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Abstract ─ In this paper, a high order accuracy Finite 

Difference Time Domain method was proposed for  

the simulation of electromagnetic waves in the Debye 

dispersive medium. The proposed method was based  

on the use of the third order Backward Differentiation 

scheme for the approximation of the time derivatives  

and the use of the fourth order Central Finite Difference 

scheme for the approximation of space derivatives. The 

stability of the present method was analyzed by using  

the Root-Locus method. The accuracy of the proposed 

method was analyzed in the case of free space and the 

dispersive media, in the case of plane wave and the case 

of a Hertzian dipole source. 

The proposed method offered high performance 

regarding the accuracy and the stability in comparison 

with the other methods. 

 

Index Terms ─ Accuracy, backward differentiation, 

central finite difference, Debye model, dispersive media, 

finite difference time domain, stability. 
 

I. INTRODUCTION 
Since the Finite-Difference-Time-Domain (FDTD) 

has been proposed [1], it has been widely used for the 

simulation of the electromagnetic (EM) waves behavior 

within frequency dependent media such as saline water 

[2], human tissues [3-5], and plasma [6,7]. For modeling 

these frequency dependent media, many dispersive 

models have been proposed, such as the multi-pole Debye, 

Lorentz, and Drude model. The use of the conventional 

FDTD for the simulation of these models leads to a lack 

of accuracy and complexity of the stability analysis, 

especially when multiple poles are used. Therefore, the 

development of more accurate and stable FDTD based 

schemes acquire a great interest in the scientific society. 

Many techniques have been proposed for the 

numerical implementation of the dispersive models into 

the FDTD method. Those methods can be grouped into 

three main categories: Z-transformation methods, recursive 

convolution methods, and the Auxiliary Differential 

Equation (ADE) methods. 

The Z-transform (ZT) methods are based on the  

digital filtering theory [8,9]. The transfer function of the 

dielectric permittivity is converted from the frequency 

domain to the Z-domain, then the actual update equations 

in the discrete time domain are obtained. The recursive 

convolution (RC) methods are based on writing the 

dispersion equation as a convolution product in the time 

domain, then using the discrete recursive integrator for 

the actual update equations. Among these methods, we 

find the trapezoidal recursive convolution technique 

(TRC) and the Piecewise linear recursive convolution 

method (PLRC) [10-12]. The ADE methods are based  

on writing the dispersion relations under the form of 

differential equations. Then using the finite difference 

schemes to obtain the actual update equations [13-15].  

Contrary to the RC and ZT methods which are in 

their improved versions limited to the second order of 

precision, the ADE methods offer more flexibility 

regarding the implementation of dispersive media while 

using a higher order of accuracy. 

Therefore, seeking for improvement of the accuracy 

order and the stability condition, many techniques among 

the ADE category have been proposed. The Alternating 

Direction Implicit (ADI) FDTD [16,17] have been 

widely used to guarantee unconditional stability. Also, it 

saves both the memory and time consumption. However, 

this technique suffers from inaccuracies especially for a 

high Courant–Friedrichs–Levy (CFL) number. Another 

method based on the fact that Maxwell’s equations can 

be written under the form of a symplectic integrator has 

been used to improve the accuracy of the FDTD method 

in many researches [18-20]. The symplectic method 

offers high performances in both stability and precision. 

However, it consists of repetitive loops inside one-time 

iteration. this leads to cumbersome the CPU use and then 

slows down the execution. Previously in the literature, 

Fang [21] proposed two high order FDTD methods for 

solving Maxwell’s equations. The staggered FDTD (2,4) 

and FDTD (4,4) (where the first and the second index 

refer to the time and space accuracy order, respectively) 

are more accurate than the previously mentioned 

methods. Then, the FDTD (2,4) has been widely applied 

for frequency dependent media [22]. However, the FDTD 
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(4,4) did not get a significant focus in the simulation of 

the frequency dependent media, regarding its complexity.  

We have proposed a high order FDTD (3,4) for the 

non-dispersive media [23], and in this paper, the method 

has been extended for the simulation of a frequency 

dependent media which consisted of the combination of 

a multi-pole Debye model with a lossy conductive model. 

An analysis of the accuracy and the stability proved that 

the proposed method offered high performance in 

comparison with the previously cited methods. 

 

II. FORMULATIONS  
Consider the time-dependent form of Maxwell’s 

equations for a homogeneous Debye dispersive medium: 
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Together with the dispersive permeability 

relationship: 
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where �⃗⃗�  and �⃗⃗⃗�  are the electric and magnetic fields; �⃗⃗�  

and �⃗⃗�  are the electric and the magnetic flux density; 𝜀 

and 𝜇 are the dispersive permittivity and permeability of 

the medium; * denotes the convolution operator.  

The permittivity of a multi-pole Debye model 

combined with a static conductivity factor in the 

frequency domain is expressed as follows: 
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where 𝑗 = √−1; 𝜔 is the angular frequency; 𝜀0 is the free 

space permittivity; 𝜀∞ is the permittivity at the infinite 

frequency; K is the number of Debye poles; ∆𝜀𝑘 and 𝜏𝑘 

are the kth Debye pole’s magnitude and the relaxation 

time, respectively; 𝜎𝑠 is the static conductivity. 

The permittivity relation in Equation (3) can be 

expressed as a system of ADE as follows: 
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where K is the number of the Debye poles; 𝑃𝑘 is the 

polarization density of the kth Debye pole; 𝑃𝑙𝑜𝑠𝑠 is the 

conductive loss term.  

The computational domain is discretized by using 

the Yee’s staggered grid. Δx, Δy, and Δz denote the spatial 

step; Δt is the time increment. For a given function F 

which can be one of the electric or magnetic field’s 

component, the discrete is defined form as follows: 
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The principle of the proposed method is based on 

applying the fourth order Central Finite Difference 

scheme for the approximation of the space derivatives  

in the curl equations, and the third order Backward 

Differentiation scheme for the approximation of the time 

derivatives, as shown in the following equations: 
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where N and M are the accuracy order in the time and the 

spatial domain, respectively. The coefficients 𝑎𝑞 , 𝑏𝑞, and 

𝑤𝑝 are shown in Table 1 and Table 2. Equation (6.a) is 

used for the approximation of the time derivative of the 

electric and magnetic flux density. Equation (6.b) is used 

to approximate the time derivatives of the polarization 

density 𝑃𝑘  and the conductive lossy term 𝑃𝑙𝑜𝑠𝑠. Equation 

(6.c) is used for the approximation of the spatial 

derivatives 

 

Table 1: Coefficients of the Nth order backward time 

differentiation 

N {a0,a1,…,aN} {b0,b1,…,bN} 

1 {1,-1} {1,-1} 

2 {1,-1,0} {3, -4,1}/2 

3 {23, -21, -3, 1}/24 {11, -18, 9, -2}/6 

4 {22, -17, -9, 5,-1}/24 {25, -48, 36, -16, 3}/12 

 
Table 2: Coefficients of the Mth order central spatial 

differentiation 

M {w1,…,wM/2} 

2 {1} 

4 {27, -1}/24 

 
After applying the backward differentiation in the 

time domain and the central differentiation in the space 

domain to Maxwell’s equation and the dielectric dispersive 

relation Equation (6), we obtain the update equations of 

the high order FDTD scheme which is composed of the 

following steps (we show only the update steps for the 

X-axis components. The same procedure is applied to the 

Y and Z-axis components): 

1. Update of the electric flux density: 

𝐷𝑥𝑖+
1

2
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1

2
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1

2
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1

2
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2
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2 )
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𝑝=1 ]. (7) 
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2. Update of the electric field: 
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3. Update of the magnetic field: 
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III. STABILITY ANALYSIS  
As stated, the Lax–Richtmyer theorem, a consistent 

finite difference scheme associated to a well-posed 

system of auxiliary differential equations is convergent 

to the analytical solution if and only if it is stable [24]. 

Therefore, the stability analysis leads also to prove the 

convergence of the studied scheme. 

Regarding the fact that we only deal with linear 

equations, the Z-transformation is applicable for the 

update Equations (7, 8 and 9). Then by assuming a  

plane wave propagating in a homogeneous domain, the 

computed electric field can be presented as follows:  

 𝐸𝑥
𝑛(𝑟 ) = 𝑧𝑛𝐸𝑥

0 𝑒−𝑖�⃗� .𝑟 , (10) 

where �⃗� = (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) is the wave vector, 𝑧 is the Z-

transformation variable, and 𝑟 = (𝑥, 𝑦, 𝑧) is a position 

vector.  

By applying the Z-transformation to the update 

Equations (7, 8 and 9), the Z-domain wave equation is 

obtained:  

 [𝛿𝑡
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Z-transform of the time backward differentiation,  

�̃� is the discrete form of the matrix curl-operator,  
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𝑀/2
𝑝=1  is the central 

difference operator for the plane wave, 𝛿𝑦 and 𝛿𝑧 are 

computed similarly to 𝛿𝑥, and 𝜀𝑟(𝑧) is obtained by 

applying the Z-transformation to Equation (8).  

By computing the eigenvalues of Equation (11), it 

can be reduced to a scalar wave equation: 

 𝑧𝛿𝑡
2(𝑧)𝜇𝑟(𝑧)𝜀𝑟(𝑧) + 𝑐0
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2 + 𝛿𝑧
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By consequence, the stability analysis of the 

proposed method is reduced to analyzing the stability of 

the scalar wave Equation (13). 

In the automatic control theory, one of the widely 

used methods for analyzing the stability of discrete 

control systems is the Root-Locus method [25]. The 

Root-Locus method is based first on, writing the studied 

equations under the form of a linear discrete feedback 

system as shown Equation (14). 
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Then, the Root-Locus analysis plots the locations of 

the Equation 14 roots in the complex plane as a function 

of the gain K. The stability condition of a discrete 

feedback system is granted when all the roots are located 

within the unit circle. 

The maximum value of the gain K that maintains the 

stability criteria is evaluated. Then, assuming the worst 

case by letting 𝑠𝑖𝑛 ((𝑝 − 1/2)𝑘𝜂∆𝜂) = 1, to compute the 

CFL condition in the in the case of Δ = Δx = Δy = Δz: 

 𝐶𝐹𝐿 = 𝑐0
Δ𝑡𝑚𝑎𝑥

Δ
. (15) 

The above procedure is applied for studying  

the stability condition for the High-order FDTD 

implementation of a Four-pole Debye model [3], which 

is used for modeling human muscle, fat, and skin tissues. 

The special resolution is selected at 25, 50, 75, or 100 

points per wavelength (PPW) 𝜆𝑚𝑖𝑛 = 0.05𝑚.  

Figure 1 shows the Root-Locus plot for the free 

space with the implementation of different FDTD 

methods. The curves represent the paths traveled by the 

roots of Equation 14. The critical point for which the 

stability limit is attained and the maximal values of the 

gain K are indicated in the figure.   

Figure 2 shows the Root-Locus plot for the muscle 

tissue with the implementation of FDTD methods with a 

fixed resolution at 25 PPW. Figure 3 shows the Root-

Locus plot for the muscle tissue with the implementation 

of the FDTD (3,4) with different resolutions (25, 50, 75, 

and 100 PPW). Then the CFL limit for each case is 

computed from the maximum values of the gain K. Table 

3 resumes a comparison of the CFL condition between 

the different FDTD methods. Table 4 summarizes the 

maximum CFL for each tissue.  

Based on the results in Table 3, in the case of the 

free space, the Root-Locus method fits with the Von-

Neumann [26] stability condition; which is independent 

of the spatial grid resolution. However, in the case of  
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a dispersive media, the stability limit is inversely 

proportional to the grid resolution. Also, we can note that 

for the high grid resolution, the stability condition tends 

to retain that of a non-dispersive case where 𝜀𝑟 = 𝜀∞.  

From Table 4, regardless the type of the material, 

the FDTD with high accuracy order are less stable than 

those with low accuracy order. As a consequence, a 

tradeoff between the stability and the precision is 

recommended.   

In order to validate the Root-Locus analysis results, 

a numerical stability test is carried out. A simple 

electromagnetic scenario is simulated using the FDTD 

(3,4). The computational space is filled with a dispersive 

Debye media (muscles tissue). An infinitesimal Hertzian 

dipole is inserted in the center of the computational 

space. Two current numbers (cΔt/Δx) are used, 0.1% 

below and above the CFL limit, respectively. Where the 

CFL limit of the FDTD (3,4) was found to be 1.2446 for 

a resolution of 25 PPW in Table 3. 
 

 
 

Fig. 1. Root-Locus for FDTD schemes in the free space: 

(a) FDTD (2,2), (b) FDTD (2,4), (c) FDTD (3,4), and (d) 

FDTD (4,4).  

 

 
 
Fig. 2. Root-Locus for FDTD schemes in human muscle 

tissue: (a) FDTD (2,2), (b) FDTD (2,4), (c) FDTD (3,4), 

and (d) FDTD (4,4). 
 

 
 
Fig. 3. Root-Locus for FDTD (3,4) schemes in human 

muscle tissue, for different resolutions: (a) 25 PPW, (b) 

50 PPW, (c) 75 PPW, and (d) 100 PPW. 

 

Table 3: CFL for Human muscle tissue modeled by 4-Pole Debye [3], with different PPW, with fmax = 6 GHz 

Tissue Muscle 
Free Space 

PPW 25 50 75 100 2000 Non-Dispersive 

FDTD(2,2) 3.3019 2.5384 2.0568 1.7565 0.8347 0.7874 0.5715 

FDTD(2,4) 2.6852 2.0643 1.6726 1.4285 0.7094 0.6749 0.4899 

FDTD(3,4) 1.2446 0.8942 0.7762 0.7188 0.5696 0.5621 0.4118 

FDTD(4,4) 0.4849 0.4073 0.3825 0.3712 0.3384 0.3374 0.2474 

 

Table 4: CFL for different human tissues modeled by 4-

Pole Debye [3], with PPW = 25, and fmax = 6 GHz 

Tissue Muscle Fate 
Wet 

Skin 

Dry 

Skin 

FDTD(2,2) 3.3019 0.984 2.9722 2.8199 

FDTD(2,4) 2.6852 0.831 2.4171 2.4171 

FDTD(3,4) 1.2446 0.6328 1.3219 1.4285 

FDTD(4,4) 0.4849 0.3695 0.5359 0.7493 

Figure 4 (a) shows the simulation results of the first 

case after 20000 steps. There is no sign of instability. 

Figure 4 (b) shows the situation results of the second 

case. It is clear that the simulation, in this case, is 

unstable. This confirms the results obtained by the Root-

Locus method. 

As a conclusion of this part, the Root-Locus method 

offers an accurate estimation of the CFL stability condition 
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of the FDTD methods regardless the complexity of the 

implementation medium and the accuracy orders of the 

FDTD method. 

 

 
 

Fig. 4. Stability test in the case of muscle tissue at 25PPW: 

(a) cΔt/Δx = 1.2444, and (b) cΔt/Δx = 1.2458. 

 
IV. NUMERICAL VALIDATION 

In this part, the accuracy of the proposed method is 

compared to the original FDTD, the high order FDTD 

(2,4) [22], and the FDTD (4,4) [21]. The simulation of 

some problems for which the analytical solution is  

well known, to compute the numerical dispersion of 

electromagnetic waves traveling in the free space and the 

Debye dispersive media.  

 

A. Simulation in the free space 

First, we consider the scenario of a plane wave 

traveling in the free space in different directions. The 

numerical dispersion is evaluated as the relative error in 

the phase velocity. The multicycle sine plane wave is 

introduced to the computational space by using the total 

field scattered field (TFSF) technique [27]. The frequency 

of the multicycle sine pulse is a function of the PPW. The 

simulation runs for the necessary time for the multicycle 

sine wave to entirely vanish through the TFSF interface. 

Then, the Fourier transform is applied on the electric 

field to compute the phase velocity. 

Figure 5 shows the phase velocity error as a function 

of the PPW and the propagation angle. The FDTD (4,4) 

[21] has the lowest phase velocity errors, then the 

proposed scheme comes in the second place with about 

2 dB above the FDTD (4,4), but it is largely lower than 

both the FDTD (2,2) and FDTD (2,4).  

Second, we consider the scenario of a Hertzian 

dipole source inserted in the center of the computational 

space which is 200x200x200 cells sized. The space 

increments are Δx = Δy = Δx = 1 mm. The CFL is 0.2. 

Ten cells perfectly matched layers (PML) surrounds the 

computational space to absorb the outgoing waves. The 

Hertzian dipole is fed by a wideband current pulse as 

shows Equation 16. The observation point is located at a 

distance of 20 cells from the Hertzian dipole source: 

 𝑆𝑟𝑐(𝑡) =
1

𝑠2
(𝑡 − 𝑚)𝑒−0.5((𝑡−𝑚)/𝑠)

2

, (16) 

where s = 16Δt; m = 160Δt.    

The obtained results are compared with the fields 

computed using the analytic formula of the Hertzian 

dipole [28]. As shown in Fig. 6, all of the FDTD (2,4), 

FDTD (3,4) and FDTD (4,4) fit with the analytic solution 

rather than the FDTD (2,2). Figure 7 shows the error of 

each method which is expressed by Equation 17. The 

proposed scheme offers almost the same precision as the 

FDTD (4,4) and higher than both the original FDTD 

(2,2) and the FDTD (2,4): 

 𝐸𝑟𝑟(𝑟) = √
∑ |𝐸𝑧(𝑟,𝑡)−𝐸𝐹𝐷𝑇𝐷(𝑟,𝑡)|2𝑡

∑ |𝐸𝑧(𝑟,𝑡)|2𝑡
 , (17) 

where 𝐸𝑧(𝑟, 𝑡) is the analytically computed electric field 

and 𝐸𝐹𝐷𝑇𝐷(𝑟, 𝑡) is the electric field computed by the 

FDTD method. 

 

 
 

Fig. 5. Relative phase velocity errors as function of  

the number of points per wavelength (PPW) and the 

propagation angle Φ. 

 

 
 

Fig. 6. Comparison of the electric field at 20Δx from the 

dipole source in the time domain, as computed by the 

FDTD methods and the theory. 

 

From the above results, in the case of a non-dispersive 

media, the proposed scheme is better than the original 

FDTD and the FDTD (2,4), and it offers almost similar 

performance as the FDTD (4,4) in terms of precision. 

Also if we consider the low stability condition of the 

FDTD (4,4) discussed in Section 3, we can deduce that 

our scheme is more efficient regarding the stability-

precision criterion. 
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Fig. 7. Errors on the computed electric field expressed 

by Equation (16), as a function of the distance from the 

source. 

 

B. Simulation in the Debye media 

To validate the accuracy of the proposed method 

relating to the simulation in the dispersive media, we 

effectuate the following simulations using the Debye 

model.  

The first scenario consists of the simulation of a 

plane wave normally incident on the interface between 

the free space and a homogeneous dispersive media. As 

an example, we take the Four-Pole Debye model of the 

muscles where the parameters are listed in [3]. Figure 8 

shows the FDTD simulation model. The computational 

space is delimited by a perfect electric conductor (PEC) 

from z-direction boundaries, a perfect magnetic conductor 

(PEM) from the y-direction boundaries. At the x-direction 

boundaries, a polarized current source excitation surface 

is placed on one side, and perfectly matched layers (PML) 

boundary is on the other side. Figure 9 demonstrates  

the ability of the proposed method to model the Debye 

dispersive media in comparison with the others methods. 

It shows that at the interval above 20 PPW the reflection 

coefficients computed by FDTD (3,4) and FDTD (4,4) fit 

perfectly with the theoretical one. Figure 10 shows the 

errors in the computed coefficient of reflection effectuated 

by each scheme. The obtained results demonstrate that 

the errors effectuated by the proposed scheme are almost 

equivalent to the high order FDTD (4,4) and largely 

lower than those of the FDTD (2,4) and FDTD (2,2).  

 

 
 

Fig. 8. Numerical FDTD model used to validate the 

FDTD (3,4) for modeling 4-pole Debye media. 

 

 
 

Fig. 9. Magnitude and phase of the reflection coefficient 

of vacuum – human muscle model interface. 

 

 
 

Fig. 10. Errors in the computed reflection coefficient as 

a function of the PPW. 

 

Secondly, we consider a Hertzian dipole source 

inserted in the center of the FDTD computational space 

which is filled with a dispersive media. We refer to the 

Four-Pole Debye model of the human muscles [3]. The 

analytical solution is expressed in the frequency domain 

by including the complex dielectric conductivity and the 

frequency spectrum of the input source signal 𝑆(𝑓) to the 

general solution of the Hertzian dipole [29]. Equation 18 

expresses the electric field in the frequency domain: 

�⃗� (𝑟, 𝑓) = 𝑆(𝑓)𝑙
𝑒−2𝑗𝜋𝑓𝑟√𝜇𝜀0𝜀𝑟

4𝑗𝜋2𝑓𝜀0𝜀𝑟
× (

1

𝑟3 +

2𝑗𝜋𝑓√𝜇𝜀0𝜀𝑟

𝑟2 ) 𝑐𝑜𝑠(𝜃)𝑒𝑟⃗⃗  ⃗ + 𝑆(𝑓)𝑙
𝑒−2𝑗𝜋𝑓𝑟√𝜇𝜀0𝜀𝑟

8𝑗𝜋2𝑓𝜀0𝜀𝑟
×

(
1

𝑟3 +
2𝑗𝜋𝑓√𝜇𝜀0𝜀𝑟

𝑟2 −
4𝜋2𝑓2𝜇𝜀0𝜀𝑟

𝑟
) 𝑠𝑖𝑛(𝜃)𝑒𝜃⃗⃗⃗⃗ , (18) 

where 𝑙 is length of the Hertzian dipole, 𝑟 is the distance 

of the observation point from the source, 𝑒𝑟⃗⃗  ⃗ is the unite 

vector from the source to the observation point and 𝑒𝜃⃗⃗⃗⃗  is 

the unite vector perpendicular to 𝑒𝑟⃗⃗  ⃗. 
The numerical dispersion of the FDTD is evaluated 

as follows: 

 𝐸𝑟𝑟(𝑟) = √
∑ |𝐸𝑧(𝑟,𝑓)−𝐸𝐹𝐷𝑇𝐷(𝑟,𝑓)|2𝑓

∑ |𝐸𝑧(𝑟,𝑓)|2𝑓
 , (19) 
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where 𝐸𝑧(𝑟, 𝑓) is the analytically computed electric field, 

and 𝐸𝐹𝐷𝑇𝐷(𝑟, 𝑓) is the frequency component computed 

by the FDTD method. 

Figure 11 shows the agreement of the proposed 

method with the analytical solution. Also, the others 

methods agree with the analytical solution in varying 

proportion. Figure 12 shows the errors of each method as 

a function of the distance from the source. FDTD (3,4) 

and FDTD (4,4) offer almost the same precision which 

is higher than both the FDTD (2,4) and the original 

FDTD (2,2). 

According to the results of the numerical experiments 

in both the free space and in the Debye dispersive 

medium, the proposed method is more accurate than both 

the FDTD (2,2) and the FDTD (2,4). Moreover, it offers 

almost the same precision as the FDTD (4,4). Hence, 

when considering the low stability provided by FDTD 

(4,4), one can conclude that the proposed method offers 

the best tradeoff between the accuracy and the stability. 

 

 
 

Fig. 11. Comparison of the electric field at 20Δx from 

the dipole source in the frequency domain, as computed 

by the FDTD methods and the theory as a function of the 

PPW. 

 

 
 

Fig. 12. Errors on the electric field expressed by Equation 

(18) as a function of the distance from the source. 

 

V. CONCLUSION 
A high order accuracy FDTD method for the 

simulation of the electromagnetic wave behavior in the 

dispersive media is developed. The proposed method is 

third order accuracy concerning the approximation of  

the time domain derivatives and fourth order accuracy 

concerning the space domain derivatives. The stability of 

the proposed method is analyzed by using the Root-

Locus method, first in the case of the free space, then in 

the case of the Debye dispersive media. The proposed 

method comes in third place after the original FDTD 

method and the FDTD (2,4) which are less accurate. The 

numerical dispersion analysis in both cases, in the free 

space and the Debye dispersive media, revealed that  

the proposed method offered almost the same precision 

as the high order FDTD (4,4). However, this last has a 

deficient stability performance. As a tradeoff between 

the stability and accuracy, the proposed method offers 

the best performances. 
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