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Abstract ─ The benchmark electromagnetic inverse 

scattering problem is re-visited in this paper from a big 

data perspective. It serves as the benchmark application 

problem in systematic parametric study of differential 

evolution (DE). Representative strategies with a full 

sweeping of intrinsic control parameters are applied to 

draw a systematic picture of DE. Insights extracted from 

preliminary numerical results are presented to rebut the 

questionable statements and advise DE applicants. 

Index Terms ─ Benchmark electromagnetic inverse 

scattering, differential evolution, parametric crime, 

parametric study, stochastic crime. 

I. INTRODUCTION

A. Questionable statements in DE

Among the rapid expanding family of natural

optimization algorithms, DE [1],[2] proposed by Price 

and Storn in 1995 is a very simple but very powerful 

evolutionary algorithm. It quickly earned its reputation 

as a prominent function optimizer through self-assessment 

and international showdowns. It has been applied to 

electromagnetic inverse scattering [3],[4], antennas 

[5], electromagnetic composite materials [6], frequency 

selective surfaces [12], microwave absorbers [8], and a 

lot of other mathematical and engineering optimization 

problems [9],[10],[11],[12],[13]. 

The standard notation DE/x/y/z of DE strategies 

[14] implies vast variants. As a matter of fact, only

two operators, differential mutation and crossover, are

involved in the standard notation that it is unable to cover

all variants of DE strategies. Evolution mechanism,

parental selection, and survival selection are missing.

There are two mechanisms to evolve the population 

in DE. The classic DE (CDE), also known as two-array 

method, applies static one while the dynamic DE (DDE) 

[15], or one-array method [16], evolves the population 

dynamically. A close analogy between the relationship 

between CDE and DDE and that between Jacobi and 

Gauss-Seidel method in linear algebra [17] can be made. 

Although it is well known that Gauss-Seidel method 

might converge faster more reliably than Jacobi method, 

it is claimed that there is “no dramatic difference in 

performance between the one- and two-array methods”. 

Differential mutation has been established as the 

crucial evolutionary operator leading to the success of 

DE. Its generic formulation to generate a mutant vn+1,i for 

mother pn,i reads: 
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where pn,i  Pn, the population of the nth generation, bn,i 

is the differential mutation base, dn,i,y,1 and dn,i,y,2 form the 

yth pair of donors, and Fy is the mutation intensity, also 

known as scale factor, for the yth vector difference. 

Please note that the notations of population individuals 

in this paper interchangeably represent the individuals 

as well as their N-dimensional vector of optimization 

parameters x whenever possible. 

It has been a consensus in DE that different 

differential mutation bases balance the exploration and 

exploitation processes in DE differently. Accordingly, 

strategies with different differential mutation bases may 

have different performance. An anonymous reviewer 

comments that “in practice, DE/rand/1 is the most widely 

used strategy. Moreover, DE/best/1 is more prone to 

being trapped in a local optimum”. 

The successful innovation of differential mutation 

unfortunately shades other important ideas in DE as 

crossover does in genetic algorithms (GA). One of the 

victim operators in DE is crossover. It has been claimed 

that “The crossover method is not so important although 

Ken Price claims that binomial is never worse than 

exponential” [18]. 

The above highlighted statements have been well 

circulated in DE community. However, accumulating 

evidences pose stronger and stronger challenge against 

them. Serious measures have to be taken to examine 

these dubious statements to avoid potential damages to 

applicants’ confidence in DE. 

B. A big data practice

In 2004, after applying DE in electromagnetics for

four years, this author started to get annoyed by the 

unsatisfactory performance of DE and inconsistent 

claims about DE strategies and intrinsic control 

parameters. An ambitious effort to reveal the relationship 
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between DE strategies, their intrinsic control parameters 

and mathematical features of optimization problems was 

triggered. 

One of the fundamental activities in this effort is 

a literature survey on DE [9],[10],[13]. Mining and 

reviewing ever-growing literatures on DE is undoubtedly 

a big data process. It has been going on until today 

although there is a short break in 2012 due to this 

author’s transfer from National University of Singapore 

to University of Electronic Science and Technology of 

China and a burglary into this author’s office. Full details 

of the literature survey will be given in this author’s 

coming monography. 

Another essential activity in the effort is a systematic 

parametric study on DE [9],[10],[19],[20]. DE strategies, 

their corresponding intrinsic control parameters, 

termination conditions, toy functions and benchmark 

application problems, their corresponding non-intrinsic 

control parameters, form a testing system. Three 

performance indicators, reliability, efficiency, and 

robustness are defined to quantify performance of tested 

DE strategies. 

This effort fits perfectly into the framework of big 

data. During this process, existing data is collected and 

huge amount of new data is generated. Most importantly, 

all available data is mined for insights to have more 

pleasant experience in future applying DE and develop 

better DE strategies.  

C. Benchmark electromagnetic inverse scattering

problem

Electromagnetic inverse scattering [21] are of great 

interest to both scientific researchers and engineers. 

Locating multiple two-dimensional perfectly conducting 

objects illuminated by TM-z plane waves and 

reconstructing their shape is a benchmark electromagnetic 

inverse scattering problem [4]. Scattered electric fields 

of some representative objects measured in controlled 

laboratory environment are also available [22],[23]. 

The benchmark electromagnetic inverse scattering 

problem has been solved by using a variety of inversion 

algorithms such as Newton-Kontorovitch algorithm 

[24], binary genetic algorithm [25], real-coded genetic 

algorithm [21], DE [4], and differential evolution with 

individuals in groups (GDE) [26]. Under the persistent 

promotion of this author, it has been accepted by both 

electromagnetic and optimization communities as one of 

the benchmark electromagnetic optimization problems 

due to its practical value and affordable computational 

cost. 

D. Contributions of this paper

In this paper, the benchmark electromagnetic

inverse scattering problem is re-visited. It serves as the 

benchmark application problem in systematic parametric 

study of DE. Representative strategies related with the 

aforementioned questionable statements are applied to 

solve the benchmark electromagnetic inverse scattering 

problem. Full sweeping of representative intrinsic control 

parameters has been conducted to draw a systematic 

picture of DE. Insights extracted from preliminary 

numerical results are presented to rebut the questionable 

statements and advise DE applicants. Moreover, 

parametric and stochastic crimes are defined to promote 

appropriate practice of applying and comparing 

stochastic and/or intrinsic control parameters-dependent 

optimization algorithms. 

II. BENCHMARK ELECTROMAGNETIC

INVERSE SCATTERING PROBLEM

A. Configuration

For better readability and completeness of this paper,

the problem geometry is re-depicted in Fig. 1, where O 

is the origin of the global coordinate system, , a circle 

of radius Rmeas, is the measuring (data) domain in which 

the scattered electric fields are measured, the black dots 

on  are receivers, D is the imaging (object) domain 

which is usually chosen to be circular or rectangular. 
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Fig. 1. Geometry of the electromagnetic inverse scattering 

problem. 

The objects of interest are the K perfectly conducting 

cylinders in D, Oi(di, i) is the local origin of the ith 

cylinder which can be any point within the cylinder 

contour Ci, di is the distance between O and Oi, i is the 

angle from horizontal or +x direction to vector 𝑂𝑂𝑖
⃑⃑ ⃑⃑ ⃑⃑  ⃑. Ci

is represented by a local shape function 𝜌𝑖 = 𝐹𝑖(𝜃𝑖) in

the local polar coordinate system. Physically, 𝐹𝑖(𝜃𝑖) ≥
0 ∀𝜃𝑖 ∈ [0,2𝜋] . Apparently, the same contour can be

represented by infinite sets (Oi, Fi). 

The local shape function 𝐹𝑖(𝜃𝑖)  used to be

approximated by a trigonometric series 𝐹𝑖
𝑇(𝜃𝑖) of order

N/2 [24],[25]: 
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𝐹𝑖
𝑇(𝜃𝑖) = ∑𝐴𝑖𝑗𝑐𝑜𝑠(𝑗𝜃𝑖)

𝑁 2⁄

𝑗=0

+ ∑𝐴𝑖(𝑗+𝑁 2⁄ )𝑠𝑖𝑛(𝑗𝜃𝑖)

𝑁 2⁄

𝑗=1

, 

where Aij are coefficients.  

Five contours are generated as shown in Fig. 2 by 

setting the coefficients as a random number uniform in 

the suggested ranges [25]. The local shape functions are 

shown in the left figure while the contours are shown in 

the right one. Only the local shape function in red dash 

line is non-negative. The corresponding contour in red 

color is regular. Apparently, it is very hard for 𝐹𝑖
𝑇(𝜃𝑖) to 

meet the physical requirement on local shape functions. 

 

 
 

Fig. 2. Trigonometric local shape functions. 

 

In 2000, Qing [27],[28] proposed the closed cubic 

B-splines local shape functions 𝐹𝑖
𝐵(𝜃𝑖) with N control 

points Cij to approximate 𝐹𝑖(𝜃𝑖): 
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𝑁

2𝜋
𝜃𝑖 − 𝑚, 

𝑚 = ⌊
𝑁

2𝜋
𝜃𝑖⌋. 

It has been proven that: 

min
0≤𝑗≤𝑁−1

𝐶𝑖𝑗 ≤ 𝐹𝑖
𝐵(𝜃𝑖) ≤ max

0≤𝑗≤𝑁−1
𝐶𝑖𝑗 . 

Therefore, by setting min
0≤𝑗≤𝑁−1

𝐶𝑖𝑗 ≥ 0 , non-negative 

definiteness of 𝐹𝑖
𝐵(𝜃𝑖) can be guaranteed. 

Similarly, five contours are generated as shown in 

Fig. 3 by setting the control points as a random number 

uniform in the specified ranges. The local shape 

functions are shown in the left figure. All of them are 

non-negative. In addition, the contours are shown in the 

right one. All contours are regular. 

 

 
 

Fig. 3. Closed cubic B-spline local shape functions. 

 

The objects of interest are illuminated by TM plane 

waves (time factor 𝑒𝑗𝜔𝑡assumed and suppressed where 

𝜔 = 2𝜋𝑓 is the angular frequency) of unit amplitude: 

𝐄𝑖(𝐫) = �̂�𝑒𝑥𝑝(−𝑗𝑘0�̂� ∙ 𝐫), 

where 𝐫 = 𝑥�̂� + 𝑦�̂�, 𝑘0 = 𝜔 𝑐⁄  is the wave number in 

free space, c is the light speed, �̂� = cosφ�̂� + 𝑠𝑖𝑛𝜑�̂� is 

the incident wave unit vector and  is the incident angle. 

�̂�, �̂� and �̂� are the unit vectors in the x, y and z directions 

respectively. 
 

B. Direct problem 

The electric field integral equations governing the 

scattering problem are: 
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     , 

where µ0 is the permeability of free space, 𝐽𝑗(𝐫
′) is the 

induced surface current intensity on the surface of the jth 

cylinder, 𝐻0
(2)(∙) is the second kind Hankel’s function of 

zeroth order.  
 

C. Inverse problem 

The inverse problem is to locate the objects of 

interest and reconstruct their shape, given the measured 

scattered electric fields 𝐄𝑠𝑚 which is an 𝑁𝑓 × 𝑁𝑎 × 𝑁𝑟-

dimensional vector [𝐸1
𝑠𝑚, ⋯ , 𝐸𝑗

𝑠𝑚 , ⋯ , 𝐸𝑁𝑓×𝑁𝑎×𝑁𝑟
𝑠𝑚 ] , Nf, 

Na, and Nr  are the total number of frequencies, incident 

angles and receivers respectively. It is cast into an 

unconstrained functional minimization problem whose 

optimization parameters are: 

   1
1

, , , ,
K

i i i i K
i

d F 


   x x x , 

and objective function is: 

 
 sm s

sm
f




E E x
x

E

, 

where 𝐱𝑖 = [𝑑𝑖 , 𝜓𝑖 , 𝐹𝑖(𝜃𝑖)] , 𝐄𝑠(𝐱)  is an 𝑁𝑓 × 𝑁𝑎 × 𝑁𝑟 -

dimensional vector of scattered fields corresponding to 

the profile ⋃ [𝑑𝑖 , 𝜓𝑖 , 𝐹𝑖(𝜃𝑖)]
𝐾
𝑖=1 , 
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One of the distinctive mathematical features of 

functional f(x) lies with its non-uniqueness, i.e., there  

are infinite minima corresponding to the infinite sets  

of (Oi, Fi) representing the same contours Ci. The 

electromagnetic equivalence principle makes the non-

uniqueness issue more complicated. 

Approximating 𝐹𝑖(𝜃𝑖)  by 𝐹𝑖
𝐵(𝜃𝑖)  simplifies the 

unconstrained functional minimization problem into an 

unconstrained parameter minimization problem whose 

objective function is intact but the optimization parameters 

are: 

 1, , Kx x x , 

where 𝐱𝑖 = [𝑑𝑖 , 𝜓𝑖 , 𝐶𝑖0, ⋯ , 𝐶𝑖(𝑁−1)]. 
 

III. DIFFERENTIAL EVOLUTION 

A. General framework 

As seen from Fig. 4, CDE and DDE share 

initialization, differential mutation with parental 

selection embedded, crossover, evaluation, and survival 

selection, but differ in evolution. Initial population P0 is 

generated through initialization. In CDE, population 

evolves generation by generation until at least one of the 

termination conditions is met, hopefully the objective is 

met. On the other hand, although index n is still in use in 

DDE for better clarity, it does not bear the same meaning 

as generation index in CDE. More importantly, the 

population continuously updates itself. 

 

initialization n = 0 

do i = 1, Np 

do j = 1, N 

𝑥𝑗
0,𝑖 = 𝑎𝑗 + 𝑟𝑗

0,𝑖(𝑏𝑗 − 𝑎𝑗) 

end do 

end do 

evolution CDE DDE 

do while (termination conditions not satisfied) 

n = n + 1 

do i = 1, Np 

differential evolution to get vn+1, i 

crossover to get cn+1, i 

evaluation of cn+1, i 

survival selection to get pn+1 i 

end do 

end do 

do while (termination conditions not 

satisfied) 

i = 1 

differential evolution to get vn+1, i 

crossover to get cn+1, i 

evaluation of cn+1, i 

survival selection to get pn+1 i 

if (i .eq. Np) then 

n = n + 1 

i = 1 

else 

i = i + 1 

end if 

end do 

 

Fig. 4. Pseudocode of differential evolution. 

 

B. System of parametric study 

1) Differential evolution strategies 

Strategies in the system are classified into four 

categories according to their evolution and learning 

mechanism: CDE, DDE, CDE with opposition-based 

learning (OCDE) and DDE with opposition-based 

learning (ODDE) [29],[30]. An expanded notation system, 

i/x/(y,d)/z/s, is implemented to represent the specific 

operations in each strategy where x, y, and z bear the 

same meaning as in standard DE notation, i stands for 

initialization, d stands for donor selection, and s stands 

for survival selection. Therefore, the concerned DE 

strategies are: 

(a) CDE/i/x/(y,d)/z/s, 

(b) DDE/i/x/(y,d)/z/s, 

(c) OCDE/i/x/(y,d)/z/s, 

(d) ODDE/i/x/(y,d)/z/s. 

It has to be pointed out that even the above expanded 

notation system cannot cover all DE strategies reported 

in literatures. 

 

2) Intrinsic control parameters 

DE is population-based. Therefore, all DE strategies 

share the same intrinsic control parameter, population 

size Np. Two sets of population sizes, {8, 16, 24, 32, 40, 

48, 56, 64, 72, 80, 120, 160, 200, 400, 800, 1600} and 
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{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 

500, 1000, 2000} are implemented in the parametric 

study according to the dimension of the test problem. The 

first set is applied for the benchmark electromagnetic 

inverse scattering problem re-visited in this paper. 

It is well accepted that differential mutation is one 

of the key innovations leading to the success of DE. From 

this point of view, differential mutation has to be present 

in all DE strategies. In accordance, all DE strategies 

share at least one more intrinsic control parameter, 

mutation intensity F, or mutation intensities Fy if there 

are more than one pair of donors. The tested cases of 

mutation intensity form a set as {𝐹|𝐹 = 𝑗∆𝑚, 1 ≤ 𝑗 ≤
(𝐹𝑈 − 𝐹𝐿) ∆𝑚⁄ }  where FL and FU are the lower and

upper bounds. The step size m is usually adjusted 

according to the computational cost of the test problem. 

FL = 0, FU = 1 and m = 0.1 are applied for the benchmark 

electromagnetic inverse scattering problem re-visited in 

this paper. 

Traditionally, crossover is present in almost all 

applications of DE. In this regard, crossover probability 

pc, the companion intrinsic control parameter to crossover, 

is also essential and shared. Similarly, the tested cases 

of crossover probability form a set as {𝑝𝑐|𝑝𝑐 = 𝑗∆𝑐 , 1 ≤
𝑗 ≤ (𝑝𝑐

𝑈 − 𝑝𝑐
𝐿) ∆𝑐⁄ }  where 0 ≤ 𝑝𝑐

𝐿 < 𝑝𝑐
𝑈 ≤ 1 . The step

size c is also adjusted according to the computational 

cost of the test problem, usually in synchrony with m. 

𝑝𝑐
𝐿 = 0 , 𝑝𝑐

𝑈 = 1  and c = 0.1 are applied for the

benchmark electromagnetic inverse scattering problem 

re-visited in this paper. 

Obviously, a specific DE strategy may have more 

companion intrinsic control parameters. 

3) Test problems

Test problems in the system include toy functions

and benchmark application problems. A literature survey 

on test problems was started at almost the same time as 

the literature survey on DE. As of Dec. 22, 2016, more 

than 500 toy functions and 100 application problems 

from different disciplines, including the benchmark 

electromagnetic inverse scattering problem re-visited in 

this paper, have been collected. 

From the point of view of parametric study, 

landscape and mathematical features of test problems 

and their relationship with other components in the 

system for parametric study are more fundamental. 

Features such as decomposability, modality, continuity, 

differentiability, dimensionality, uniqueness, and many 

more are under careful scrutiny.  

One of the control parameters companion to test 

problems is the search space of their optimization 

parameters. Whenever possible, a wider search space is 

more welcome because it imposes less requirement on a 

priori knowledge, especially for practical engineering 

optimization problems. The standard setting of 0 < 𝑑𝑖 ≤

1𝜆, 0 ≤ 𝜓𝑖 ≤ 2𝜋, and 0 ≤ 𝐶𝑖𝑗 ≤ 1𝜆, for the benchmark

electromagnetic inverse scattering problem, is 

implemented in this paper. 

4) Termination conditions

When optimum (minimum by default) of the

optimization problem under test is known, it is very 

natural to terminate the search when the objective is met. 

It is mathematically formulated as: 

𝑓(𝐱) − 𝑓(𝐱∗) ≤ 𝜀,
where f(x*) is the known minimum, and  is the threshold 

value to reach. For most engineering optimization 

problem,  = 0.01. 

The optimum of some toy functions and most 

benchmark application problems is yet to determine. In 

this case, the second termination condition, time limit, 

is introduced straightforwardly. Due to its difficulty to 

implement across platforms, limit of number of objective 

function evaluations has been proposed as an equivalent 

alternate. In this paper, it is set as 2000 times the problem 

dimension.  

5) Performance indicators

Three performance indicators, reliability, efficiency,

and robustness are defined in descending order of 

priority to quantify performance of tested DE strategies. 

Reliability refers the capability to find the optimum of 

the concerned optimization problem, efficiency refers to 

the number of objective function evaluations before the 

optimum is successfully located, while robustness refers 

to the sensitivity of reliability and efficiency with respect 

to intrinsic control parameters of concerned optimization 

algorithms and/or other control parameters in the 

parametric study system. Due to page limitation, explicit 

and physically meaningful quantitative definition of the 

three performance indicators will be presented in a new 

book by this author, hopefully published by John Wiley 

& Sons and/or IEEE Press. 

IV. NUMERICAL RESULTS AND INSIGHTS

A. Profile reconstruction

All profiles considered in [4] were re-simulated here.

Due to non-uniqueness of the problem and stochastic 

nature of DE, special attention is given to consistency of 

successfully reconstructed profiles to address the effect 

of non-uniqueness and randomness. 

Although the final optimization parameters x and the 

corresponding objective function value f(x) obtained by 

successful searches are diverse, in terms of the final 

reconstructed profiles, all participating DE strategies 

perform perfectly. In all noiseless synthetic reconstruction, 

true profiles are successfully reconstructed to the 

acceptable engineering accuracy  if DE converges. In 

real reconstruction, the objective function value cannot 

go below  because of noise in the measured scattered 
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electric fields. As a matter of fact, f(x*) = h >  where x* is 

the true profile. Fortunately, the reconstructed profiles x 

agree quite well with those given in [4] when f(x) ≤ h + . 
 

B. Parametric study 

Our attention in this paper is focused on evaluating 

DE instead of solving the benchmark electromagnetic 

inverse scattering problem. Therefore, besides the 

reconstructed profiles, we are more interested in the 

statistical characteristics of the reconstruction process. 

The representative reliability and efficiency of DE is 

shown in Fig. 5. For consistency with [9], reliability here 

is represented by the percentage of total number of 

successful searches (TNSS) among all searches and the 

percentage of number of successful trials (NST) among 

all trials. Similarly, efficiency in Fig. 5 is defined as the 

minimal average number of objective function evaluations 

(MANOFE) of all successful trials. The presented results 

show DDE significantly outperforms CDE in terms of 

both reliability and efficiency. 
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Fig. 5. Reliability and efficiency of differential evolution 

solving benchmark electromagnetic inverse scattering of 

a perfectly conducting circular cylinder. 

 

It is also observed from obtained numerical results 

that: 

(a) DE strategies with best differential mutation base 

show better performance than those with random 

differential mutation base; 

(b) DE strategies with exponential crossover perform 

better than those with binomial crossover. The 

aforementioned statements about crossover are 

inconsistent with numerical results. 

Due to page limitation, full set of performance has 

been scheduled to be published in this author’s next 

monograph. 

 

1) Optimal intrinsic control parameters 

It is observed from Fig. 5 that the reliability of DE 

presents a shape of bell with respect to population size. 

Thus, although a larger population may be more diverse, 

extra-large population does not necessarily mean better  

performance. 20-80 seems acceptable for DDE while the 

optimal population size of CDE belongs to a much 

narrower range due to its much stronger sensitivity of 

efficiency with respect to population size. In another 

word, DDE is more robust. 

The optimal mutation intensity and crossover 

probability corresponding to the most efficient successful 

trial is shown in Fig. 6. DDE prefers remarkably weaker 

mutation which is reasonable because dynamic evolution 

introduces more diversity into the population. In addition, 

both CDE and DDE prefer full or nearly full crossover 

which implies an important role of crossover in DE.  

The stronger and more inconsistent change of optimal 

mutation intensity and crossover probability of CDE  

in the vicinity of its optimal population size further 

demonstrates DDE’s robustness. 
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Fig. 6. Optimal mutation intensity and crossover 

probability. 

 

2) Parametric crime 

Robustness, or sensitivity of performance of DE 

with respect to its intrinsic control parameters at the 

vicinity of its optimal values has long been known an 

important issue. Intuitively, DDE can be observed from 

Fig. 5 more robust than CDE.  

Essentially, the parametric study here involves two 

important aspects: identifying optimal values of intrinsic 

control parameter and quantifying robustness of DE  

at its vicinity. By now, this author is still working on  

a quantitative performance indicator to represent 

robustness. A promising candidate might be the safe 

zone borrowed from the idea of beam width or bandwidth 

in electromagnetics. 

Although experiences show that DE is more robust, 

or less sensitive with intrinsic control parameters, 

underestimating or even ignoring it is by no means wise 

and might result in false and misleading conclusions.  

It implies flat performance throughout viable range of 

intrinsic control parameters which is absolutely not true. 

Such a misconduct is termed as parametric crime as 

sketched in Fig. 7 in analogy to inverse crimes in inverse 

problems. 
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Fig. 7. Parametric crime. 

Assume that algorithms A and B are compared with 

each other. Both of them involve an intrinsic control 

parameter. Obviously, algorithm A is better than B. 

However, if algorithm B at B1 is compared with 

algorithm A at A2, a false conclusion that algorithm B 

outperforms algorithm A will be drawn. 

In Fig. 5, the efficiency of CDE for Np < 100 is 

observed better than that of DDE for Np = 400. Obviously, 

it is not true that CDE is better than DDE. 

3) Stochastic crime

As a member of stochastic optimization algorithms,

the process of a single run of DE is hardly reproducible. 

One might converge while the other fails although all 

settings are exactly the same. Likewise, two successful 

runs are very likely to have completely different 

converging process. In this regard, it would be a serious 

misleading conduct to define the performance of any 

stochastic optimization algorithm as the one of a single 

run. Similarly, such a misconduct is termed as stochastic 

crime. 

Stochastic crime might also lead to reversed false 

conclusion about competing optimization algorithms. 

For example, in our practice, CDE only takes 720 

objective function evaluations to solve the benchmark 

electromagnetic inverse scattering problem of a single 

perfectly conducting circular cylinder in the most 

efficient run, while one of the successful DDE runs takes 

1280 objective function evaluations to solve the same 

problem. One might accordingly claim false advantage 

of CDE against DDE. In fact, the average number of 

objective function evaluations of CDE and DDE is 

1248.8 and 625.07 respectively. The claim of advantage 

of CDE against DDE is apparently false. 

V. CONCLUSIONS
In this paper, the benchmark electromagnetic 

inverse scattering problem is re-visited from a big data 

perspective. It serves as the benchmark application 

problem in systematic parametric study of DE. 

Preliminary numerical results re-confirm the advantage 

of dynamic evolution. Best differential mutation base 

and exponential crossover are also observed more 

competitive. 
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