
FDTD Acceleration using MATLAB Parallel Computing Toolbox and GPU

Joseph E. Diener and Atef Z. Elsherbeni

Electrical Engineering and Computer Science Department

Colorado School of Mines, Golden, CO 80401, USA

jdiener@mines.edu, aelsherb@mines.edu

Abstract ─ We present a MATLAB based finite difference

time domain (FDTD) method accelerated using the GPU

functions in MATLAB’s parallel computing toolbox

(PCT). Procedures to achieve significant speedups over

a CPU implementation of the same code are outlined.

The use of specialized code with NVIDIA's compute

unified device architecture (CUDA) programming results

in impressive computational speedups. However, this

requires specialized programming knowledge to

efficiently implement. The MATLAB PCT can be

applied directly to pre-existing MATLAB FDTD code

and obtain reasonable speedups over equivalent CPU

code. We demonstrate several modifications to increase

the efficiency on several different NVIDIA graphics

cards. Benchmarks are presented on problems of practical

size (millions of cells) with a CPML terminated domain.

Index Terms ─ FDTD, GPU, MATLAB.

I. INTRODUCTION
For problems of practical size using FDTD method,

domains on the order of tens of millions of cells

with large number of time stepping need to be solved.

This leads to correspondingly long computation times.

Significant speedups in the computation time of FDTD

solvers are possible by shifting the computation from the

CPU to a GPU. While the most efficient solvers employ

code specifically written to run on a GPU, often using

CUDA kernels [1, 3-4, 6], this requires specialized

programming and is non-trivial to implement. MATLAB

is an easy to use high-level programming language

available at many universities, currently available for

many students and practicing engineers. Efficient

implementations of FDTD code on MATLAB can also

be an effective educational tool for electromagnetic

simulations. This paper shows both the efficiency

increases that the PCT allows over regular MATLAB

based code, as well as some techniques that can be

used to further optimize performance. Performance is

benchmarked using the solver speed in millions of cells

per second (MCPS), as suggested in [3]. This allows for

easy comparison across different platforms and problem

sizes. It is worth noting that the codes used for this paper

are highly general, and no assumptions are made about

uniform discretization to simplify the formulation. Thus,

each updating coefficient array is unique and valid

for the general FDTD formulation. Speeds of up to

~300MCPS on problems with only near-field excitations,

and ~267MCPS with a total-field scattered field (TF/SF)

plane-wave source are obtained. These results are slower

than those presented using CUDA written codes [1],

[8], which presented peak speeds of ~1600MCPS using

an NVIDIA Titan-Z card. Our results are significant

improvements on regular vectorized-CPU MATLAB

code (~11->12 MCPS), and does not require any CUDA

programming.

II. IMPLEMENTATION IN MATLAB
The second-order FDTD MATLAB implementation

as given in [2] is used as a starting point for code

modifications. MATLAB is most efficient with

vectorized code, so the updating equations are written in

vectorized form as much as possible. As a result, the base

FDTD code represents an efficient and straightforward

implementation on the MATLAB engine. Since GPU

benchmarks are commonly done using single precision

because of the superior computing ability on GPUs for

single precision problems, single precision is used for the

CPU as well. By default, MATLAB operates in double

precision, but can be cast into single precision through

the single() function. Two benchmark cases are presented,

where the solver runs for sufficient time-steps to ensure

an accurate representation of the throughput. The first

benchmarking problem is the excitation of a dielectric

sphere of relative permittivity of 4 and radius of 1mm

using the field radiated by a dipole antenna, and the

second problem is the excitation of the same sphere

using a plane wave. The reason for the two different

configurations is to show the performance using a

total field FDTD formulation versus a scattered field

formulation performance. The CPU MATLAB code in

this paper is written in an efficient vectorized style,

which will perform matrix operations using multiple

processor cores for simple functions (such as *, +, -)

which constitute a large portion of the FDTD work load.

To examine the efficiency of the code modifications over

ACES JOURNAL, Vol. 32, No.4, April 2017

Submitted On: July 15, 2016
Accepted On: March 18, 2017 1054-4887 © ACES

283

larger domain sizes, the problem space is discretized

using increasingly smaller cubic cells. The computational

domain boundary is terminated using an air buffer of 8

cells on each side from the sphere, and 6 CPML cells in

each direction. The speed of the code in MCPS is

presented over domains measured in millions of cells

(MC). The problem execution time is measured using the

tic/toc functions in MATLAB over the time marching

loop, thus the one-time array initializations are not

included. Additionally, all benchmarking is performed in

MATLAB 2016b. Initial benchmarking is done using an

NVIDIA Tesla K40C card, with the CPU code running

on an Intel i7-4770 @3.4GHz (8 cores).

III. GPU IMPLEMENTATION
By moving the updating equations onto the

GPU, substantially improved performance is obtained

compared with the CPU implementation. The most

direct implementation on the GPU is simply to call each

array as its GPU equivalent, such as Ex = gpuArray(Ex).

This requires no further modifications to the code than

the above for each field variable and updating coefficients.

Figure 1 shows the throughput obtained when directly

porting each array into the GPU. For the dipole source,

maximum speedups of ~10x are seen, with performance

peaking around 115MCPS. The throughput of the GPU

code increases with increasingly large domains, so that

it never achieves a steady level of constant performance.

In contrast, the CPU code has an essentially flat

performance of 11 to 12MCPS for domains larger than

~2MC, and only slightly slower speeds for smaller

problem sizes.

Fig. 1. NVIDIA Tesla K40C direct FDTD port compared

against the CPU implementation of the code.

A. Optimize CPML with arrayfun

The updating of the fields in the CPML region on

either the GPU or CPU is a significant portion of total

computation time in comparison with the E and H field

updating in the computational domain. In part this is due

to the CPML being unable to be easily vectorized on the

CPU. A variety of problems can be vectorized and show

dramatic improvement in performance when using

arrayfun() on the GPU [4-5, 7]. Here, we demonstrate the

application of arrayfun() to the FDTD CPML absorbing

boundary condition. The arrays must be of appropriate

dimension to perform the scalar expansion employed in

arrayfun(), which can necessitate reshaping the array in

a preprocessing step. A snippet of the code listing for the

arrayfun application to the updating of the Ez-field in the

CPML region is shown in listing 1. Similar modifications

are required for the other components in the CPML code

to allow for arrayfun to be used for each field component.

This modification is very efficient and results in much

higher computational speeds as shown in Fig. 2. This

yields peak speeds of ~157MCPS for the dipole source,

a speedup of ~13x compared with respect to the CPU.

Peak performance is for a problem size of ~24MC, with

nearly steady performance for larger problem sizes.

cpml_b_ez_zn=reshape(cpml_b_ez_zn,1,1, ncpml_zn);

Psi_exz_zn=arrayfun(@times,cpml_b_ez_zn,

Psi_exz_zn)+arrayfun(@times,cpml_a_ez_zn,

Hy(:,:,1+cpmlznvec) - Hy(:,:,cpmlznvec));

Psi_eyz_zn=arrayfun(@times,cpml_b_ez_zn,

Psi_eyz_zn)+arrayfun(@times,cpml_a_ez_zn,

Hx(:,:,1+cpmlznvec) - Hx(:,:,cpmlznvec));

Ex(:,:,cpmlznvec+1)=Ex(:,:,cpmlznvec+1)+

CPsi_exz_zn.*Psi_exz_zn;

Ey(:,:,cpmlznvec+1)=Ey(:,:,cpmlznvec+1)+

CPsi_eyz_zn.*Psi_eyz_zn;

Listing 1. Modification of Ez CPML component from [2]

using arrayfun on the GPU.

Fig. 2. Tesla K40C performance in comparison with the

dipole benchmark on CPU using CPML modification.

ACES JOURNAL, Vol. 32, No.4, April 2017284

B. Optimized E-field updating process

MATLAB tends to be fastest when using vectorized

code, and is capable of performing element-wise

computation very efficiently. Performance decreases

when blocks of a matrix must be multiplied instead of

the entire matrix. The staggered grid in FDTD creates

differently sized field components, and this leads to

explicit indexing in the updating equations for either the

electric or magnetic field components, depending on

which field terminates the computational domain. In our

analysis, the electric field is used to terminate the

computational domain. The electric field components are

updated with the staggered magnetic field component

differences, as shown in listing 2.

Ex(1:nx,2:ny,2:nz)=Cexe(1:nx,2:ny,2:nz).*

Ex(1:nx,2:ny,2:nz)+Cexhz(1:nx,2:ny,2:nz).*...

(Hz(1:nx,2:ny,2:nz)-Hz(1:nx,1:ny-1,2:nz)) ...

+ Cexhy(1:nx,2:ny,2:nz).*...

 (Hy(1:nx,2:ny,2:nz)-Hy(1:nx,2:ny,1:nz-1));

Listing 2. Ex updating equation for FDTD in MATLAB

as presented in [2].

This means that portions of the electric field

components and updating coefficients arrays are

multiplied with portions of the magnetic field

components. Quicker computation can be achieved by

multiplying and writing to the entire electric field

component arrays, without explicit indexing. By

concatenating an array of zeros along the appropriate

dimensions, the Hz array for updating Ex can be used

without indexing, and becomes a simple vector

operation. Listing 3 shows the equivalence of the two

operations.

 𝐴 = [𝐻𝑧 0],

 𝐵 = [0 𝐻𝑧].
Listing 3. Example of zero-padding arrays to accomplish

indexless updating in electric field components.

Consider two new matrices, 𝐴 and 𝐵. 𝐴 is the 'right'

zero padded matrix, and 𝐵 is the 'left' zero padded

matrix, where the zero padding is of appropriate size

such that the resulting matrices have equal size to

Ex. This removes any need to index 𝐴 or 𝐵, and

reproduces the staggered difference in 𝐻𝑧 with the

vector operation 𝐴 − 𝐵. The first and last row in 𝑦 will

write incorrect values to Ex, but this can be handled by

zeroing the updating coefficient array, 𝐶𝑒𝑥ℎ𝑧(: ,1, :) =
0, 𝐶𝑒𝑥ℎ𝑧 (: , 𝑗 + 1, :) = 0. Defining similar matrices

𝐶 = [𝐻𝑦 0], 𝐷 = [0 𝐻𝑦], and zeroing the coefficient

array 𝐶𝑒𝑥ℎ𝑦(: , : ,1) = 0, and 𝐶𝑒𝑥ℎ𝑦(: , : , 𝑒𝑛𝑑) = 0, we

can write the updating equation as: 𝐸𝑥 = 𝐶𝑒𝑥𝑒 ∗ 𝐸𝑥 +

𝐶𝑒𝑥ℎ𝑧 ∗ (𝐴 − 𝐵) + 𝐶𝑒𝑥ℎ𝑦 ∗ (𝐶 − 𝐷). This results in

a speedup in MATLAB by removing the explicit

subscripting that is ordinarily required. The example

code listing below shows how the zero padding is

performed within MATLAB:

 𝐴 = cat(2, Hz, zeros(nx, 1, nz + 1)),

 𝐵 = cat(2, zeros(nx, 1, nz + 1), Hz),

the updating modifications to the other electric field

components are similar. The integer in the 'cat' command

represents the dimension along which the zero array is

appended. '1' corresponds to the x-axis, '2' corresponds

to the y-axis, and '3' to the z-axis. The effect of these

changes are seen in Fig. 3, where a large speedup

is obtained over solely modifying the CPML. This

concatenation approach yields peak speeds of

~220MCPS – an increase of ~70MCPS over just the

CPML modification. This performance can be increased

further by putting the various FDTD updating arrays into

a single function call, with each component of the

electric or magnetic field using an arrayfun() call on a

sub-function that will update the field component. This

is detailed in the listings given in the appendix. The

CPML boundaries are similarly put into a single function

that internally updates each boundary using the

arrayfun() approach. The results of this optimal updating

are shown in Fig. 4. This shows a maximum increase

of ~90MCPS, yielding maximum performance of

310MCPS. With the optimal updating established, the

analysis for the plane-wave benchmark is shown in

Fig. 5. The peak performance in the plane wave is

~270MCPS, a full 40MCPS less than the dipole case.

The overall shape of the two curves are very similar, with

a performance loss incurred by the extra updating

required in the TF/SF formulation.

Fig. 3. NVIDIA Tesla K40C performance with

concatenated E-field modification.

DIENER, ELSHERBENI: FDTD ACCELERATION USING MATLAB PARALLEL COMPUTING TOOLBOX AND GPU 285

Fig. 4. NVIDIA Tesla K40C performance with optimal

updating.

Fig. 5. Comparison of planewave benchmark and dipole

benchmark on K40C.

IV. BENCHMARKING SEVERAL GPUs
With the completion of the optimization of the code,

the same benchmarking analysis is performed on

different NVIDIA graphics cards with each method, for

both the plane wave and dipole cases. The analysis is

restricted to the dipole case, as the plane wave results

show essentially the same performance curves, with

reduced maximum speeds. An NVIDIA GTX-780 (3GB)

and NVIDIA Titan-Z (12GB) are chosen to compare

the results of the developed code. While the Titan-Z

nominally has 12GB of memory, it is spread across two

6GB processors on the same physical card, which are

addressed separately within MATLAB. Thus, only 6GB

of memory is addressable at a time in the current

implementation. In Fig. 6, the comparison between the

Tesla K40C, GTX-780, and Titan-Z is shown for the

dipole case. Similar max speeds are obtained for each of

the cards. The K40C has a maximum speed of 310MCPS,

the GTX a maximum speed of 303MCPS, and the Titan-

Z a maximum speed of 367MCPS. However, both the

GTX and Titan-Z demonstrate a marked reduction in

speed after hitting their peak performance – thus, an

‘optimal’ problem size is smaller than one using the

K40C card. Since different versions of MATLAB can

sometimes improve or even reduce the performance of

different code [9], this behavior may change with

different versions of MATLAB and the PCT.

Fig 6. Comparison of optimal updating for three

NVIDIA cards for dipole problem.

V. CONCLUSION
In this paper, the implementation of a FDTD solver

in MATLAB using the parallel computing toolbox

and its GPU computing capabilities is examined. The

appendix lists in some detail functions from the best code

developed in this paper. We avoid the use of specialized

CUDA based programming in order to present an easy to

implement code that can achieve substantial speedups in

MATLAB. Code is benchmarked across several GPUs

and problem types. Sizeable computational speeds on

problems of practical sizes with CPML absorbing

boundaries are achieved. A method of removing explicit

indexing for one set of field-updating in the FDTD

loop is presented that shows strong improvements on

throughput that might be similarly useful in other

vectorized programming languages.

APPENDIX
A more complete listing of the optimized updating

code for a generic FDTD problem is given in this listing.

First, the form of the electric field updating step within

the main FDTD loop is shown in listing 4. The function

outputs the updated electric field components, and takes

as inputs the field components, updating matrices, and

computational domain size.

[Ex, Ey, Ez] = updateEfields(Ex, Cexe, Cexhz, Cexhy,

 Ey, Ceye, Ceyhx, Ceyhz, Ez, Ceze, Cezhx, Cezhy,

ACES JOURNAL, Vol. 32, No.4, April 2017286

 Hx, Hy, Hz, nx, ny, nz);

Listing 4. Form of the electric field updating step in the

time marching loop.

The function “updateEfields” contains the

concatenated field updating as a separate step for

each field component. Listing 5 shows this for the y-

component of the field, with the equations and matrices

A1 and B1 having a similar form for the other

components.

A1 = zeros(nx+1, ny, 1, 'gpuArray');

B1 = zeros(1, ny, nz+1, 'gpuArray');

Ey = arrayfun(@updateEcomponent, Ey, Ceye, Ceyhx,

 cat(3, Hx, A1), cat(3, A1, Hx), ...

 Ceyhz, cat(1, Hz, B1), cat(1, B1, Hz));

Listing 5. Ey updating step within “updateEfields”

function.

Finally, this calls the subfunction

“updateEcomponent”, which takes as input the

appropriate field component, coefficient matrices, and

auxiliary matrices. This is shown in listing 6. The

function updates the input field with purely element wise

operations.

function [A] = updateEcomponent(A, B, C, D, E, F, G,

H)

 A = A.*B + C.*(D - E) + F.*(G - H);

Listing 6. Function updateEcomponent.

A nearly identical set of functions are defined for the

magnetic field components updating step. Similarly, the

CPML updating step for the electric and magnetic fields

are called as one function, which contains bsxfun()

function calls for efficient updating. This is shown in

listings 7 and 8.

[Hx, Hy, Hz, Psi_hyx_xn, Psi_hzx_xn, Psi_hzy_yn,

Psi_hxy_yn, Psi_hxz_zn, Psi_hyz_zn, Psi_hyx_xp,

Psi_hzx_xp, Psi_hzy_yp, Psi_hxy_yp,Psi_hxz_zp,

Psi_hyz_zp] = update_magnetic_field_CPML_ABC

(Hx, Hy, Hz, Ex, Ey, Ez, cpml_b_mx_xn,

cpml_a_mx_xn, Psi_hyx_xn, Psi_hzx_xn,

CPsi_hyx_xn, CPsi_hzx_xn, cpml_b_my_yn,

cpml_a_my_yn, Psi_hzy_yn, Psi_hxy_yn,

CPsi_hzy_yn, CPsi_hxy_yn, cpml_b_mz_zn,

cpml_a_mz_zn, Psi_hxz_zn, Psi_hyz_zn, CPsi_hxz_zn,

CPsi_hyz_zn, n_cpml_xn, n_cpml_yn, n_cpml_zn, ...

cpml_b_mx_xp, cpml_a_mx_xp, Psi_hyx_xp,

Psi_hzx_xp, CPsi_hyx_xp, CPsi_hzx_xp, ...

cpml_b_my_yp, cpml_a_my_yp, Psi_hzy_yp,

Psi_hxy_yp, CPsi_hzy_yp, CPsi_hxy_yp, ...

cpml_b_mz_zp, cpml_a_mz_zp, Psi_hxz_zp,

Psi_hyz_zp, CPsi_hxz_zp, CPsi_hyz_zp, ...

n_stmx, n_stmy, n_stmz, nx, ny, nz);

Listing 7. The function call for updating all the CPML

boundaries within the domain for the magnetic field.

Psi_hyx_xn = bsxfun(@times, cpml_b_mx_xn,

Psi_hyx_xn) + bsxfun(@times, cpml_a_mx_xn,

diff(Ez(1:n_cpml_xn+1, :,:) , 1, 1));

Psi_hzx_xn =bsxfun(@times, cpml_b_mx_xn,

Psi_hzx_xn) + bsxfun(@times, cpml_a_mx_xn,

diff(Ey(1:n_cpml_xn+1, :,:) , 1, 1));

Hy(1:n_cpml_xn, :,:) = Hy(1:n_cpml_xn, :,:) +

CPsi_hyx_xn.* Psi_hyx_xn;

Hz(1:n_cpml_xn, :,:) = Hz(1:n_cpml_xn, :,:) +

CPsi_hzx_xn.* Psi_hzx_xn;

Listing 8. The ‘xn’ boundary of CPML updating within

the function call.

The bsxfun() call is used for updating the CPML

matrices efficiently. A boolean check can be implemented

for domains with mixed boundaries with little impact on

the performance.

REFERENCES
[1] V. Demir and A. Z. Elsherbeni, “Compute unified

device architecture (CUDA) based finite-difference

time-domain (FDTD) implementation,” ACES

Journal, vol. 25, no. 4, pp. 303-314, April 2010.

[2] A. Z. Elsherbeni and V. Demir, The Finite-

Difference Time-Domain Method for Electro-

magnetics with MATLAB Simulations. second

edition, ACES Series on Computational Electro-

magnetics and Engineering, SciTech Publishing,

an Imprint of IET, Edison, NJ, 2016.

[3] V. Demir, “A stacking scheme to improve the

efficiency of finite-difference time-domain

solutions on graphics processing units,” ACES

Journal, vol. 25, no. 4, pp. 323-330, April 2010.

[4] Illustrating three approaches to GPU Computing:

the Mandelbrot Set, http://www.mathworks.com/help/

distcomp/examples/illustrating-three-approaches-to-

gpu-computing-the-mandelbrot-set.html, May, 2016.

[5] Improve Performance of Element-wise MATLAB

Functions on the GPU using ARRAYFUN,

http://www.mathworks.com/help/distcomp/examp

les/improve-performance-of-element-wise-matlab-

functions-on-the-gpu-using-arrayfun.html, May, 2016.

[6] M. J. Inman, A. Z. Elsherbeni, and C. J. Reddy,

“CUDA based LU decomposition solvers for CEM

DIENER, ELSHERBENI: FDTD ACCELERATION USING MATLAB PARALLEL COMPUTING TOOLBOX AND GPU 287

applications,” ACES Journal, vol. 25, no. 4, pp.

339-347, April 2010.

[7] Joss Knight, High-Performance MATLAB

with GPU Acceleration, https://devblogs.nvidia.

com/parallelforall/high-performance-matlab-gpu-

acceleration, January 2017.

[8] V. Demir, A. Z. Elsherbeni, CEMS Software

Package, based on [2], 2014.

[9] MATLAB Answers Forum Question, http://

www.mathworks.com/matlabcentral/answers/239

817-matlab-s-r2015b-new-jit-experiences-a-severe-

degradation-in-speed-in-the-following-example-

but-the, February 2017.

Joseph E. Diener obtained his

bachelor’s degree in Physics from

the University of Puget Sound in

2013. Currently he is a Master’s

Student at the Colorado School

of Mines studying Electrical

Engineering. His research interests

include finite difference time

domain methods, antennas, microwave measurements,

and phased arrays.

Atef Z. Elsherbeni received his

Ph.D. degree in Electrical Engin-

eering from Manitoba University,

Winnipeg, Manitoba, Canada, in

1987. Elsherbeni was with the

University of Mississippi from

1987 to 2013. He was a Finland

Distinguished Professor from 2009

to 2011. In August 2013 he joined the Electrical

Engineering and Computer Science Department at

Colorado School of Mines where he is now the

Dobelman Distinguished Chair Professor and the Head

of the Electrical Engineering Department. His research

interest includes the scattering and diffraction of

EM waves, finite-difference time-domain analysis of

antennas and microwave devices, field visualization and

software development for EM education, interactions of

electromagnetic waves with the human body, RFID and

sensor integrated FRID systems, reflector and printed

antennas and antenna arrays, and measurement of

antenna characteristics and material properties. Elsherbeni

is a Fellow Member of IEEE and ACES. He is the Editor-

in-Chief for ACES Journal. He was the General Chair for

the 2014 APS-URSI Symposium and was the President

of ACES Society from 2013 to 2015.

ACES JOURNAL, Vol. 32, No.4, April 2017288

	JOURNAL
	ISSN 1054-4887

	page2.pdf
	FRONTAL_MAR 2017.pdf
	JOURNAL
	ISSN 1054-4887

	Always replace second page with addition of Abouzahra.pdf
	02_ACES_Journal_20160117_SL_AZE headers.pdf
	I. INTRODUCTION
	II. FORMULATION
	III. STABALITY ANALYSIS OF FOURTH ORDER HIE-FDTD METHOD
	IV. NUMERICAL DISPERSION ANALYSIS
	V. NUMERICAL RESULTS
	CPU Time (s)
	Second-order
	14.40
	FDTD
	Fourth-order
	FDTD
	Second-order
	HIE-FDTD
	One-step-leapfrog
	Fourth-order HIE-FDTD
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	03_ACES_Journal_20160903_SL_AZE header.pdf
	I. INTRODUCTION
	II. LOSSY-ANI ALGORITHM
	III. NUMERICAL RESULT
	IV. CONCLUSION
	REFERENCES

	new page going forward to insert.pdf
	ALL OF THEM WITH HEADERS & NUMBERS and front.pdf
	06_ACES_Journal_20150819_SL_AZE header.pdf
	I. INTRODUCTION
	II. TRIANGULAR CLOAKS DESIGNING PROCEDURE
	III. HOMOGENEOUS CLOCK OF ARBITRARY SHAPE
	IV. CONCLUSION
	REFERENCES

	fix list and insert.pdf
	JOURNAL
	ISSN 1054-4887

	Always replace second page with addition of Abouzahra.pdf
	02_ACES_Journal_20160117_SL_AZE headers.pdf
	I. INTRODUCTION
	II. FORMULATION
	III. STABALITY ANALYSIS OF FOURTH ORDER HIE-FDTD METHOD
	IV. NUMERICAL DISPERSION ANALYSIS
	V. NUMERICAL RESULTS
	CPU Time (s)
	Second-order
	14.40
	FDTD
	Fourth-order
	FDTD
	Second-order
	HIE-FDTD
	One-step-leapfrog
	Fourth-order HIE-FDTD
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	03_ACES_Journal_20160903_SL_AZE header.pdf
	I. INTRODUCTION
	II. LOSSY-ANI ALGORITHM
	III. NUMERICAL RESULT
	IV. CONCLUSION
	REFERENCES

	new page going forward to insert.pdf
	ALL OF THEM WITH HEADERS & NUMBERS and front.pdf
	06_ACES_Journal_20150819_SL_AZE header.pdf
	I. INTRODUCTION
	II. TRIANGULAR CLOAKS DESIGNING PROCEDURE
	III. HOMOGENEOUS CLOCK OF ARBITRARY SHAPE
	IV. CONCLUSION
	REFERENCES

	fix list and insert.pdf
	JOURNAL
	ISSN 1054-4887

	Always replace second page with addition of Abouzahra.pdf
	02_ACES_Journal_20160117_SL_AZE headers.pdf
	I. INTRODUCTION
	II. FORMULATION
	III. STABALITY ANALYSIS OF FOURTH ORDER HIE-FDTD METHOD
	IV. NUMERICAL DISPERSION ANALYSIS
	V. NUMERICAL RESULTS
	CPU Time (s)
	Second-order
	14.40
	FDTD
	Fourth-order
	FDTD
	Second-order
	HIE-FDTD
	One-step-leapfrog
	Fourth-order HIE-FDTD
	VI. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	03_ACES_Journal_20160903_SL_AZE header.pdf
	I. INTRODUCTION
	II. LOSSY-ANI ALGORITHM
	III. NUMERICAL RESULT
	IV. CONCLUSION
	REFERENCES

	new page going forward to insert.pdf
	ALL OF THEM WITH HEADERS & NUMBERS and front.pdf
	06_ACES_Journal_20150819_SL_AZE header.pdf
	I. INTRODUCTION
	II. TRIANGULAR CLOAKS DESIGNING PROCEDURE
	III. HOMOGENEOUS CLOCK OF ARBITRARY SHAPE
	IV. CONCLUSION
	REFERENCES

	fix list and insert.pdf
	JOURNAL
	ISSN 1054-4887

