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Abstract – A method of simulating the insertion loss
of different channel configurations of structured Ether-
net cabling with reference to standard specifications is
presented. The method can aid cable engineers in the
study of the performance of Ethernet cabling systems
during standardization in order to have a view of what
to expect in real life. The paper considered the standard
category 8 cabling system as a case study. The method
presented used the scattering parameters implemented in
Matrix Laboratory (MATLAB) to model the insertion
loss of standard category 8 cabling system. The inser-
tion loss simulation results provided good agreements
with the standard category 8 cabling system. The method
presented will serve as a basis to cable engineers who
want to study future structured cabling systems under
standardization to aid the design of prototype Ethernet
cables.

Index Terms – Category 8 cabling, Ethernet cables,
insertion loss, scattering parameters, structured
cabling.

I. INTRODUCTION
Cable engineers and designers often seek for a way

of simulating cable performance with reference to the
specifications provided [1, 2] during standardization.
The ability to effectively simulate and predict the cable
performance is not only needed to have a view of what to
expect in real life but also to aid the design and manufac-
ture of the cables. There is the need for cable engineers to
study the characteristics of the cable by simulating their
performance using the specifications and data provided
before their eventual prototype design. This research
used the category 8 cabling standard as a case study to
model the insertion loss based on the specifications and
data provided by the IEEE Task Force on standardization
of the cable [2, 3]. Although a method of predicting the
insertion loss of the structured Ethernet cabling system
has been provided in [4], this paper extends it further by
providing simulations, which enhances the study of the
effects of patch cord and backbone cable lengths on the
insertion loss of different channel configurations. This is

to enable a comparison between the different channel
configurations.

Insertion loss (attenuation) is a measure of the
decrease in signal strength along the length of a trans-
mission line or channel [5]. When it comes to transmit-
ting data over twisted pair wired channels, Ethernet is
the technology widely used [6]. Ethernet is now used in
Internet of Things for homes, industries, public places,
etc. [7]. The 40GBASE-T is the next generation follow-
ing the 10-Gigabit Ethernet over twisted pair cabling [8].
The 40GBASE-T system is being supported by category
8 twisted pair cable and is expected to have a maximum
length of 30 m [9]. The Telecommunications Industry
Association (TIA) in collaboration with the International
Organization for Standardization/International Electro-
Technical Commission (ISO/IEC) worked on creating
the category 8 cabling and connector specifications under
the IEEE 802.3bq task force [8]. The effort of the
IEEE 802.bq Task Force with the TIA and the ISO/IEC
resulted in the publication of the category 8 cabling stan-
dard which specifies how the 40GBASE-T cabling sys-
tem is expected to operate with two connectors at a maxi-
mum frequency of 2000 MHz [1, 3]. These specifications
provided by the ISO/IEC and the TIA for the category 8
standard will be used to provide a method of simulating
the channel insertion loss of the structured cabling using
the scattering parameters.

The scattering parameters have been used exten-
sively for modeling, characterization, and design of
microwave devices and networks. It has also been
applied to transmission line network behavior design and
analysis [10, 11]. The major advantage of scattering
parameters is that it permits flexibility in design and can
be used to analyze cascaded cable performance [11]. The
category 8 topology has been specified to consist of two
connectors that have effects on the overall loss and the
insertion loss deviation due to the channel. These losses
due to the connectors will be factored into the chan-
nel insertion loss modeling using the scattering parame-
ters which presently does not have expressed provisions
for it. The demand for higher Gigabit Ethernet cabling
system was driven by the need for increasing access

Submitted On: August 27, 2021
Accepted On: March 21, 2022

https://doi.org/10.13052/2022.ACES.J.370409
1054-4887 © ACES

https://doi.org/10.13052/2022.ACES.J.370409


OGUNDAPO, NCHE: MODELING THE INSERTION LOSS OF STRUCTURED ETHERNET CABLING STANDARD 436

speeds across networks and higher rate throughput by
data centers [13]. This is due to increasing demand for
data bandwidth in the area of visualization, cloud com-
puting, big data analytics, video-on-demand, etc. [9, 13].

The S-parameters can be expressed in terms of trans-
mission line wave propagation characteristics as [14]
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In eqn (1) and (2), Ze is the characteristics
impedance of the test equipment in ohms, Zc is the cable
or patch cord impedance in ohms, γk is the propagation
constant, and l is the cable length in meters.
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The propagation constant (γk) is given in [4] and
[15] as

γk=αk+βk. (4)
The phase constant (β k ) is expressed in [4] and

[15] as
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where the velocity of propagation constant (Vpk) is given
in [15] as
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The attenuation (Atk) for 100-m cable is expressed
in [12] and [15] as
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Therefore, the attenuation constant per meter is
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The mathematical relationship between the S-
parameters and the T-parameters that can be used to
convert S-parameters to T-parameters and vice versa is
expressed in [10] and [14] as
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Insertion loss (αL) =−20.log10 |S21|dB. (13)
This research, therefore, provides a method that can

be used to simulate the channel insertion loss of struc-
tured cabling standard and also study the effects of patch
cords and cable lengths on the insertion loss. Different

channel configurations were compared with each other
to observe the effect on the insertion loss. All these sim-
ulations are in reference to the category 8 (40GBASE-T)
cabling specifications using scattering parameters imple-
mented in Matrix Laboratory (MATLAB).

II. MATERIALS AND METHODS
A. Category 8 channel configuration

The schematic diagram of the category 8 channel
configuration as presented in [1], [2], and [4] is shown
in Figure 1.

Note: A1 and A2 are the equipment cords or patch
cords; C1 and C2 are the hardware connectors; B is hor-
izontal cabling under consideration.

The maximum length requirement as given in [1] is

A + C (see Table 1)

B: 24 m (79 ft).

The specifications considered for this research are
presented in [2]–[4] as follows:
Channel insertion loss = 2 × connecting hardware IL+
cable IL+ILDchannel(dB), (14)
where IL means the insertion loss and ILDchannel is the
insertion loss deviation due to the channel.

The backbone cabling insertion loss for a 100-m
length is
Cable IL (100 m)= 1.8 ×

√
f +0.005 × f

+
(
0.25/

√
f
)

(dB), for:
1 (MHz)≤ f (MHz)≤ 2000 (MHz) . (15)

The insertion loss due to the connecting hardware is as
follows:

0.02 ×
√

f (dB) for:
1(MHz)≤ f (MHz)≤ 500(MHz), (16)

0.008 ×
√

f+0.00029 × f+0.5 × 10−6 × f 2 (dB) for
500 (MHz)> f (MHz)≤ 2000 (MHz) . (17)

The patch cord insertion loss is
Patch cord cable (IL)= 1.2× (cable IL) (dB) . (18)

The insertion loss deviation due to the channel is
ILD (channel)= 0.0324 ×

√
f (MHz) (dB) . (19)

The modifications provided to the insertion loss
deviation of the channel to ensure good agreement with
the category 8 cable specifications are
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Fig. 1. Category 8 horizontal channel configuration. 

Note: A1 and A2 are the equipment cords or patch 
cords; C1 and C2 are the hardware connectors; B is 
horizontal cabling under consideration.  

The maximum length requirement as given in [1] is 
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B: 24m (79ft) 

Table 1: Cord thickness (AWG) and maximum length 
allowed  

Fig. 1. Category 8 horizontal channel configuration.
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Table 1: Cord thickness (AWG) and maximum length
allowed

Cord (AWG) A + C (m)
22-23 8

24 6
26 4

0.00362 ×
√

f (dB) for:
1 (MHz)≤ f (MHz)≤ 500 (MHz) (20)

2.662 × 10−3 ×
√

f+3.19 × 10−5+5.5 × 10−8 × f 2

(dB) for 500(MHz)> f (MHz)≤ 2000 (MHz) . (21)

The overall channel insertion loss of category 8
(40GBASE-T) cabling system was determined using
eqn (13).

B. Application of the scattering parameters to model
the channel configuration

The schematic diagram of the scattering parameters
method for predicting the insertion loss of the category 8
channel configuration is shown in Figure 2.

In Figure 2, the S-parameters of the first patch cord,
backbone cable, and second patch cord are taken as S1,
S2, and S3 respectively.

To model the category 8 channel, the asymptotic
impedances of the channel components are presented in
[12] as cable asymptotic impedance (Zcba) = 104.5 ohms,
patch cord asymptotic impedance (Zcda) = 95.5 ohms,
and equipment asymptotic impedance (Ze) = 100 ohms.
These asymptotic impedances of the cable and patch
cords are multiplied with a heuristic impedance equation
which has been proven extensively to describe very well
the mean characteristics impedance values. This heuris-
tic impedance equation is expressed in [12] and [14] as

Zh=

[
1+0.055.

(1− j)√
fh

]
. (22)

Therefore, the new characteristic impedances of the
cable and patch cords are calculated as

Zcbah=Zcba × Zh (Ω) (23)
Zcdah=Zcda × Zh (Ω) . (24)

The S-parameters of the cable and patch cords can
now be determined individually using eqn (2).
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Fig. 2. Schematic diagram of the scattering 
parameterapproach. 
 
In Figure2, the S-parameters of the first patch cord, 
backbone cable, and second patch cord are taken as S1, 
S2, and S3 respectively.  
To model the category 8 channel, the asymptotic 
impedances of the channel components are presented in 
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The S-parameters of the cable and patch cords can now 
be determined individually using eqn (2).     

C. Concatenation of Channel Cables 
     The concatenation of the channel cables in Figure 2 
can be achieved by converting the S-parameters 
obtained from the two patch cords and the backbone 
cable into T-parameters and multiplying them 
sequentially as 
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      22−23            8 
24            6 
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Fig. 2. Schematic diagram of the scattering parameter
approach.

C. Concatenation of channel cables
The concatenation of the channel cables in Figure 2

can be achieved by converting the S-parameters obtained
from the two patch cords and the backbone cable into
T-parameters and multiplying them sequentially as

T=T1 × T 2 × T3. (25)

The equivalent T-parameters obtained from eqn (25) are
then converted back to S-parameters. The S-parameters
from this conversion can be used to determine the inser-
tion loss in decibels using eqn (13) in addition to the two
connecting hardware insertion losses and the insertion
loss deviation due to the channel.

III. RESULT OF THE MODELED
STRUCTURED ETHERNET CHANNEL
The model simulation of the S-parameters from all

the processes explained in Sections I and II was imple-
mented in MATLAB to see if they agree with the cate-
gory 8, 30m channel length prediction in [2]. The 3m-
24m-3m and 1m-24m-5m channel configurations were
used as samples for the S-parameter test simulation. The
results of the MATLAB simulation in Figures 3 and 4
show very good agreement with the standard category 8
prediction, indicating that the model can now be used for
a further analysis of the channel behavior.

A. Category 8 channel behavior under different con-
figurations

This paper studies the effect of patch cords and
cabling lengths on the channel insertion loss, which were
not considered in [4].

The equivalent T-parameters obtained from eqn (25) 
arethen converted back to S-parameters. The S-
parameters from this conversion can be used to 
determine the insertion loss in decibels using eqn (13) 
in addition tothe two connecting hardware insertion 
losses and the insertion loss deviation due to the 
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Fig. 3. Insertion loss for 3m-24m-3m channel. 

 

 

Fig. 4. Insertion loss for 1m-24m-5m channel. 

A. Category 8 Channel Behavior under Different 
Configurations  
     This paper studies the effect of patch cords and 
cabling lengths on the channel insertion loss, which 
were not considered in [4].  

The configurations considered are:  

(i) 3m-24m-3m, 2m-24m-2m and 1m-24m-1m                                        

(ii) 3m-24m-3m, 3m-22m-3m and 3m-20m-3m 

(iii) 3m-10m-3m, 2m-10m-2m and 1m-10m-1m 

(iv) 3m-24m-3m, 2m-10m-2m and 1m-3m-1m   

 

 

Fig. 5. Comparison of the 3m-24m-3m, 2m-24m-2m, 
and 1m-24m-1m channels. 
 
 

Fig. 3. Insertion loss for 3m-24m-3m channel.
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The equivalent T-parameters obtained from eqn (25) 
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V. CONCLUSION
This paper has presented a method that can be used

by cable engineers to simulate the insertion loss of struc-
tured cabling standard and also study the effects of patch
cord and backbone cable lengths on different channel
configurations. The method can be used to predict the
performance of different channel configurations of struc-
tured cabling standard which could aid the cable proto-
type design. The research used the category 8 cabling
standard as a case study. The insertion loss prediction
of the S-parameters model developed shows very good
agreements with that of the category 8 cabling standard.
The results also show that category 8 channel inser-
tion loss reduces with decreasing channel lengths from
either patch cords or backbone cabling or both. The
method provided can be extended to predict the insertion
loss of similar Ethernet cabling standards over structured
cabling.
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