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Abstract – A new approach for frequency-domain sen-
sitivity analysis of transmission lines is presented. The
propagation problem for the voltage sensitivity is con-
sidered and solved in terms of the closed-form Green’s
function of the 1-D wave propagation problem. This
leads to a closed-form solution for the voltage sensitivity.
The accuracy of the proposed method is verified by
comparison with the perturbation approach.
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I. INTRODUCTION

With the rapid increase in operating speeds, density,
and complexity of modern electronics, the effects of
interconnects such as delay, ringing and distortion have
become a dominant factor. As the rise-times in nowadays
interconnects may be few tens of picoseconds, distributed
lossy transmission line models must be used assuming the
quasi-TEM mode as the dominant one [1, 2].

At the design stage, it may be useful to compute not
only the response of the line to a given excitation, but also
its sensitivity with respect to a physical or geometrical
parameter. From this perspective, it is frequently required
that designers make the proper trade-off, often between
conflicting design requirements using optimization tech-
niques, to obtain the best possible performance [3].

Sensitivity analysis has been widely used in control
and circuit theory [4, 5]. An extensive research work has
been done over the recent years in the implementation of
sensitivity analysis techniques with full-wave electromag-
netic solvers for high frequency problems [6–14].

The knowledge of response derivatives is also crucial
for macro-modeling purposes [15]. In fact, recent ad-
vancements in macro-modeling techniques have demon-
strated that the use of response derivatives is effective to
speed-up the generation of macromodels of linear systems
while preserving the accuracy [16–18].

Although the application of full-wave techniques to
compute transmission lines sensitivity is surely feasible,
efficient use of computing resources is always to be
preferred and, when possible, analytical solutions are to
be considered. In this paper we present a new approach to
frequency-domain sensitivity of transmission lines which

is based on the use of the Green’s function of the 1-D
wave propagation problem. Telegrapher’s equations are
modified inorder to incorporate port currents as external
sources to the system. In [19] it has been shown that such
a technique allows to treat the Telegrapher’s equation as
a Sturm-Liouville problem for the voltage which can be
directly written in terms of the Green’s function of the 1-
D wave propagation [20]. Voltage and current sensitivities
satisfy the same Sturm-Liouville problem as voltages and
currents but with a different forcing term. Hence, the
same Green’s function can be adopted. The knowledge
of the closed-form Green’s function for the transmission
line problem permits to compute the voltage sensitivity
analytically, thus avoiding any numerical processing and
pawns the way to an accurate and efficient sensitivity
analysis. The proposed methodology is well suited to be
extended to the computation of higher-order sensitivities.

The paper is organized as follows. In Section II
the formulation is presented leading to the computation
of the voltage sensitivity in terms of the closed-form
Green’s function. Section III presents the computation of
derivatives and voltage sensitivities in a closed-form. Two
numerical examples are described in Section IV confirm-
ing the capability of the proposed approach to provide
a fast and reliable method to sensitivity of transmission
lines. The conclusions are drawn in Section V.

II. SENSITIVITY FORMULATION

Let us consider the transmission line illustrated in
Fig. 1.

The physics of transmission lines under the quasi-
TEM hypothesis is captured by the Telegrapher’s equa-
tions [1],

∂

∂z
v(z, t) = −R i(z, t)− L ∂

∂t
i(z, t) (1a)

∂

∂z
i(z, t) = −G v(z, t)− C ∂

∂t
v(z, t) + iS(z, t), (1b)

where R ∈ <, L ∈ <, C ∈ < and G ∈ < are
the per-unit-length (p.u.l.) parameters of the transmission
line, v(z, t) ∈ < and i(z, t) ∈ < represent the voltage
and current as a function of position z and time t,
and iS(z, t) describe a distributed current source along
the line. Differentiating (1a) and (1b) with respect to a
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Fig. 1. Transmission line with linear terminations.

parameter λ (where λ represents any electrical or physical
parameter of interest of the transmission line) yields the
following equations,

∂

∂z
v̂(z, t) =−R î(z, t)− L ∂

∂t
î(z, t) (2a)

−
(
∂R

∂λ
i(z, t) +

∂L

∂λ

∂

∂t
i(z, t)

)
∂

∂z
î(z, t) =−G v̂(z, t)− C ∂

∂t
v̂(z, t) (2b)

−
(
∂G

∂λ
v(z, t) +

∂C

∂λ

∂

∂t
v(z, t)

)
+

∂

∂λ
iS(z, t),

where the sensitivity variables in equations (2a) and (2b)
are defined as,

v̂(z, t) =
∂

∂λ
v(z, t) î(z, t) =

∂

∂λ
i(z, t). (3)

Transforming equations (1a), (1b), (2a) and (2b) in
the Laplace domain, we obtain,

∂

∂z
V (z, s) =− Zs(s)I(z, s) (4a)

∂

∂z
I(z, s) =− Yp(s)V (z, s) + IS(z, s), (4b)

∂

∂z
V̂ (z, s) =− Zs(s)Î(z, s)− ∂Zs(s)

∂λ
I(z, s), (4c)

∂

∂z
Î(z, s) =− Yp(s)V̂ (z, s)− ∂Yp(s)

∂λ
V (z, s)+

+
∂

∂λ
IS(z, s), (4d)

where the series impedance Zs(s) and the parallel admit-
tance Yp(s) of the line are defined as,

Zs(s) = R+ sL (5a)
Yp(s) = G+ sC. (5b)

Differentiating equation (4c) with respect to z we
obtain,

∂2

∂z2
V̂ (z, s) = −Zs(s)

∂

∂z
Î(z, s)− ∂Zs(s)

∂λ

∂

∂z
I(z, s).

(6)

If we substitute equations (4b) and (4d) in equation
(6), we can write,

∂2

∂z2
V̂ (z, s)− γ2(s) V̂ (z, s) =

∂γ2

∂λ
V (z, s)−

− Zs(s)
∂IS(z, s)

∂λ
− ∂Zs(s)

∂λ
IS(z, s) (7)

where

γ2 = Zs(s)Yp(s)
∂(γ2)
∂λ

=
(
Zs(s)

∂Yp(s)
∂λ

+ Yp(s)
∂Zs(s)
∂λ

)
.

(8)

In the following, the current sources IS(z, s) are
assumed to be located only in correspondence of the
terminations, yielding,

IS(z, s) = I0(z, s)δ(z) + Il(z, s)δ(z − l) (9)

where δ(z) represents the Dirac delta function.
Equation (7) represents a Helmholtz equation whose

formal solution can be obtained by using the Green’s
function approach. The computation of the forcing term
in equation (7) requires the evaluation of the derivative of
the p.u.l. parameters with respect to λ, the port currents IS
and the voltage distribution V (z, s). The latter expression
can be obtained through the standard transmission line
technique while the expression of the derivative of IS is
to be computed.

The transmission line can be represented as a multi-
port system with port voltages and currents at z = 0 and
z = l related by,[

V0

Vl

]
=
[
Z11 Z12

Z21 Z22

] [
I0
Il

]
(10)

where V0 and Vl are the voltage at the port z = 0 and
z = l. Furthermore, the termination conditions at the port
z = 0 and z = d, as shown in Fig. 1, read,[

V0

Vl

]
=
[
VS0

VSd

]
−
[
Z0 0
0 Zl

] [
I0
Il

]
(11)
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Combining equations (10) and (11) we obtain,[
I0
Il

]
=
([

Z0 0
0 Zl

]
+
[
Z11 Z12

Z21 Z22

])−1 [
VS0

VSd

]
(12)

The evaluation of the forcing term equation (7)
requires computing the port current sensitivities,

∂

∂λ

[
I0
Il

]
=

∂

∂λ

([
Z0 0
0 Zl

]
+
[
Z11 Z12

Z21 Z22

])−1 [
VS0

VSd

]
(13)

where voltage sources are assumed not depending on
the parameter λ. Although it can be obtained by first
computing the inverse of the global impedance matrix and
then evaluating the derivative, an elegant way to do that
is to separate the derivative from the matrix inverse. It
can be done observing that,

A(λ)A−1(λ) = I.

Hence, by the chain rule,

dA(λ)
dλ

A−1(λ) + A(λ)
dA−1(λ)

dλ
= 0

we obtain

dA−1(λ)
dλ

= −A−1(λ)
dA(λ)
dλ

A−1(λ).

This identity allows to calculate the current sensitivity
equation (12) as follows,

∂

∂λ

[
I0
Il

]
= −

([
Z0 0
0 Zl

]
+
[
Z11 Z12

Z21 Z22

])−1

∂

∂λ

([
Z0 0
0 Zl

]
+
[
Z11 Z12

Z21 Z22

])
([

Z0 0
0 Zl

]
+
[
Z11 Z12

Z21 Z22

])−1 [
VS0

VSd

]
. (14)

Equation (14) can be simplified since Z0 and Zl are
not depending from λ,

∂

∂λ

[
I0
Il

]
= −

([
Z0 0
0 Zl

]
+
[
Z11 Z12

Z21 Z22

])−1

∂

∂λ

[
Z11 Z12

Z21 Z22

]
([

Z0 0
0 Zl

]
+
[
Z11 Z12

Z21 Z22

])−1 [
VS0

VSd

]
. (15)

Again, although the derivative of the impedance
matrix [Z] can be computed relying on the standard
transmission line theory [1], a different approach can be
adopted which is based on the Green’s function method
[20] and pawns the way to the extension of the proposed
method to time-domain.

Assuming boundary condition of the Neumann type,
having incorporated port currents into sources IS(z, s),

a two-conductor transmission line is characterized by the
following closed-form Green’s function [20],

G(z, z′, s) = −cosh[γ(s)(l − z>)] cosh[γ(s)z<]
γ(s) sinh[γ(s)l]

(16)

where z> and z< indicate the greater and lesser of the
pair (z, z′), respectively, and γ is defined as,

γ =
√
ZsYp. (17)

It can be proved that the impedance matrix [Z] can
be expressed in terms of the Green’s function as,

[Z] =
[
G(0, 0, s)(−Zs(s)) G(0, l, s)(−Zs(s))
G(l, 0, s)(−Zs(s)) G(l, l, s)(−Zs(s))

]
.

(18)
Next, differentiating equation (18) with respect to λ,

we obtain the derivative of the Z matrix. The result is
shown at the top of the next page in equation (19).

The voltage distribution V (z, s) in equation (7) can
also be computed through the use of the Green’s function
as a function of the port currents,

V (z, s) =
[
G(z, 0, s)(−Zs(s)) G(z, l, s)(−Zs(s))

] [ I0
Il

]
(20)

The differential problem equation (7) can be regarded
as a Sturm-Liouville problem for the voltage sensitivity
V̂ (z, s) satisfying the same boundary conditions of Neu-
mann type as the voltage V (z, s). Indeed, the following
identities hold,

∂

∂z
V̂ (z, s)

∣∣∣∣
z=0

=
∂

∂z

∂

∂λ
V (z, s)

∣∣∣∣
z=0

=
∂

∂λ

∂

∂z
V (z, s)

∣∣∣∣
z=0

= 0 (21a)

∂

∂z
V̂ (z, s)

∣∣∣∣
z=d

=
∂

∂z

∂

∂λ
V (z, s)

∣∣∣∣
z=d

=
∂

∂λ

∂

∂z
V (z, s)

∣∣∣∣
z=d

= 0,(21b)

where the order of derivatives has been exchanged ac-
cording to Schwarz’s theorem being the partial derivatives
continuous. Hence, it can be claimed that the Green’s
function for the voltage sensitivity is the same as for the
voltage along the line. Hence, the voltage sensitivity can
be computed as convolution between the Green’s function
and the forcing term f(z′),

V̂ (z, s) =
∫ l

0

G(z, z′)f(z′)dz′ (22)

where

f(z′) =
∂(γ2)
∂λ

V (z′, s)− Zs(s)
∂IS(z′, s)

∂λ
−

− ∂Zs(s)
∂λ

IS(z′, s). (23)
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d

dλ
[Z] =


d

dλ
[G(0, 0, s)] (−Zs(s)) + G(0, 0, s)

d

dλ
[(−Zs(s))]

d

dλ
[G(0, l, s)] (−Zs(s)) + G(0, l, s)

d

dλ
[(−Zs(s))]

d

dλ
[G(l, 0, s)] (−Zs(s)) + G(l, 0, s)

d

dλ
[(−Zs(s))]

d

dλ
[G(l, l, s)] (−Zs(s)) + G(l, l, s)

d

dλ
[(−Zs(s))]


(19)

III. COMPUTATION OF DERIVATIVES

Using equations (18) and (19), we are able to com-
pute the [Z] matrix and its derivative d

dλ [Z] required for
the calculation of equation (15). For this purpose, we can
compute the derivative of Green’s function analytically,

d
dλ

[G(0, 0, s)] = d
dλ [G(l, l, s)] (24a)

=
dγ/dλ

γ2 sinh2(γl)
[lγ + sinh(γl) cosh(γl)]

d
dλ

[G(0, l, s)] = d
dλ [G(l, 0, s)] (24b)

=
dγ/dλ

γ2 sinh2(γl)
[sinh(γl) + lγ cosh(γl)] .

The function to be integrated in (22) reads,

F (z, z′, s) = G(z, z′, s)∂(γ2)
∂λ V (z′, s)−G(z, z′, s)(25)[

−Zs(s)∂IS(z′,s)
∂λ − ∂Zs(s)

∂λ IS(z′, s)
]

The computation of equation (25) can be split in
two terms F (z, z′, s) = F1(z, z′, s) + F2(z, z′, s), where
V (z′, s) is given by equation (20),

F1(z, z
′, s) =

∂(γ2)

∂λ
I0(−Zs(s)) ·G(z, z′, s) ·G(z′, 0, s)

+
∂(γ2)

∂λ
Il(−Zs(s)) ·G(z, z′, s) ·G(z′, l, s) (26a)

F2(z, z
′, s) =

[
−Zs(s)

∂I0
∂λ

δ(z′)− Zs(s)
∂Il

∂λ
δ(z′ − l)

− ∂Zs(s)

∂λ
I0δ(z

′)− ∂Zs(s)

∂λ
Ilδ(z

′ − l)

]
·G(z, z′, s),(26b)

where z is the abscissa wherein we compute the sensitivity
and z′ is the integration variable. Hence, the calculation
of the integral of F1(z, z′, s) depends on the products,

G(z, z′) · G(z′, 0) (27a)
G(z, z′) · G(z′, l) (27b)

Being interested to the voltage sensitivity at abscissa
z = 0 and z = l, it is useful exploiting the dependence
of equation (27) on the z′ coordinate, yielding,

G(0, z′) ·G(z′, 0) = K ·
[
cosh(2γl) cosh(2γz′)

− sinh(2γl) sinh(2γz′) + 1
]

(28a)

G(0, z′) ·G(z′, l) = K ·
[
cosh(γl) + cosh(γl) cosh(2γz′)

− sinh(2γz′) sinh(γl)
]
, (28b)

G(l, z′) ·G(z′, 0) = K ·
[
cosh(γl) + cosh(γl) cosh(2γz′)

− sinh(2γz′) sinh(γl)
]
, (28c)

G(l, z′) ·G(z′, l) = K ·
[
1 + cosh(2γz′)

]
, (28d)

where
K =

1
2γ2 sinh2(γl)

. (29)

The integration of equations (28a) to (28d) is straight-
forward. Equations (30a) to (30d) show the definite inte-
grals,∫ l

0

G(0, z′)·G(z′, 0)dz′ = K·
[

1

2γ
sinh(2γz′) cosh(2γl)−

− 1

2γ
cosh(2γz′) sinh(2γl) + z′

]∣∣∣∣l
0

(30a)

∫
G(0, z′) ·G(z′, l)dz′ = K ·

[
cosh(γl) · z′+

+
1

2γ
sinh(2γz′) cosh(γl)− 1

2γ
cosh(2γz′) sinh(γl)

]∣∣∣∣l
0

,

(30b)

∫
G(l, z′) ·G(z′, 0)dz′ = K ·

[
cosh(γl) · z′+

+
1

2γ
sinh(2γz′) cosh(γl)− 1

2γ
cosh(2γz′) sinh(γl)

]∣∣∣∣l
0

,

(30c)

∫
G(l, z′) ·G(z′, l)dz′ = K ·

[
z′ +

1

2γ
sinh(2γz′)

]∣∣∣∣l
0

.

(30d)

The second term F2(z, z′, s) in equation (26b) is
finally considered.

Its contribution to the overall voltage sensitivity,
taking the delta Dirac function sampling property into
account [21], is given by,∫ l

0

F2(z, z
′, s)dx′ = −Zs(s)

∂I0
∂λ

G(z, 0, s)−Zs(s)
∂Il

∂λ
G(z, l, s)

− ∂Zs(s)

∂λ
I0G(z, 0, s)− ∂Zs(s)

∂λ
IlG(z, l, s). (31)

Finally, the voltage sensitivity with respect to param-
eter λ at abscissa z = 0 and z = l can be computed as,

V̂ (0, s) =
∫ l
0

(F1(0, z′, s) + F2(0, z′, s)) dz′ (32a)

V̂ (l, s) =
∫ l
0

(F1(l, z′, s) + F2(l, z′, s)) dz′. (32b)

Space limitations do not permit the description of the
time-domain analysis here but it can be easily obtained
working with linear loads from the inverse fast Fourier
transform (IFFT).
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A. Higher-order sensitivities

The voltage sensitivities of equation (32) correspond
to first-order sensitivities of port voltages with respect to
parameter λ. The evaluation of higher-order sensitivities
can be performed using the same approach outlined in
Section II. In fact, the governing equation for the k-order
voltage sensitivity is,

∂2

∂z2
V̂k(z, s)− γ2(s) V̂k(z, s) = k

∂γ2

∂λ
V̂k−1(z, s)+

∂kγ2

∂λk
V (z, s)− ∂k

∂λk
(Zs(s)IS(z, s)) . (33)

The Sturm-Liouville problem for the k-order voltage
sensitivity V̂k(z, s) admits the same Green’s function as
the voltage distribution V (z, s) and, as a consequence, it
can be computed as,

V̂k(z, s) =
∫ l

0

G(z, z′)fk(z′)dz′ (34)

where

fk(z′) = k
∂γ2

∂λ
V̂k−1(z′, s) +

∂kγ2

∂λk
V (z′, s)

− ∂k

∂λk
(Zs(s)IS(z′, s)) . (35)

Each term of the forcing term (35) can be analytically
computed as well as the integrand function in equation
(34) and its integral, leading to a closed-form k-order
voltage sensitivity.

IV. NUMERICAL RESULTS

In this section we present two examples of transmis-
sion lines whose voltage sensitivity with respect to geo-
metrical parameters are computed by using the proposed
methodology. For the sake of comparison, the voltage
sensitivity is also computed by the perturbative approach
by giving a small perturbation ∆λ to the parameter λ and
computing the sensitivity as,

V̂ p(z, s) =
V (z, s, λ+ ∆λ)− V (z, s, λ)

∆λ
. (36)

A. Two-conductor transmission line

Let us consider a couple of conductors of radius r0 =
2 mm and length l = 0.1 m, at a distance d = 1 cm,
in the free space (permittivity ε0 = 8.854 pF/m and
permeability µ0 = 0.4π mH/m). The p.u.l. parameters
of the line are [1],

R = ρ
πr20

G = 0

L = µ0
2π ln 2d

r0
C =

2πε0
ln 2d

r0

.
(37)

The voltage sensitivity is computed with respect to
the distance between the conductors λ = d. First we can

compute the series impedance Zs and the parallel admit-
tance Yp and their derivatives with respect to sensitivity
parameter d,

Zs(d, s) = R+ sL (38a)
Yp(d, s) = G+ sC, (38b)

∂

∂d
Zs(d, s) = s · µ0

2π
1
d
, (38c)

∂

∂d
Yp(d, s) = s ·

− 2πε0

d ln2
[

2d
r0

]
 . (38d)

The circuit is excited by a voltage pulse Vs with 800
ps width and 500-ps rise and fall times, whose magnitude
spectrum is shown in Fig. 2. The frequency range of
analysis is 0− 5 GHz.

Fig. 2. Magnitude spectrum of the voltage source
(example IV-A).

In Figs. 3 and 4 it is shown the magnitude and phase
spectra of the voltage sensitivity at z = 0 and z = l
as computed by using equations (32a) and (32b) and
compared with the perturbative approach.

No noticeable difference can be observed between the
proposed and perturbative approach.

B. Microstrip

As a second example we consider a microstrip trans-
mission line. It can be characterized by geometrical and
physical parameters such as width of the strip W , height
of the dielectric substrate H , strip thickness T , perme-
ability and dielectric constants. The p.u.l. capacitance in
free space is given by [22],

Ca =



ε0

[
We

H
+ 1.393 + 0.667· W/H > 1

· ln
(
We

H
+ 1.444

)]
2πε0

ln
(

8H
We

+
We

4H

) W/H ≤ 1

(39)
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Fig. 3. Magnitude and phase spectra of voltage sensi-
tivity at z = 0 (example IV-A).

Fig. 4. Magnitude and phase spectra of voltage sensi-
tivity at z = l (example IV-A).

where the effect of the finite thickness can be included
using effective width We instead of W [22],

We =


W + 0.398T

(
1 + ln

2π
T

)
W/H >

1
2π

W + 0.398T
(

1 + ln
4πW
T

)
W/H ≤ 1

2π
(40)

The effective dielectric constant, εeff , for a microstrip
line with an isotropic substrate is given by [22],

εeff =
εr + 1

2
+
εr − 1

2

(
1 +

12H
We

)− 1
2

+ F (εr, H)

− 0.217(εr − 1)
T√
WeH

(41)

where

F (εr, H) =


0 W/H > 1

0.02(εr − 1)
(

1− We

H

)2

W/H ≤ 1

(42)
The p.u.l capacitance and inductance, assuming an

homogeneous medium, is given by [22],

C = Caεeff (43a)

L =
µ0ε0εeff

C
=
µ0ε0
Ca

. (43b)

In order to obtain the voltage sensitivity, the derivatives
of equations (43a) and (43b) are needed. In the following
both the voltage sensitivity with respect the width of the
strip W as well as the height of the dielectric substrate
H are computed. The derivatives read,

dC
dW

=
dCa
dW

εeff + Ca
dεeff
dW

(44a)

dL
dW

= −ε0µ0

C2
a

dCa
dW

, (44b)

dC
dH

=
dCa
dH

εeff + Ca
dεeff
dH

, (44c)

dL
dH

= −ε0µ0

C2
a

dCa
dH

, (44d)

where

dCa

dW
=



ε0W
′
e

H

[
1 + 0.667

1

We/H + 1.444

]
W/H > 1

−
2πε0

(
−8W

′
eH

W 2
e

+
W

′
e

4H

)
ln2
(

8H

We
+
We

4H

)
·
(

8H

We
+
We

4H

) W/H ≤ 1

(45)

dCa

dH
=


− ε0

We

H2

[
1 + 0.667

1

We/H + 1.444

]
W/H > 1

−
2πε0

(
8

We
− We

4H2

)
ln2
(

8H

We
+
We

4H

)
·
(

8H

We
+
We

4H

) W/H ≤ 1

(46)
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dεeff

dW
=
εr − 1

2

6HW
′
e

W 2
e

(
1 +

12H

We

)− 3
2

+
dF (εr, H)

dW
+

+0.217(εr − 1)
HTW

′
e

2
(WeH)−

3
2 , (47)

dεeff

dH
= −εr − 1

2

6

We

(
1 +

12H

We

)− 3
2

+
dF (εr, H)

dH
+

+0.217(εr − 1)
WeT

2
(WeH)−

3
2 , (48)

dWe

dW
= W

′
e =

 1 W/H >
1

2π

1 + 0.398
T

W
W/H ≤ 1

2π

(49)

dF (εr, H)

dW
=


0 W/H > 1

0.02(εr − 1)
2W

′
e

H

(
We

H
− 1
)

W/H ≤ 1

(50)

dF (εr, H)

dH
=

{
0 W/H > 1

0.02(εr − 1)
2We

H2

(
1− We

H

)
W/H ≤ 1

(51)
where W

′

e stands for the derivative of We with respect to
W , since it does not depend on H .

As a numerical test, a microstrip line has been
considered with length l = 5 cm, width of the strip W = 2
mm, height of the dielectric substrate H = 1 mm and
strip thickness T = 0.5mm. The relative permittivity of
the substrate is εr = 3.

The voltage sensitivity has been computed using
equations (32a) and (32b), considering as parameter λ
the width of the strip W and the height of the dielectric
substrate H . The circuit input is the same of the previous
example (Fig. 2) and the frequency range of analysis is
0 − 5 GHz. The magnitude and phase spectra of the
voltage sensitivity with respect to W are shown in Figs. 5
and 6, while those of the voltage sensitivity with respect
to H are shown in Figs. 7 and 8.

As before, a very good agreement is achieved be-
tween the proposed and the perturbative approach. For
the sake of comparison the sensitivities have also been
computed numerically. The computation has been per-
formed on a machine equipped with AMD Athlon 64
processor. It took about 10 s to be completed by using the
proposed technique and 73 s computing the sensitivities
numerically, for 3751 frequency samples, leading to a
speed-up of 7.3.

V. CONCLUSIONS

In this paper we have proposed a new approach
to analyze frequency-domain sensitivity of transmission
lines. It is based on the closed-form Green’s function of
the 1-D wave propagation problem. Relying on the knowl-
edge of the Green’s function for the transmission line
problem, a closed-form solution for the voltage sensitivity
with respect to either physical or geometrical parameters
is readily computed. The proposed technique is well
suited to be extended to the computation of higher-order

Fig. 5. Magnitude and phase of voltage sensitivity with
respect to W at z = 0 (example IV-B).

Fig. 6. Magnitude and phase of the voltage sensitivity
with respect to W at z = l (example IV-B).
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Fig. 7. Magnitude and phase spectra of voltage sensi-
tivity with respect to H at z = 0 (example IV-B).

Fig. 8. Magnitude and phase spectra of voltage sensi-
tivity with respect to H at z = l (example IV-B).

sensitivity. Its implementation is straightforward and does
not require any numerical processing. Two examples were
presented showing the accuracy of the method compared
to the perturbation technique.
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