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Abstract ─ The development of a robust and accurate 

fault diagnosis approach under various system and fault 

conditions is a research area of great interest. The 

objective of this paper is to develop a new non-destructive 

approach for wiring diagnosis based on Time Domain 

Reflectometry (TDR) in one hand and on Backtracking 

Search Optimization Algorithm (BSA) in the other hand. 

Real-world case studies are investigated to demonstrate 

the effectiveness and robustness of the proposed 

approach. Simulation results evaluated from experimental 

data demonstrate that the proposed approach can be used 

for effective diagnosis of complex wiring networks. 

 

Index Terms ─ Backtracking search optimization 

algorithm, time domain reflectometry, wiring diagnosis. 
 

I. INTRODUCTION 
Electrical wiring diagnosis is a challenge for 

maintenance engineers. Aging of wires can result in: loss 

of critical functions of the equipment energized by the 

system, loss of critical information relevant to the 

decision making process and operator actions and may 

cause a break in power supply [1]. 

In order to detect electrical failures and reduce 

maintenance cost in electrical wiring networks, diagnosis 

approaches that can detect, localize and characterize 

defects are required. Ideally, the approach should be non-

destructive and accurate [2], [3]. 

Time Domain Reflectometry (TDR) is a 

measurement technique used to determine the 

characteristics of electrical lines by observing reflected 

waveforms [4]. The key benefit of TDR over other 

testing technique is that is non-destructive [5]. It has 

been proven that TDR is able to detect hard faults in 

coaxial cables. However, a TDR response is not self-

explanatory and consequently it cannot be used alone for 

complex wiring networks. Over the last decade, many 

inverse techniques were used along with TDR in order to 

detect faults in wiring networks [6], [7], [8], [9]. 

The Backtracking Search Optimization Algorithm 

(BSA) is a new Evolutionary Algorithm (EA) developed 

to solve real-valued numerical optimization problems. It 

is based on three basic and well-known operators that are 

selection, mutation and crossover [10].  

The aim of this paper is to develop an efficient 

approach for wire fault diagnosis based on TDR and 

BSA. This approach is used to detect, localize and 

characterize hard faults (open or short circuit) that can 

affect a wiring network. 

The rest of this paper is organized as follows. In 

Section II the developed approach is presented. In 

Section III, the developed approach is applied to three 

case studies. Finally, conclusions are drawn in Section 

IV. 
 

II. APPROACH 
The proposed TDR-BSA based approach consists of 

using a forward model in order to generate the TDR 

response, and the BSA in order to solve the inverse 

problem as shown in Fig. 1. Therefore, BSA is used to 
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minimize the difference between the measured TDR 

response and the generatedone. Mathematically, we can 

formulate the inverse problem as an optimization 

problem with the following objective function:  

F = (
1

𝑁
∑(M_TDR_res(𝐱) − G_TDR_res(𝐱))

2
𝑁

𝑛=1

)

1

2

, (1) 

where F is the objective function to be minimized, N the 

number of points, M_TDR_res and G_TDR_res are the 

measured and generated TDR responses, respectively 

and x is the vector of design variables that are the lengths 

(Li) and the termination loads (Ri) of different branches. 

In other words, knowing the topology of the network 

(healthy one), the target is to detect, to localize and to 

characterize faults in a given wiring network through 

finding the length and the termination load of each 

branch. If a calculated length Li is different (shorter) than 

the length of the healthy branch, then a fault has occurred 

in that branch where Li represents the location of the fault 

and Ri indicates whether the fault is an open circuit or a 

short circuit. If Ri = 1 the fault is an open circuit 

otherwise if Ri = 0, the fault is a short circuit. 

In the following sections, both the forward model 

and the BSA are described. It is worth mentioning that 

the forward model has been presented and discussed in 

detail in [9] and in the following only briefly recalled for 

sake of completeness and clarity. 

 

 
 

Fig. 1. The proposed TDR-BSA approach for wiring 

diagnosis. 

 

A. The forward model 

The TDR response is computed by solving the 

Kirchhoff law applied on the electrical model of the 

multiconductor transmission line [11], using the Finite  

Difference Time Domain (FDTD) method [14]: 

∂V(𝑧, 𝑡)

∂𝑧
= −RI(𝑧, 𝑡) − L

∂I(𝑧, 𝑡)

∂𝑡
, (2) 

∂I(𝑧, 𝑡)

∂𝑧
= −GV(𝑧, 𝑡) − C

∂V(𝑧, 𝑡)

∂𝑡
. (3) 

In (2) and (3) V and I are the vectors of line voltages 

and line currents, respectively. The position along the 

line is denoted as z and time is denoted as t. The R 

(resistance), L (inductance), C (capacitance) and G 

(conductance) are the matrices of the per-unit-length 

parameters. The values of these parameters are computed 

analytically as in [9]. 

 

B. Experimental setup 

The principle of TDR is to inject a signal into the 

inner conductor of the coaxial cable, which propagates 

along the cable; when the signal meets a discontinuity of 

impedance, a part of its energy is reflected back to the 

injection point where it is observed. The analysis of the 

response (the reflected signal) is used to detect, localize 

and characterize defects based on the amplitude and 

timing (or location) of the reflected signal. 

The echo responses of the different network 

configurations are measured by means of a Vector 

Network Analyzer (VNA) connected to the testing 

network, as shown in Fig. 2. The VNA is an Anritsu 

MS4624B network analyzer, with a frequency range of 

10 MHz to 9 GHz. 

 

 
 

Fig. 2. Experimental setup. 

 
The measured one-port scattering parameter S11 

represents the frequency response of the network, thus it 

can be simply multiplied by the spectrum of the same 

input pulse used in the FDTD simulation. The Inverse 

Fast Fourier Transform is applied to convert the 

frequency domain response to the time domain response. 

In order to measure, using VNA, the same network, 

the frequency band is 10 MHz - 1 GHz, and for the 

complex configuration we use a frequency band of  

1 GHz - 2 GHz; then the two sets of data are combined 

together to achieve a 2 GHz bandwidth data with a 

doubled frequency resolution (f = 618 kHz based on  
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1601 samples per measurement). The reconstructed S11 

is multiplied by the spectrum of the input pulse. The 

input pulse is a raised cosine pulse, with a rising time of 

4 ns and amplitude of 1 Volt. 

 

C. The backtracking search optimization algorithm 

The BSA is used for solving the inverse problem. As 

previously mentioned, the BSA is a new EA and global 

optimization method developed in [10] for solving real-

valued numerical optimization problems. It uses the 

three basic and well-known EA operators that are 

selection, mutation and crossover. 

The main steps of the BSA are given in Algorithm 

1. BSA is a population based optimization method; thus, 

it starts by randomly generating a population in the 

search space. In the Selection-I stage, the historical 

population that is used for calculating the search 

direction is determined. In the Mutation stage, the initial 

form of the trial population is generated while in the 

Crossover stage the final form of this trial population is 

generated. In this stage the best trial individuals for the 

optimization problem are used to evolve the target 

population individuals [10]. At the end of the Crossover 

stage, the individuals that go beyond the search space 

limits are redefined inside these limits. In the Selection-

II stage, the trial population is used to update the 

population using a greedy selection. More details about 

the BSA can be found in [10]. 

 

Algorithm 1: General structure of BSA [10] 

1. Initialization  

repeat  

 2. Selection-I 

 Generation of Trial-Population 

  3.Mutation 

  4.Crossover 

 End 

 5. Selection-II 

until stopping conditions are met 

 

III. APPLICATIONS AND RESULTS 

A. Model validation 

Before using the developed TDR-BSA approach for 

the diagnosis of wiring networks, the validation of our 

forward model is carried out using the healthy YY-

shaped network shown in Fig. 3. The measured and 

generated (using the forward model) TDR responses of 

this network are given in Fig. 4. The comparison 

between these two TDR responses shows the accuracy of 

the developed forward model. This is also confirmed by 

the small values of GRADE and SPREAD (GRADE = 2, 

SPREAD = 1) that are the figures of merits of the Feature 

Selective Validation (FSV) technique [12], [13] that is 

suggested by the IEEE Standard [14] as the preferred 

algorithm for quantitative data comparison. 

 
(a) 

 
(b) 

 

Fig. 3. The YY-shaped network: (a) the experimental 

network and (b) the schematic representation. 

 

 
 

Fig. 4. Comparison between the healthy measured and 

generated TDR responses of the YY-shaped network. 

 

B. Case studies 

In order to evaluate the performance of the 

developed TDR-BSA approach we consider in this paper 

three case studies. 

 

1. CASE 1 

The first case study investigated in this paper is a 

YY-shaped network affected by an open circuit in L2 at 

2 m from the first junction as shown in Fig. 5. Thus, the 

design variables for this case are L2, L4, L5, R2, R4 and 

R5. It is worth mentioning that, the main branches L1 and 

L3 are assumed to be healthy, i.e., they are not considered 

as design variables. Because if the first main branch L1 

is affected by a fault it means that the investigated YY-

L1=1m 

L5=1.5m 

L3=1m 

L2=4m 

L4=0.5m 

OC 

OC 

OC 
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shaped network is reduced to a simple line. Now if the 

second main branch L3 is affected by a fault the network 

is reduced to a simpler network which is the Y-shaped 

network. 

A simple comparison between the healthy and the 

faulty measured TDR responses of Fig. 6 allows us to 

make a first comment about the status of the wiring 

network under study: the network is not healthy. This 

phase is called the detection and it constitutes the first 

phase in our diagnosis as previously mentioned. 
 

 
 

Fig. 5. The wiring network for CASE 1. 

 

 
 

Fig. 6. Comparison between the healthy and the faulty 

measured TDR responses for CASE 1. 

 

The developed TDR-BSA approach has been run for 

this case and the obtained results are given in Fig. 7 and 

in Table 1.  

It can be seen from Fig. 7 that there is a good 

matching (FSV GRADE = 2 and SPREAD = 1) between 

the TDR response generated using the developed 

approach and the one obtained from measurements.  

Table 1 compares the lengths and termination loads 

that correspond to the healthy network with those 

generated using the developed TDR-BSA approach. 

From this table, we can make the following conclusions: 

the analyzed network has a fault in L2 at 2.04 m and the 

type of fault is an open circuit because R2 = 1. It is worth 

mentioning here that, there is an error of estimating the 

fault distance of 0.04 m. These two conclusions represent 

the second and third phases of our diagnosis that are 

localization and characterisation, respectively. 
 

 
 

Fig. 7. Comparison between the measured and the 

generated TDR responses for CASE 1 (FSV GRADE = 2 

and SPREAD = 1). 

 

Table 1: Optimal results found for CASE 1 

Design Variables 

Name Generated Values Healthy Network Values 

L2 2.04 4.00 

L4 0.50 0.50 

L5 1.50 1.50 

R2 1 1 

R4 1 1 

R5 1 1 

 

2. CASE 2 

The second case investigated is a faulty YY-shaped 

network with a short circuit in L4 at 0.4 m from the 

second junction as shown in Fig. 8. Thus, the design 

variables for this case are L2, L4, L5, R2, R4 and R5. For 

the same reasons explained before, L1 and L3 are not 

considered as design variables here.  

For the detection phase, a simple analysis of the 

TDR responses of Fig. 9 allows to detect the presence of 

faults. 

The developed TDR-BSA approach has been run for 

this case and the obtained results are given in Fig. 10 and 

in Table 2. 

From Fig. 10 we can say that there is a good 

agreement (FSV GRADE = 2 and SPREAD = 1) between 

the TDR generated using the proposed approach and the 

one measured using experimental setup. From Table 2 

we can make the following conclusions about the 

localization and characterization of faults: the analyzed 

network has a fault in L4 at 0.42 m and the type of fault 

is a short circuit because R4=0.It is worth to mention here 

that, there is an error of 0.02 m and 0.021 m in estimating 

L2 and L4, respectively.  
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L5=1.5m 

L3=1m 

L2=4m 

L4=0.5m 

OC 

OC 

OC 
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Fig. 8. The wiring network for CASE 2. 
 

 
 

Fig. 9. Comparison between the healthy and the faulty 

measured TDR responses for CASE 2. 
 

 
 

Fig. 10. Comparison between the measured and the 

generated TDR responses for CASE 2 (FSV GRADE = 2 

and SPREAD = 1). 
 

Table 2: Optimal results found for CASE 2 

Design Variables 

Name Generated Values Healthy Network Values 

L2 3.98 4.00 

L4 0.42 0.40 

L5 1.50 1.50 

R2 1 1 

R4 0 1 

R5 1 1 

3. CASE 3 

To prove the robustness of the developed approach 

against more complex networks, the third case study 

investigated in this paper is a YYY-shaped network 

affected by two hard faults, a short circuit in L2 at 2 m 

from the first junction and an open circuit in L4 at 0.4 m 

from the second junction as shown in Fig. 11. 
 

 
 

Fig. 11. The wiring network for CASE 3. 

 
Therefore, the design variables for this case are L2, 

L4, L6, L7, R2, R4, R6 and R7.The detection phase is 

similar to the ones explained in CASE 1, and CASE 2. 

In order to avoid undesired repetition, we have not put it 

here.The developed TDR-BSA approach has been run 

for this complex case and the obtained results are given 

in Fig. 12 and in Table 3. Figure 12 shows the good 

matching (FSV GRADE = 2 and SPREAD = 2) between 

the TDR generated and the one measured experimentally. 

From Table 3 we can make the following conclusions 

about the localization and characterization of faults: 

there is a short circuit (R2=0) in L2 at 2.02 m from the 

first junction and an open circuit (R4=1) in L4 at 0.42 m 

from the second junction. The error in estimating fault 

locations is0.02m for both L2 and L4. 

 

 
 
Fig. 12. Comparison between the measured and the 

generated TDR responses for CASE 3 (FSV GRADE = 2 

and SPREAD = 2). 
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Table 3: Optimal results found for CASE 3 

Design Variables 

Name Generated Values Healthy Network Values 

L2 2.02 4.00 

L4 0.42 0.50 

L6 0.50 0.50 

L7 2.50 2.50 

R2 0 1 

R4 1 1 

R6 1 1 

R7 1 1 

 
IV. CONCLUSION 

In this paper, a new approach using TDR and BSA is 

developed and used for the diagnosis of wiring networks. 

The TDR is used to measure the TDR response of a given 

network. The BSA is used to compare this response with 

a generated one using a developed forward model.  

In order to assess the effectiveness and robustness 

of the proposed approach, three different case studies 

using YY-shaped and YYY-shaped networks are tested. 

The obtained results show that the developed approach 

has excellent performance and it is very accurate for the 

diagnosis of wiring networks. Moreover, by using the 

same values of convergence threshold there is an 

improvement (a decreasing) of around 70% of CPU time 

between the BSA that is proposed in this paper and the 

TLBO that was used in [9]. 
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