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Abstract ─ A new shortest path source recovery 

algorithm is presented for source signal recovery issue 

in underdetermined blind source separation, by which 

the source signals can be recovered in case the observed 

signals are no less than two dimensions. In this 

algorithm, two adjacent observed signals are taken 

everytime among m observed signals, marked as the thi

and 
thj  signals, and form a two-dimensional observed 

signal combination, 1,2, , 1, 1i m j i    . The first 

and 
thm  signals are used to form another two-

dimensional observed signal combination, then m two-

dimensional observed signal combinations are obtained. 

The number of source signals is n, the n signals can be 

obtained respectively after signal recovery by using each 

two-dimensional observed signal combination A matrix 

(i.e.,  
T

ˆ ˆ ˆ ˆ ˆ( , ,:) (1,1,:), (1,2,:), , (1, ,:), (2,1,:), , ( , ,:)p q n m ns s s s s s ) 

which is a mn-dimensional vector combination matrix 

can be obtained using each signal combination A 

mnmn-dimensional square matrix can be gotten by 

calculating the vector angle between rows of 

( , ,:)p qs matrix, for the first n rowsmn columns,

position the vector where the matrix elements are 

between 0 and
0 . The mean is calculated for the signal 

vector with angle smaller than 
0 as the estimate of the

source signals. Thus, the estimates (1,:), (2,:), , ( ,:)ns s s  

of n source signals can be obtained eventually. The 

method presented provides a new option for solving 

underdetermined blind source signal recovery problem. 

Index Terms ─ Shortest Path Method, Source Signal 

Recovery, Sparsity, Underdetermined Blind Source 

Separation. 

I. INTRODUCTION
Underdetermined blind source separation (UBSS) 

is a kind of signal processing techniques to estimate the 

source signals only using observed signals when the 

source signal prior information and propagation channel 

parameters are unknown and the number of the 

observed signals is smaller than the source signals. 

Recently underdetermined blind source separation has 

become a research hotspot in international signal 

processing community, which is generally applicable 

to the fields of biomedicine, mobile communication, 

radar signal processing, underwater acoustic signal 

processing, image processing, voice signal processing, 

and mechanical fault diagnosis, etc. For example, in the 

field of communication, it can be used for code division 

multiple access multi-user detection, interference 

suppression, noise cancellation, etc. to improve the call 

quality; in the field of radar signal processing, it can be 

used for distributed radar interference suppression, 

signal sorting, etc. to improve echo Signal anti-

interference ability, realize radar, communication signal 

sorting, etc. under the condition of lack of prior 

information, spectrum aliasing, and on the same 

frequency [1,2]. But it is also a difficulty issue due to 

the number of the observed signals is always smaller 

than the source signals. The way for solving this 

problem generally divided into two steps: estimate the 

mixing matrix using observed signals, then recovery the 

source signals employing the mixing matrix estimated 

and observed signals [1,2]. The inverse matrix cannot 

be solved directly to recovery source signals since 

the mixing matrix is underdetermined. Therefore, the 

recovery of source signal is a complex issue. The 

recovery result of the source signals directly relates to 

the signal blind separation processing. In short, source 

signal recovery algorithm research is of important 

theoretical and practical significance. 

In [3-5], it is assumed the source signals have strict 

orthogonality or quasi-orthogonality in time-frequency 

domain, which means they are not coincident or 

almost not coincident at some points, and the source 

signal separation is realized by time-frequency mask. 

Degenerate unmixing estimation technique (DUET) 

presented by Yilmaz et al. [3] is a typical time-

frequency masking method. The DUET proposed by 

Cobos et al. [4] improves the accuracy in signal 

separation. However, both the methods presented are 

only applicable to the situation when the observed 
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signals are two dimensional. In [5], the hypothesis of 

orthogonality is relaxed, and it is only required that the 

number of source signals that exist concurrently at the 

time-frequency point is smaller than observed signals. 

The assumptions are further relaxed in [6], in which it 

is only required that the number of the source signals 

existed concurrently at the time-frequency point is 

no more than the sensors. The main problem of these 

methods is the requirements on strict orthogonality 

or quasi-orthogonality of signals in time-frequency 

domain are still too rigid. 

Bofill et al. [7] presented a source signal sparsity-

oriented shortest path source signal recovery algorithm 

which is simple and efficacious, yet it is only applicable 

to two-dimensional observed signal. Georgiev et al. [8] 

proved that, 
1l norm minimizing method is equivalent

to the shortest path method. The main problem of the 

shortest path is only applicable to the two-dimensional 

observed signals. 

Xiao et al. [9] presented a statistically sparse 

decomposition principle (SSDP). The source signal is 

estimated using correlation coefficient of minimized 

source signal within a fixed time interval in the 

algorithm. It is required the number of non-zero source 

signals within the interval no more than two, thence it is 

not applicable to the recovery of underdetermined 

source signals that are not sufficiently sparse. Zhao et 

al. [10] expanded SSDP algorithm and obtained 

the Statistically Non-Sparse Decomposition Principle 

aimed at two-dimensional observed signals.  

Compressed sensing theory is also used for 

recovery of underdetermined blind source signal. When 

the estimate of the mixing matrix has been completed, 

the recovery of underdetermined blind source signal is 

similar to compressed sensing reconstruction model. Fu 

et al. compared the three methods (greedy algorithm, 

1l norm algorithm and smooth
0l norm algorithm) and

proposed SCMP algorithm and plane pursuit algorithm 

[11,12] which are more accurate and less time waste. In 

[13], a new algorithm based on artificial neural network 

was introduced. Compressed sensing theory is applied, 

with the main problem of requiring the source signals 

have high sparsity, large data sampling points, and high 

calculation load. 

In this paper, we propose a modified shortest 

path algorithm for UBSS problem. By employing the 

proposed algorithm, underdetermined blind source signal 

recover can be realized when the antenna array is more 

than or equal to two dimensions. The proposed algorithm 

provides a new technical approach to solve the difficulty 

of source signal recovery for UBSS. 

The remainder of the paper is organized as follows. 

Section Ⅱ presents the model for underdetermined blind 

source separation problem. Section Ⅲ gives the new 

source signal recovery method with the modified 

shortest path algorithm. Section Ⅳ describes simulation 

results that illustrates the effectiveness of the proposed 

method. Finally, the conclusions are drawn in Section 

Ⅴ. 

Ⅱ. MODEL FOR UNDERDETERMINED 

BLIND SOURCE SEPARATION 
The general goal of blind source separation is to 

recover source signals from observed signals. The 

aliasing of the source signals to observed signals may be 

linear instantaneous, convolutional or nonlinear. Research 

is carried out for linear instantaneous aliasing of source 

signals in this paper. It is assumed that, there are n 

source signals expressed as T

1 2( ) [ ( ), ( ),..., ( )]nt s t s t s ts , 

where the superscript T means transposition and it 

has the same meaning in the following. The number 

of signal sampling points is 01,2, ,t T . Signal 

aliasing will occur during the propagation of n source 

signals and the reception by sensors. The m observed 

signals received by antenna array are expressed as 
T

1 2( ) [ ( ), ( ),..., ( )]mt x t x t x tx . Any observed signal ( )tx  is 

the aliasing of the source signals ( )ts . The mathematical 

model of linear instantaneous aliasing blind source 

separation is: 

( ) ( ) ( ).t t t x As n (1) 

Where, the prior information of mixing matrix A and

source signals ( )ts cannot be measured, only ( )tx can 

be measured. ( )tn  refers to the additive noise aliased in 

the process of signal reception. 

When the number of observed signals m is smaller 

than the number of source signals n, the blind source 

separation is referred to as underdetermined blind 

source separation. The mixing matrix A is column 

dissatisfaction rank in underdetermined blind source 

separation, so ( )ts cannot be obtained by the inverse 

matrix of A. Therefore, source signal recovery issue is 

a huge challenge in underdetermined blind source 

separation. 

III. NEW SOURCE SIGNAL RECOVERY

METHOD WITH THE SHORTEST PATH

ALGORITHM 

A. Sparsity-based underdetermined blind source

signal recovery model

Blind source separation based on sparse 

representation can be used to solve the problem of 

underdetermined blind source separation. For blind 

source separation of sparse signals, it can be represented 

as below to seek for optimal solution: 

 
2

2,
,

1
min .

2
i

i t

t


 
A s

As x s  (2) 

Where, 2 is the noise variance, 
2

As x  is the sum 
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of square of reconstructed error. The final item is the 

non-sparse penalty (assuming the source signals are 

independent of each other). Many variables require 

optimization, and the model can be simplified as the 

following when the mixing matrix A is known:  

 
     

2

02

1
min , 1,2, , .

2

n

i
s t

i

t t t t T


   LAs x s   (3) 

In the absence of noise, equation (3) can be 

simplified as:  

 
  0min , 1,2, , .

n

i
t

i

t t T L
s

s  (4) 

The total optimization for underdetermined source 

signal recovery can be broken down into 
0T sub-

optimization items. 

B. Source signal recovery algorithm with the

shortest path method

The shortest path method is a simple and effective 

source signal recovery algorithm for underdetermined 

blind source separation. It is suitable for the recovery of 

the source signal which is sufficiently sparse and the 

observed signals is two-dimensional. When the source 

signals are not sufficiently sparse in the time domain, 

they can be sparsely represented adopting time-

frequency transformation or wavelet transformation 

method, therefore the source signal recovery can then 

be realized adopting the shortest path method. The 

source signal recovery issue can be converted into the 

solving of the optimization described below according 

to sparse component analysis theory:  

( )
1

1

min | ( ) |,

( ) ( ) ( ).

n

i
t

i

n

i i

i

t

t t t









  






s
s

x As a s

    (5) 

Where, ( )tx  is the observed signals and the number is 

m; A is the mixing matrix; the number of source signals 

is n; 
ia is the thi column of the mixing matrix and

( )i ts  is the thi source signal. To minimize
1

( )
n

i

i

t


 s  at 

the time is to carry out linear decomposition for the 

observed signals in the directions of two columns of the 

mixing matrix and to find out the shortest path from 

the origin to the observed signals. When there are two 

observed signals, the method to solve the question is 

shown in Fig. 1. For minimizing 
1

| ( ) |
n

i

i

t


 s  at the time, 

it can be known from Fig. 1, the shortest path from the 

origin to observed signal x is the two vectors (a and b), 

which are closest to the angle of x. 

x

A

B

b

a

o 1x

2x

c

tθ

Fig. 1. Schematic for the shortest path method for the 

two-dimensional observed signals. 

For the situation when there are more than two 

observed signals, the original shortest path method is 

improved in this paper, therefore it is applicable to 

the recovery of the source signals with two or more 

observed signals. The method is taking two adjacent 

observed signals every single time among m observed 

signals and express them as the thi  and 
thj  observed 

signals, where, 1,2, , 1, 1i m j i    , which means 

the observed signals processed each time is the 

combination of two adjacent observed signals, then 

1m combinations are obtained. The first and the thm

observed signals are taken to form another two-

dimensional observed signal combination. Then m two-

dimensional observed signal combinations can be 

obtained. For each combination, corresponding source 

signals can be recovered adopting the original shortest 

path method, then there are m groups of source signals 

recovered. As the number of source signals is n, then n 

signals can be obtained respectively by using each of 

the m two-dimensional observed signal combinations 

obtained from the original observed signals. Assuming 

that the signals obtained from separation of each 

combination is expressed as ˆ( , ,:)i ks , where, 1,2, ,i m

refers to the serial number of each two-dimensional 

observed signal combination; 1,2, ,k n  is the serial 

number of the signal obtained from separation of each 

two-dimensional combination, :  refers to the number of 

sampling points. A new matrix is gotten using the 

signals obtained from the separation of the m groups, 

and it can be expressed as:  
Tˆ ˆ ˆ ˆ ˆ( , ,:) [ (1,1,:), (1,2,:), , (1, ,:), (2,1,:), , ( , ,:)]p q n m ns s s s s s . 

     (6) 

( , ,:)p qs  is a 
0mn T  dimensional vector combination 
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matrix. mn refers to the number of the separated 

signals. 
0T  refers to the number of sampling points of 

the signal.  

For matrix ( , ,:)p qs , calculating the vector angles 

between its rows, then a mnmn-dimensional square 

matrix Q can be obtained. For the first n rowsmn 

columns of the square matrix, check if the matrix 

element is between 0 and threshold value 
0 . If yes, it 

means that the intersection angle of the signals in 

matrix ( , ,:)p qs  is smaller than 
0 , which reflects the 

strong similarity of the signals. The mean of the signal 

with angles less than 
0  can be calculated respectively 

as the estimate of the source signals. Thus, the estimates 

(1,:), (2,:), , ( ,:)s s s n  of n source signals (the source 

signals to be recovered) are gotten eventually. 

The threshold 
0  is a critical parameter in this 

algorithm. When determining 
0 , it should consider if 

the mixing matric can be estimated accurately. In this 

paper the threshold is determined based on the research 

of Zayyani et al. [14] and Cramér–Rao bound of mixing 

matrix. The threshold should be larger than the least 

angle that the mixing matrix can be estimated correctly. 

The extensive simulations show that the algorithm 

proposed in this paper has good robustness when the 

threshold 
0  is larger. The simulation shows that, when 

the value of 
0  is within 

o o[15 ,35 ] , the difference of 

source signals recovery result is not obvious. A larger 

0  is more favourable for signal recovery results since 

more signals can be integrated to obtain the estimates of 

source signals.  

Specific steps of the algorithm presented in this 

paper are shown as follow: 

Step 1: Pre-processing is carried out for the 

observed signals ( )tx , which can remove the column 

vectors with all components are zero. Then unification 

of direction is conducted.  

Step 2: In m observed signals ( )tx  obtained from 

one measurement, T

1 2( ) [ ( ), ( ), , ( )]mt t t tx x x x , the 

sampling time 
01,2, ,t T . Two adjacent observed 

signals ( )i tx  and ( )j tx  are selected each time, 

1,2, , 1i m  , 1j i  . The first and the mth  

observed signals are taken to form a two-dimensional 

observed signal combination. Then m two-dimensional 

observed signal combinations can be obtained in total, 

which are expressed as
T( ) [ ( ), ( )]k i jt t tx x x respectively, 

where, 1,2, ,k m ; 

Step 3: Calculate the angle of each base vector of 

mixing matrix A: the angle of base vector is defined  

as 1 2 1tan ( / )j

j j 
A

A A , 
jA  refers to the thj  column 

vector of the mixing matrix, 1,2, ,j n ; n is the 

number of source signals, the superscripts 2 and 1 mean 

the second and the first row of the column vector 

respectively;  

Step 4: The angle of the observed signal vector t
x  

in each combination is calculated respectively adopting 

the original shortest path algorithm for the combination 

of m two-dimensional observed signals at each 

observed moment; 

Step 5: Find out the two base vector angles closest 

to the observed signal vector angle t  at the moment, 

and record the two row vectors i
a  and i

b  in 

corresponding mixing matrix, where, ,i i a b A  and i 

refers to the serial number of the thi  combination in the 

m combinations, 1,2, ,i m ;  

Step 6: Assume [ ]i i

r A a b , 
rA  refers to a 

submatrix of 2×2 formed by two rows of i
a  and i

b  in 

mixing matrix A. i
a  and i

b  are the two vectors closest 

to t
x  at the moment of t, then make 1

r r

W A ; 

Step 7: The source signals at sampling moment t 

are recovered using the following equation:  

  
.

t t

r r

t i i

j

= ,

=0 for j ,

s W x

s b a
                     (7) 

Where, t

rs  is the component of x in the directions of 

vector i
a  and i

b ; 

Step 8: For each two-dimensional observed  

signal combination T( ) [ ( ), ( )]k i jt t tx x x , 1,2, ,k m , 

corresponding source signals are recovered adopting the 

original shortest path method, and there are m groups  

of source signals recovered. As the number of source 

signals is n, so n signals can be obtained after recovery 

by using each of m two-dimensional observed signal 

combinations. Assuming the signal obtained from 

separation of each combination is expressed as ˆ( , ,:)i ks , 

where, 1,2, ,i m  refers to each two-dimensional 

observed signal combination; 1,2, ,k n  refers to the 

signal obtained from separation of each two-dimensional 

combination; :  means the number of sampling points;  

Step 9: A new matrix is formed using the signals 

obtained from the separation of m two-dimensional 

observed signal combinations, which can be expressed as 

Tˆ ˆ ˆ ˆ ˆ( , ,:) [ (1,1,:), (1,2,:), , (1, ,:), (2,1,:), , ( , ,:)]p q n m ns s s s s s . 

( , ,:)p qs  is a 
0mn T -dimensional vector combination 

matrix. 

Step 10: A mnmn-dimensional square matrix Q 

can be obtained by finding the angle between the row 

vectors of matrix ( , ,:)p qs . For the first n rowsmn 

columns of the square matrix, check if the matrix 

element is larger than 0 but smaller than 
0 , meaning 

WANG, JIA: SIGNAL RECOVERY METHOD FOR UNDERDETERMINED BLIND SOURCE SEPARATION 409



that the angle of the single vector in matrix ( , ,:)p qs

is smaller than 
0 . The mean is calculated for the

signal vectors with angle smaller than 
0 as the

estimate of the source signal. Thus, the estimates 

(1,:), (2,:), , ( ,:)ns s s  of n source signals (i.e., the 

source signals to be recovered) can be obtained 

eventually.  

IV. SIMULATION AND ANALYSIS
The simulation platform is a DELL9020MT 

computer, Intel(R) Core(TM) i7-4770 CPU @3.40GHz, 

64-bit Windows operating system. MATLAB software

is used for the simulation experiment. The signal-to-

noise ratio of the observed signals changes from 8 to

20dB and Monte Carlo simulation at each signal-to-

noise ratio is carried out for 500 times. The performance

indexes for evaluating the recovery effect of the source

signal include the average separated signal to interference

ratio SIR (SIR )imean  and the average similarity 

coefficient ( )ijmean  , , 1,2, ,i j n . Where, SIR  

and   are the separated signal to interference ratio 

and similarity coefficient respectively. The formulas for 

calculation of them are shown in (8) and (9), where, 

ˆ ( )i ts  and ˆ ( )j ts  are the thi  and thj signals respectively. 

( )i ts  refers to the thi source signal: 

 

0

2

1

2

( )

SIR 10lg .
ˆ ( ) ( )

T

i

t

i

i i

t

t t



 
 
 
 
 
 

 s

s s
,                  (8) 

0

0 0

1

2 2

1 1

ˆ( ) ( )

.

ˆ( ) ( )

T

i j

t

ij
T T

i j

t t

t t

t t




 





 

s s

s s

 (9) 

The threshold value 
0 for signal integration is set at

o20 . 

Experiment 1: 

There are 5 source signals. Assuming the source 

signals are sufficiently sparse in time domain, then the 

signal types and parameter settings are as follows: 

1s is a conventional pulse signal, carrier frequency 

=5 z1fc MH , pulse width r1 10t s , pulse repetition 

period 1 100r sT  , pulse start time 01 0t  ; 

2s is a conventional pulse signal, carrier frequency 

2 =5 zfc MH , pulse width 
2  7rt s , pulse repetition 

period 
2 100r sT  , pulse start time 

02 10t s ; 

3s is a linear FM signal, carrier frequency 

3 =5 zfc MH , pulse width 
3  10rt s , pulse repetition 

period 
3 100r sT  , pulse start time 

03 20t s , 

instantaneous bandwidth is 
3  10B MHz ; 

4s is a linear FM signal, carrier frequency 

4 =5 zfc MH , pulse width 
4  8rt s , pulse repetition 

period 
4  100rT s , pulse start time t04=30μs, intrapulse 

bandwidth 4   15B MHz ; 

5s is a sinusoidal phase-modulated signal, carrier 

frequency 
5 5cf MHz , pulse width 

5 8rt s , pulse 

repetition period 5 100rT s , pulse start time 

05 40t s , modulated signal frequency 
5 100af kHz , 

modulation index 5 5a  . 

The sampling frequency of the receiver is 50MHz; 

the number of sampling points is 10,000 and the 

dimensional of observed signals is 2. The mixing 

matrix is generated using rand function 

 0.3942    0.0162    0.9100    0.2152   -0.9458

-0.9190    0.9999   -0.4146    0.9766   -0.3246

 
  
 

A . 

When 2, 5m n  , there are two observed signals, the 

method proposed in this paper is actually the original 

shortest path method [7]. The source signals are 

recovered adopting the method mentioned in this paper 

and CMP method [15], L1CMP method [15] and RBF 

network method [16], and the results are shown in Figs. 

2 (a)-(c). 

Figure 2 shows that with the increase of signal-to-

noise ratio of observed signals, the signal to interference 

ratio and similarity coefficient of the signals obtained 

from recovery using different signal recovery algorithms 

tend to increase, meaning that the signal separation 

result is acceptable The separation effect adopting the 

method presented in this paper is slightly lower than 

CMP method but better than L1CMP and RBF network 

methods. As for calculation efficiency, it is reflected 

in Fig. 2 (c) that the calculation time of the method 

presented in this paper is obviously less than other 

methods.  
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Fig. 2. Comparison of the performance and calculation 

time of different methods when m=2 and n=5. (a) The 

average signal to interference ratio of separated signals. 

(b) The average similarity coefficient of separated 

signals. (c) The average calculation time. 

 

Experiment 2: 

The parameters and number of source signals are 

the same as Experiment 1. The sampling frequency  

of the receiver is 50MHz and the number of signal 

sampling points is 10,000. The dimensional of observed 

signals is three and the mixing matrix is generated 

using rand function,  

-0.1605    0.8133    0.8729    0.3014    0.2312

 0.8612   -0.4460    0.4247    0.8280    0.9358

-0.4823    0.3736    0.2401   -0.4728   -0.2662

 
 


 
  

A .

 
The recovery results of source signals by different 

methods are shown in Fig. 3. 

Figure 3 shows that the separation effect adopting 

the method proposed in this paper is better than the 

other three methods. The computing efficiency of the 

method is higher. 
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Fig. 3. Comparison of the performance and calculation 

time of different methods when m=3 and n=5. (a) The 

average signal to interference ratio of separated signals. 

(b) The average similarity coefficient of separated 

signals. (c) The average calculation time. 
 

Experiment 3: 

There are 7 source signals. Assuming the source 

signals are sufficiently sparse in time domain, and the  
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signal types and parameter settings are as follows: 

1s is a nonlinear FM signal, carrier frequency 

1 10cf MHz , pulse width 
1 16rt s , pulse repetition 

period 1 200rT s , instantaneous bandwidth
1 10B MHz , 

pulse start time 01  0t  ; 

2s is a conventional pulse signal, carrier frequency 

2 8cf MHz , pulse width 2 15rt s , pulse repetition 

period 2 180rT s , pulse start time 02 20t s ; 

3s is a linear FM signal, carrier frequency 

3 5cf MHz , pulse width 3  15rt s , pulse repetition 

period 3 180rT s , pulse start time 03 40t s , 

intrapulse bandwidth 3 20B MHz ; 

4s is a linear FM signal, carrier frequency 

4 5cf MHz , pulse width 4 20rt s , pulse repetition 

period 4 180rT s , pulse start time 04  60t s , 

intrapulse bandwidth 4 15B MHz ; 

5s is a sinusoidal phase-modulated signal, carrier 

frequency 5 5cf MHz , pulse width 5 20rt s , pulse 

repetition period 5 200rT s , pulse start time

05 80t s , modulation frequency 5 200af kHz , 

modulation index 5 5a  ; 

6s is a sinusoidal phase-modulated signal, carrier 

frequency 6 5cf MHz , pulse width 6 15rt s , pulse 

repetition period 6 200rT s , pulse start time 

06 100t s , modulation frequency 6 200af kHz , 

modulation index 
6 2a  ; 

7s is a nonlinear FM signal, carrier frequency 

7 15cf MHz , pulse width 7 20rt s , pulse repetition 

period 7 200rT s , intrapulse bandwidth 7  5B MHz , 

pulse start time 07 115t s . 

The sampling frequency of the receiver is 50MHz; 

the number of sampling points is 10,000 and the 

dimensional of observed signals is 4. The mixing 

matrix is generated using rand function, 
-0.5224   -0.4859    0.1343   -0.3511    0.4795    0.0934    0.2742

 0.2835   -0.5464   -0.4342   -0.1150   -0.7562   -0.6842   -0.0333

 0.5654    0.0297    0.7147    0.6674    0.4023    0.6325   -0.6
A =

892

-0.5719   -0.6815    0.5316    0.6466    0.1906    0.3508    0.6698

 
 
 
 
 
 

. 

The recovery results of source signals by different 

methods are shown in Fig. 4. 

Figure 4 shows that the separation effect adopting 

our method is slightly lower than the other three 

methods, but the signal to interference ratio of 

separation and similarity coefficient obtained using our 

algorithm are sufficient to accurately separate 7 source 

signals from 4 observed signals, with the law of the 

computing efficiency is generally the same as 

Experiment 2. 
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Fig. 4. Comparison of the performance and calculation 

time of different methods when m=4 and n=7. (a) The 

average signal to interference ratio of separated signals. 

(b) The average similarity coefficient of separated

signals. (c) The average calculation time.

Experiment 4: 

There are 5 source signals, and the source signals 

are not sufficiently sparse in time domain. Wavelet 
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transform is used for sparse representation of source 

signals in this paper. The source signal types and 

parameter settings are as follows: 

1s is a traditional pulse signal, carrier frequency 

1 5cf MHz , pulse width 
1  100rt s , pulse repetition 

period 
1 400rT s , pulse start time 

01 0t  ; 

2s is a traditional pulse signal, carrier frequency 

2 20cf MHz , pulse width 
2 100rt s , pulse 

repetition period 
2 400rT s , pulse start time 

02  0t  ; 

3s is a linear FM signal, carrier frequency 

3 20cf MHz , pulse width 
3 50rt s , pulse repetition 

period 
3  200rT s , pulse start time 

03 100t s , 

intrapulse bandwidth 3  5B MHz ; 

4s is a linear FM signal, carrier frequency 

4 60cf MHz , pulse width 
4  50rt s , pulse repetition 

period 
4 200rT s , pulse start time 

04 150t s , 

intrapulse bandwidth
4  5B MHz ; 

5s is a sinusoidal phase-modulated signal, carrier 

frequency 
5 15cf MHz , pulse width 

5  50rt s , pulse 

repetition period 
5  200rT s , pulse start time

05 150t s , modulation frequency 
5 200af kHz , 

modulation index 5 1a  . 

The sampling frequency of the receiver is 

200MHz; the number of sampling points is 40,000. The 

values of two source signals at some moments are not 

zero, at some moments, only the value of one source 

signal is non-zero, while the values of other source 

signals are all zero, that is, the source signals are not 

sufficiently sparse in time domain. The mixing matrix 

is generated using rand function, 

0.4638 -0.6693 -0.9474 0.3031 -0.6117

= -0.5711 -0.4033 0.0377 -0.0828 -0.7777

0.6773 0.6240 -0.3177 -0.9494 0.1454

 
 
 
  

A . 

Figure 5 (a) and Fig. 5 (b) show the results by two 

processing methods, which are adopting the proposed 

shortest path method based on wavelet transformation 

and adopting the proposed shortest path method 

directly. The wavelet basis function is “dmey” and the 

wavelet is decomposed into 6 layers.  

We can see that from Fig. 5, when the source 

signals are not sufficiently sparse in time domain, time 

domain separation signals can be obtained by seeking 

for sparse representation of the source signals using 

wavelet packet transformation. When compared with 

the source signal recovery result adopting our method 

directly in time domain, the recovery effect of the 

former processing method is obviously better. 

The algorithm proposed can be used when there are 

two or more observed signals. In the shortest path 

method presented, ideal source signal recovery can be 

realized with high computing efficiency when the 

source signal is sufficiently or not sufficiently sparse in 

time domain. When the source signal is not sufficiently 

sparse, sparse representation can be used for the 

observed signals. When the source signal is sufficiently 

sparse in the transformation domain, the proposed 

algorithm can be used for source signal recovery.  
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Fig. 5. Performance comparison of different methods 

when m=3 and n=5. (a) The average signal to 

interference ratio. (b) The average similarity coefficient. 

V. CONCLUSIONS
The shortest path method is a recovery algorithm 

for underdetermined blind source separation with good 

effect. It has the advantages of short computational time 

and high signal recovery accuracy. A new shortest path 

source signal recovery algorithm is presented based on 

the defect that the traditional shortest path method can 

only be used for the case with two observed signals. 

Underdetermined blind source signal recover can be 

realized when there are two or more observed signals 

by employing the proposed algorithm. The feasibility of 

the algorithm is validated by simulation experiments, 

and the proposed algorithm has high computing 
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accuracy and low time complexity. 
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