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Abstract ─ In this paper, a complex-envelope (CE) 

scheme is introduced into the locally one-dimensional 

finite-difference time-domain (LOD-FDTD) method for 

the band-gap analysis of the plasma photonic crystal 

(PPC). The un-magnetized plasma, characterized by a 

complex frequency-dependent permittivity, is expressed 

by the Drude model and solved with a generalized 

auxiliary differential equation (ADE) technique. The CE 

scheme is also applied to the perfectly matched layer. 

Numerical examples show that the proposed CE-ADE-

LOD-FDTD method provides much more accurate results 

than the traditional ADE-LOD-FDTD with the same 

CFL number. The reflection and transmission coefficients 

of the PPC are calculated and their dependence on the 

relative permittivity of dielectric, the plasma frequency, 

the collision frequency and the plasma layer thickness 

is studied. The results show that the photonic band gaps 

of the PPC could be tuned by adjusting the parameters. 

 

Index Terms ─ Band-gaps, complex envelope (CE), 

locally one-dimensional finite-difference time-domain 

(LOD-FDTD) method, plasma photonic crystal (PPC). 
 

I. INTRODUCTION 
Much attention has been paid to the photonic 

crystal due to its unique characteristics since the 

conception was put forward by Yablonovitch [1] and 

John [2] in the 1980s. The plasma photonic crystal 

(PPC) is an important branch of the photonic crystal. A 

PPC structure is an artificially periodic one composed 

of the alternating thin un-magnetized (or magnetized) 

plasmas and dielectric materials (or vacuum). In recent 

years, scholars have devoted much of the energy to the 

research of PPCs. At the same time, a number of related 

literatures continue to emerge. The natures of the PPC 

include photonic band gap properties of photonic 

localization and optical properties [3], [4]. For the 

analysis of the PPC, the frequency-dependent finite-

difference time-domain (FDTD) method has been widely 

used. Because surface plasmon polaritons (SPPs) are 

highly localized along the plasma-dielectric interface, 

fine spatial grids are required to attain sufficient accuracy. 

Thus, an extremely small time step constrained by the 

Courant-Friedrich-Levy (CFL) stability condition results 

in a long computation time [5]. 

Some unconditionally stable FDTD methods  

have been presented to eliminate the CFL condition  

and to improve the computational efficiency. Several 

unconditionally stable time-marching methods only 

need to deal with the tri-diagonal matrix equation with 

low computational complexity, such as the locally  

one-dimensional (LOD) FDTD method [6], [7], the 

alternating-direction implicit (ADI) FDTD method [8], 

[9] and the split-step (SS) FDTD method [10]-[12]. The 

unconditionally stable Crank-Nicolson (CN) FDTD 

method is another time-marching method, in which the 

full time step size in one marching step is used to solve 

the discretized Maxwell’s equations [13], [14]. Although 

the above time-marching methods are unconditionally 

stable, their time steps are restricted by the dispersion 

errors [15]-[17]. The order-marching weighted Laguerre 

polynomial (WLP) FDTD method, in which the spatial 

and the temporal variables are separated, does not have 

to deal with the time step [18], [19]. Both CN-FDTD 

and WLP-FDTD have to solve a large banded-spare 

matrix equation at the beginning of the calculation. 

In order to reduce the numerical dispersion for 

large time-step sizes in ADI-FDTD, a technique called 

the complex-envelope (CE) has been proposed in [20]. 

It was claimed that CE-ADI-FDTD is more accurate 

than ADI-FDTD with the same time step. By using the 

CE technique, the carrier frequency term is absorbed 

into the Maxwell’s equations as a known quantity. 

Consequently, only the signal envelopes become the 

variants to be sampled and computed. Generally, LOD-

FDTD requires fewer arithmetic operations than ADI-

FDTD [21]. [22] introduced a CE-LOD-FDTD method 

for the analysis of the optical waveguide. The CE-LOD-

FDTD method was also used to analyze ionospheric 

propagation in a simple one-dimensional space without 

absorbing boundary conditions [23]. 

With the auxiliary differential equation (ADE) 

technique [24], [25], the CE-LOD-FDTD method is 

employed for the analysis of PPCs in this work. The 
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dispersion of the plasma expressed by the Drude model, 

is solved with the ADE technique to establish the 

relationship between the electric field intensity and 

conductive electric current in the PPC. Furthermore, the 

CE technique is integrated with the Berenger’s perfectly 

matched layer (PML) to truncate the computational 

domain effectively. With the proposed CE-ADE-LOD-

FDTD method, the reflection and transmission 

coefficients through the PPC are calculated, and their 

dependence on the dielectric permittivity, the plasma 

frequency, the collision frequency and the plasma layer 

thickness is studied. The numerical examples verify 

accuracy and effectiveness of the proposed method. 

 

II. NUMERICAL FORMULATION 

A. CE-ADE-LOD-FDTD method 

The time dependence of e-iωt is assumed. According 

to the Drude model, the relative permittivity (in frequency 

domain) of the un-magnetized plasma is given by: 
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where ω is the angular frequency of the impinging 

light, ωp is the plasma frequency, and γ is the collision 

frequency of the plasma.  

For simplicity, a 2-D TM wave including Ex, Ez 

and Hy components is considered. The 2-D Maxwell’s 

equations and auxiliary differential equations in a 

dispersive material can be written as [26]: 
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where ε and ε0 are the electric permittivity of the 

medium and free space, respectively, and μ0 is the 

magnetic permeability. 

The fields can be represented as: 
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where Re{·} denotes the operation that takes the real 

part of a complex number, ωc is the center carrier 

angular frequency, and Ê, Ĥ and Ĵ represent the 

associated complex-envelope fields and electric current. 

Substituting (3) into (2a)-(2e), we get: 
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With the LOD scheme [6], we obtain the CE-ADE- 

LOD-FDTD formalism. In the first step (n+1/2), we 

have: 
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In the second step (n+1), we have: 
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Since (5b) includes the unknown term 
1/ 2ˆ n

yH 
, taking 

the first step for example, we substitute (5c) into (5b)  

to eliminate 
1/ 2ˆ n

yH 

 
and then get a tri-diagonal matrix 

equation in term of 1/2ˆ n

zE   which can be solved with 

Thomas algorithm. The rest of the equations can be 

calculated in an explicit way. It is clear that the 

equations of the CE-ADE-LOD-FDTD method degrade 

into those of the ADE-LOD-FDTD method for ωc = 0. 

 

B. CE-PML in CE-ADE-LOD-FDTD 

In a Berenger’s PML medium, the magnetic field 

component Ĥy is divided into Ĥyx and Ĥyz. With the 

LOD scheme [6], we obtain the CE-PML difference 

formalism in the first step (n+1/2): 
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The coefficients of (7a)–(7f) are expressed as: 
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where Δt is the time step, Δxi is the discretization step 

along the x-direction, σx and ρx are the conductivity and 

reluctivity, respectively. The equations of the second 

step can be obtained in a similar way. 

 

III. NUMERICAL RESULTS AND 

DISCUSSION 
With the proposed CE-ADE-LOD-FDTD method, 

the reflection and transmission coefficients through the 

PPC are calculated and their dependence on the relative 

permittivity of dielectric medium, the plasma frequency, 

the plasma collision frequency and the plasma layer 

thickness is studied in this section. 
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Fig. 1. Schematic model of a plasma photonic crystal. 

 

A normally incident TM-polarized plane wave 

illuminates a PPC from the left side, as shown in Fig. 1. 

The eight dielectric layers and seven plasma layers  

are set in the PPC model, where a = b = 15 μm. The 

computational region is truncated by the Berenger’s 

PML on the left and right sides. The top and bottom 

boundaries are treated by the perfect electric conductors 

(PECs). 

A Gaussian pulse is used as the source excitation, 

which can be written as: 
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where the maximum frequency fmax = 10 THz, τ = 1/(2fmax) 

and t0 = 3τ. The frequency characteristics of the 

transmission are calculated with the discrete Fourier 

transform (DFT) of time-domain responses in the 

observation plane. 

Here, the graded cells are used to attain sufficient 

accuracy. The center carrier angular frequency ωc = 2π 

× 5 × 1012 rad/s, the spatial step along the x-direction is 

1.5 μm, and the minimum and maximum spatial steps 
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along the z-direction are ∆min = 0.05 μm and ∆max = 2 μm, 

respectively. The total cell number in the computational 

domain is 40 × 355. 

 

A. Accuracy verification of CE-ADE-LOD-FDTD 

First, the accuracy and effectiveness of the proposed 

CE-ADE-LOD-FDTD method are verified. We choose 

the plasma frequency ωp = 2π × 2 × 1012 rad/s, the 

plasma collision frequency γ = 40 THz, and the relative 

permittivity of dielectric εr = 4 in the simulation. 
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Fig. 2. Results of transmittance of the PPC from ADE-

FDTD, ADE-LOD-FDTD and CE-ADE-LOD-FDTD. 

 

Table 1: Comparison of the computational efforts for 

the three methods 

Method CFLN 
Marching 

Steps 

CPU Time 

(s) 

Memory 

(Mb) 

FDTD 1 200000 45017 8.99 

ADE-LOD-

FDTD 
100 2000 251 11.35 

CE-ADE-

LOD-FDTD 
100 2000 529 16.06 

 
Figure 2 shows the transmission coefficients 

calculated by ADE-FDTD, ADE-LOD-FDTD [26],  

and the proposed CE-ADE-LOD-FDTD method, where 

∆tFDTD = ∆min/2/c (c is the velocity of light in the vacuum) 

is chosen for the explicit ADE-FDTD according to the 

CFL constraint, ∆tLOD = 100∆tFDTD (CFLN = ∆tLOD 

/∆tFDTD = 100) is chosen for ADE-LOD-FDTD, and 

∆tCE-LOD = 100∆tFDTD (CFLN = 100) is chosen for CE-

ADE-LOD-FDTD. It is clear from Fig. 2 that the results 

from CE-ADE-LOD-FDTD and ADE-FDTD are in 

good agreement. The results from ADE-LOD-FDTD 

are worse than those from the other two methods 

because its dispersion deteriorates with the large time 

step. 

Table 1 shows the comparison of computational 

efforts of the three methods. Because of the storage of 

the sparse matrix, the memory requirement of CE-

ADE-LOD-FDTD is larger than ADE-FDTD. With the 

much larger time step beyond the CFL constraint, the 

CPU time of CE-ADE-LOD-FDTD can be much less 

than that of ADE-FDTD. Although CE-ADE-LOD-

FDTD costs more CPU time than ADE-LOD-FDTD, it 

gets much more accuracy results. All calculations in 

this paper are performed on an AMD Athlon (tm) II X4 

3.00 GHz computer with 6 GB RAM. 

 

B. Effects of the relative permittivity of dielectric 

First, we discuss the effects of the relative 

permittivity of dielectric on the band gap of the PPC. 

We choose the plasma frequency ωp = 2π × 2 × 1012 rad/s 

and the plasma collision frequency γ = 40 THz in the 

simulation. With the proposed CE-ADE-LOD-FDTD 

method, the reflection and transmission coefficients  

for the PPC with different relative permittivities of 

dielectric are depicted in Figs. 3, 4 and 5. Here, we 

choose CFLN = 100 in the CE-ADE-LOD-FDTD method. 
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Fig. 3. Electromagnetic band-gap characteristics with 

the relative dielectric permittivity εr = 2. 
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Fig. 4. Electromagnetic band-gap characteristics with 

the relative dielectric permittivity εr = 4. 
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Fig. 5. Electromagnetic band-gap characteristics with 

the relative dielectric permittivity εr = 6. 
 

It is difficult to form the band gap when the 

relative permittivity of the dielectric medium equals to 

1 because the dielectric constant of the plasma is close 

to 1. That means that the PPC structure tends to a single 

medium when the relative permittivity of the dielectric 

medium is close to that of the background medium. The 

double band gap appears near f = 4.2 THz and 8.4 THz 

when the relative permittivity of the dielectric medium 

equals to 2. With the increase of the relative permittivity 

value of the dielectric medium, the depth and number of 

the band gap increase. Therefore, the band gap can be 

well controlled by changing the relative permittivity 

value of the dielectric medium. 
 

C. Effects of the plasma frequency 

Next, we study the effects of the plasma frequency 

on the band gap of the PPC. Here we choose the 

relative permittivity of the dielectric medium εr = 5, and 

the plasma collision frequency γ = 40 THz in the 

simulation. Figure 6 depicts the transmission coefficients 

for the plasma frequency from ωp = 2π × 2 × 1012 rad/s 

to 2π × 10 × 1012 rad/s. 
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Fig. 6. Transmittance of different plasma frequencies. 

With the increase of the plasma frequency, from Fig. 

6, the periodicity of photonic band gaps gets unobvious, 

but the band gap range is a little extended. The 

transmission coefficient of the PPC will be reduced to 

zero when the plasma frequency increases to a certain 

value. This is mainly because when the frequency of the 

incident electromagnetic wave is close to the maximum 

plasma frequency, the attenuation of the electromagnetic 

wave becomes very large, i.e., the resonance attenuation 

[27]. 

 

D. Effects of the Plasma Collision Frequency 

Then, we discuss the effects of the plasma collision 

frequency on the band gap of the PPC. Here we choose 

the relative permittivity of the dielectric medium εr = 5 

and the plasma frequency ωp = 2π × 2 × 1012 rad/s in the 

simulation. Figure 7 depicts the transmission coefficients 

for the plasma collision frequency from γ = 20 THz to 

80 THz. From Fig. 7, the plasma collision frequency 

has little effect on the periodicity of the band gap. 
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Fig. 7. Transmittance of different plasma collision 

frequencies. 

 

E. Effects of the plasma layer thickness 

Finally, we study the effects of the variation of the 

plasma layer thickness on the band gap of the PPC.  

Here we choose the relative permittivity of the dielectric 

medium εr = 4, the plasma frequency ωp = 2π × 2 × 1012 

rad/s, and the plasma collision frequency γ = 40 THz  

in the simulation. Figure 8 depicts the transmission 

coefficients for the plasma layer thickness from b = 15 

μm to 49 μm. From Fig. 8, with the increase of the 

plasma layer thickness, the periodicity of the band gap 

deteriorates. The absorption performance of the plasma 

enhances with the increase of plasma layer thickness, and 

then the attenuation of the incident wave gets large. The 

periodic band gaps can be generated when the frequency 

of the incident wave is high and the plasma layer 

thickness is small. 
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Fig. 8. Transmittance of different plasma layer 

thicknesses. 

 

IV. CONCLUSION 
In this paper, an effective time-domain method 

with Berenger’s PML has been developed for the 

analysis of the band-gap characteristics in the PPC. 

With the introduction of the CE technique, the ADE-

LOD-FDTD method can provide much more accurate 

results than the traditional ADE-LOD-FDTD in the 

numerical examples. The numerical examples verify 

accuracy and effectiveness of the proposed method, and 

the results show that the photonic band gaps of the PPC 

could be tuned by changing the value of the relative 

permittivity of the dielectric medium, the plasma 

frequency or the plasma layer thickness. 
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