectively, and ,im njr r  are the spatial vector from 

the center of the observation group to the 
observation point and the spatial vector from the 
center of the source group to the source point 
respectively, and mn� is called a translator between 
the two groups which is defined as: 

� � (1)

0
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where L is the truncation number of an infinite 
series, and related to the group size. 

In the conventional MLFMA based on (14), all 
k̂ directions on the Ewald sphere are involved in 
the translation. Hence, a large number of sampling 
k̂ directions have to be used in the numerical 
implementation for large-scale problems [8]. As a 
result, it is very time consuming to perform the 
exact translation. It should be noted that the 
truncation of an infinite summation is required for 
the translator. Such truncation is equivalent to the 
use of a square window. However, it is equally 
valid to use another window function which makes 
a smooth transition from one to zero. (14) can be 
rewritten as: 
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window function. The advantage of such window 
function in (15) is to make the main beam of the 
translator pattern sharper and sidelobes lower. This 
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is the main idea of RPFMA. Physically speaking, as 
shown in Fig. 1, the effective beamwidth forms a 
cone region around the ray direction m̂nr on the 

Ewald sphere, whose solid angle is ê� . Hence, only 

the k̂ directions within the cone region have strong 
contribution to the translator, and all the k̂
directions outside the region will be discarded. In 
this case, only a small number of k̂ directions on 
the Ewald sphere are used, which makes RPFMA 
much more efficient. 

 

m̂nr  

e�  

x 

y 

z 

r�  

r�  

0 

 
 
Fig. 1. Ewald sphere. 

 
C. Parallization 

Although the MLFMA reduces the complexity 
of MoM from 2( )O N  to ( log )O N N , allowing for 
the solution of large problems with limited 
computational resources. However, accurate 
solutions of large problems require discretization’s 
with millions of unknowns, which cannot be solved 
with sequential implementations of MLFMA 
running on a single processor easily. To solve such 
large problems, it is helpful to increase 
computational resource by assembling parallel 
computing platforms and, at the same time, by 
paralleling MLFMA [9-13]. There are many studies 
that have been done to improve the efficiency of the 
parallel MLFMA [14-15] Thanks to these studies, 
problems with millions of unknowns have been 
solved on relatively inexpensive platforms. 

Series of implementation techniques have been 
developed for efficiently parallelizing the MLFMA. 
These techniques are different, but the most 
important thing in those techniques in parallelizing 
MLFMA is load-balancing and minimizes the 
communications between the processors. This is 
achieved by using different partitioning strategies 
for the lower and higher levels of the tree structure. 

In the lower levels of the tree structure, there are 
many clusters with small number of samples for the 
radiated and incoming fields. The number of cubes 
is much larger than the number of processors. 
Therefore, it is natural to distribute the cubes 
equally among processors. However, it is difficult 
to achieve good load-balancing in higher levels 
with this parallel approach, since the number of 
cubes in the coarse levels is small and the electric 
size of the cube is large, the far-field patterns is 
large. Therefore, in the coarse level, we adopt 
another parallel approach in the coarse levels; we 
partition the far-field patterns equally among all 
processors and send the needed messages to each 
processor. Using this approach for the parallel 
MLFMA in the far-field, good load balancing can 
be achieved. 
 

III. NUMERICAL RESULTS 
In this section, three examples are presented to 

demonstrate the benefits of the proposed method. In 
our experiments, the restarted version of GMRES 
[16] algorithm is used to solve the linear systems. 
All cases are tested on HP server with Intel Xeon 
CPU X5550 (2.67 GHz). The operating system is 
Red Hat Enterprise Linux Server release 5.3. The 
environment of compiling is Intel Visual Fortran 9. 
Additional details and comments on the 
implementation are given as follows: 

The terminating tolerances of the RPFMA are 
set as 0.001. 
The resulting linear systems are solved 
iteratively by the GMRES (30) solver with a 
relative residual of 310 .�  
Zero vector is taken as initial approximate 
solution for all examples. 
The maximum number of iterations is limited 
to be 5000. 
The second and third examples are performed 
on 10-node cluster connected with an 
Infiniband network. Each node includes 8 cores 
and 48 GB of RAM. One node is used in the 
first examples with 8 cores. 
The mesh size for both the conventional 
MLFMA and the RPFMA-MLFMA is 0.15 ,1
while the mesh size for the proposed AP-
RPFMA-MLFMA is 1.0 .1  
We first consider the scattering from a strip of 

9 3m m� at the frequency of 3 GHz. When the 
incident plane wave is fixed at 60 0inc inc� �� � , 
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the bistatic RCS results for VV polarization 
computed by the conventional MLFMA, AP-
RPFMA-MLFMA are shown in Fig. 2. Four-level 
algorithms have been used in the AP-RPFMA-
MLFMA algorithm while seven-level algorithms
have been used in the conventional MLFMA. 
Figure 2 illustrates the validation of numerical 
results from the AP-RPFMA-MLFMA against the 
conventional MLFMA. The comparison of the 
translator numbers between the MLFMA and the 
RPFMA is listed in Table 1. The comparisons of the 
number of unknowns, the iteration number, the 
translator pattern memory and the total time of the 
conventional MLFMA, RPFMA-MLFMA and the 
AP-RPFMA-MLFMA are shown in Table 2. 

Fig. 2. Bistatic RCS of a strip of 90 301 1� (V-V
polarization). 

Table 1: Comparison of the translator numbers 
between the MLFMA and the RPFMA for the strip 
Nlevel ˆ

e� Number of 
Translator

for MLFMA

Number of 
Translator

for RPFMA
1 1.0� 2738 2738
2 0.6� 9522 6881
3 0.3� 34848 10296
4 0.2� 130050 50090

Next, we consider the scattering from a PEC 
sphere with the radius of 80 m at the frequency of 
0.6 GHz. The incident plane wave is fixed at 

0 0inc inc� �� � , the scattering angle is fixed at 

0 ~180 0s s� �� � . As shown in Fig. 3, there 
is a good agreement between the AP-RPFMA-

MLFMA and the conventional MLFMA. Six-level 
algorithms have been used in the AP-RPFMA-
MLFMA while nine-level algorithms have been 
used in the conventional MLFMA. The comparison 
of the translator numbers between the MLFMA and 
the RPFMA is listed in Table 3. The comparisons 
of the number of unknowns, the iteration number, 
the translator pattern memory and the total time of 
the conventional MLFMA, RPFMA-MLFMA and 
the AP-RPFMA-MLFMA are illustrated in Table 4.
Clearly, both the memory requirement and the total 
CPU time in AP-RPFMA-MLFMA have been 
reduced. 

Fig. 3. Bistatic RCS of a PEC sphere of radius 80 m
at 0.6 GHz (V-V polarization). 

Table 3: Comparison of the translator numbers 
between the MLFMA and the RPFMA for the PEC 
sphere 

Nlevel ˆ
e� Number of 

Translator
for MLFMA

Number of 
Translator

for RPFMA
1 1.0� 2312 2312
2 0.6� 7688 5550
3 0.3� 27848 8260
4 0.2� 103968 41195
5 0.15� 399618 117785
6 0.1� 1562912 303751

At last, the proposed method is used to analysis 
scattering from a satellite with longest length of 22 
m at 13 GHz. Seven-level algorithms have been 
used in the AP-RPFMA-MLFMA while eleven-
level algorithms have been used in the conventional 
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MLFMA. The incident plane wave direction is 
fixed at 0 0inc inc� �� � , the scattering angle is 

fixed at 0 ~180 0s s� �� � . Figure 4 shows the 
bistatic RCS results for VV polarization computed 
by the conventional MLFMA and the AP-RPFMA-
MLFMA. The comparison of the translator 
numbers between the MLFMA and the RPFMA is 
listed in Table 5. The comparisons of the number of 
unknowns, the iteration number, the translator 
pattern memory and the total time of the 
conventional MLFMA, RPFMA-MLFMA and the 
AP-RPFMA-MLFMA are shown in Table 6. 
 

 
 
Fig. 4. Bistatic RCS of a satellite at 13 GHz (V-V 
polarization). 

From the above figures, we clearly see that the 
numerical results from the AP-RPFMA-MLFMA 
are very accurate in both cases while the tolerance 
is set as 0.001. This is because the near neighbor 
groups have been treated using MLFMA exactly. 
ˆ
e� is an experiential number, which is related to the 

distance between the observation group and the 
source group. The corresponding ˆ

e� can be chosen 
smaller when the observation group is far away 
from the observation group. 
 
Table 5: Comparison of the number of translator 
between the MLFMA and the RPFMA algorithm 
for the satellite 

Nlevel ˆ
e�  Number of 

Translator 
for MLFMA 

Number of 
Translator 

for RPFMA 
1 1.0�  4418 4418 
2 0.6�  15488 11190 
3 0.3�  57800 17340 
4 0.2�  219122 87691 
5 0.15�  852818 254895 
6 0.1�  3348872 665146 
7 0.08�  13271552 2099288 

 

 
Table 2: Comparisons of the number of unknowns, the iteration number, the translator pattern memory and 
the total time of the conventional MLFMA, RPFMA-MLFMA and the AP-RPFMA-MLFMA for the strip 

Method Unknowns Iteration 
Number 

Translator Pattern 
Memory (MB) 

Total Time (s) Saving in 
Memory (%) 

Conventional 
MLFMA 415,692 1788 415.91 13919 * 

RPFMA-MLFMA 415,692 1790 276.34 9561 33.56 
AP-RPFMA-

MLFMA 12,750 278 34.18 785 91.78 

 
Table 4: Comparisons of the number of unknowns, the iteration number, the translator pattern memory and 
the total time of the conventional MLFMA, RPFMA-MLFMA and the AP-RPFMA-MLFMA for the PEC 
sphere 

Method Unknowns Iteration 
Number 

Translator Pattern 
Memory (MB) 

Total Time (s) Saving in 
Memory (%) 

Conventional 
MLFMA 12,275,926 168 6519.06 19370 * 

RPFMA-MLFMA 12,275,926 169 1741.97 12291 73.27 
AP-RPFMA-

MLFMA 478,776 30 223.29 3984 96.57 
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Table 6: Comparisons of the number of unknowns, the iteration number, the translator pattern memory and 
the total time of the conventional MLFMA, RPFMA-MLFMA and the AP-RPFMA-MLFMA for the 
satellite 

Method Unknowns Iteration 
Number

Translator Pattern 
Memory (MB)

Total Time (s) Saving in 
Memory (%)

Conventional 
MLFMA 18,502,579 5000 94080.48 57156 *

RPFMA-MLFMA 18,502,579 5000 8941.63 34209 90.49
AP-RPFMA-

MLFMA 596,696 1534 1533.31 23652 98.37

IV. CONCLUSION 
This paper presents the parallel ray propagation 

fast multipole algorithm with curve asymptotic 
phase basis function for large scale scattering 
problems. Numerical results show the efficiency of 
the presented technique for analyzing large-scale 
EM scattering problems. AP-CRWG is more 
efficient in reducing the number of unknowns, 
memory requirement and calculation time than the 
conventional RWG. Based on the conventional 
MLFMA, we introduce RPFMA to accelerate far 
interactions. Compared with both the conventional 
MLFMA and the RPFMA-MLFMA, both the 
memory requirement and the CPU time can be 
reduced by using the proposed algorithms while 
assuring the precision. 
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