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Abstract − In indoor propagation, the log-distance path 
loss model represents the received power as declining 
with distance from the transmitter according to nr/1 , 
where r is the straight-line distance from the transmitter 
to the receiver. Previously, the value of the path loss 
exponent n  has been derived from measured received 
signal strengths at a specific site. In this paper, the value 
of  n  is estimated from the geometry of the room and the 
electrical properties of the walls. Using the Sabine model, 
these determine the room absorption and hence the 
received power as a function of distance from the 
transmitter. Then, a least-square-error curve fit of the log-
distance path loss model to the Sabine model determines 
the value of n . The electric field strength in a typical 
rectangular room is compared using ray tracing, the 
Sabine model, and the path loss model. Then the value of 
the path loss exponent is presented as a function of the 
power absorption coefficient of the walls, floor and 
ceiling of the room, for a typical ceiling height. 
Evaluating n  from analytic information rather than from 
measurement enhances the usefulness of the path loss 
model in simulations of the coverage of antennas for the 
design of wireless local area network installations at 
specific sites.  
 

I. INTRODUTION 
 

In indoor propagation, communication must be 
established between a transmitter and a receiver located 
inside a building [1-3]. For a fixed transmitter position 
and a roaming receiver, the signal strength of the 
transmitter must be sufficiently large; the delay spread of 
the multipath components sufficiently small; and the 
interference from other transmitters operating on the 
same frequency sufficiently small. Designing the location 
of access-point antennas for a wireless local area network 
would benefit from a simple method for an approximate 
assessment of the field strength of each antenna 
throughout the whole floor plan.  

The “log-distance path loss model” [1, 3, 4, 5] 
represents the received power in an indoor environment 
as declining with distance according to, 

  

( ) nr
P

rP 0=  
 

 (1)
 
where n  is the “path loss exponent” [6]   or “slope index” 
[4], r  is the distance between the transmitter and the 
receiver, and OP  is the received power at a one-meter 
distance. The value of n  depends on the construction of 
the walls of the room and on other factors. The path loss 
model is applied to both line-of-sight (LOS) and non-
line-of-sight (NLOS) scenarios. If the ray from the source 
to the observer passes through a wall, the power can be 
reduced by a “wall attenuation factor”, which is often 
approximated as a fixed number of dB independent of the 
incidence angle or polarization. This model is empirical, 
with the value of n  determined from measured received 
powers. Values of the path loss exponent n  are cited 
from the literature for various environments in [1]. 
Values of n  from 1.6 to 2.1 for factory environments 
were given in [5], where there was a LOS path from the 
transmitter to the receiver. Where the LOS path is 
obstructed by partitions or by furnishings, values of n  
greater than two were used, and the field strength 
decreased more quickly with distance r  than it would in 
free space. Some authors use free-space propagation 
( 2=n ) closer to the antenna than a “break point” 
distance, and the log-distance path loss model for larger 
distances [6]. The break point distance depends on the 
size of the first Fresnel zone [4, 5] compared to the 
position of obstacles in the room that obstruct the direct 
path from the transmitter to the observer. The log-
distance path loss model is site specific in that the power 
associated with a ray passing through a wall is reduced by 
a wall attenuation factor, but otherwise the floor plan 
information is not used.  
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Site-specific predictions of the electric field strength 
throughout a floor plan are often made using ray tracing 
[4,7]. Ray paths are identified joining the transmitter to 
the location of the receiver, accounting for specular 
reflection from walls, and transmission through walls. 
The “vector sum method” [2] adds the field strengths of 
the rays accounting for phase and vector direction. The 
rapid variations of this “local” field strength as the 
position of the observer changes are called “fast fading”. 
To assess coverage, it is sufficient to estimate the local 
mean power, obtained by averaging the received power 
along a path of length 5 to 40 wavelengths [3]. Averaging 
removes the rapid variations of fast fading and leaves the 
slow changes due to attenuation with distance and 
shadowing, called “slow fading”. Evaluating the fast 
fading at closely-spaced points followed by explicit 
averaging is computationally expensive. However, the 
local mean power can be estimated by ray tracing by the 
“power sum method” [3], which combines the field 
strengths of the rays on an energy basis. Since the local 
mean power varies slowly with position, much more 
widely spaced points can be used, and so the computation 
is much faster. 

The Sabine method is less well known, and is based 
on Sabine’s method in acoustics extended to 
electromagnetics. The Sabine method characterizes the 
room by its “room absorption”, which is calculated from 
the angle-averaged power absorption coefficient of each 
surface of the room [8] and the area of the surface. “Live” 
rooms with low power absorption use Sabine’s formula 
for the room absorption, but when the absorption is high 
the room is said to be “dead” and Eyring’s formula is 
used [9,10]. To predict the decline in the received field 
strength as a function of distance from the source, the 
field is split into the “direct” field strength, which is the 
field of the source in free space, and the “indirect” field 
strength or “multipath” field strength, which is the 
contribution of the room [11, 12]. The local mean power 
is obtained by adding the power in the direct field and in 
the indirect field. The calculation of the local mean power 
by the Sabine method is simple enough to be done with 
pencil and paper. The Sabine method is readily extended 
to complex floor plans [11] and because it is 
computationally inexpensive, it is useful for assessing the 
field strength of many sources transmitting at various 
locations throughout a complex floor plan. 

To the authors’ knowledge, the value of the path loss 
exponent n  has not been explicitly related to the 
geometry of the room and to the construction of the walls. 
This paper will derive the value of n  in rooms where 
there is a LOS path between the transmitter and the 
receiver. The value of n  will be determined from the 
geometry of the room and the average power absorption 
coefficients of the various room surfaces. The room 
properties will determine the Sabine room absorption, 
which in turn will be used to find the local mean power as 

a function of distance from the transmitter. Then least 
squares approximation will be used to curve-fit the log-
distance path loss model to the local mean strength, to 
determine the value of n . The method will be illustrated 
for a small rectangular room. Electric field strengths 
using the log-distance path loss model will be compared 
with fields found by ray tracing using the “power sum 
method”, and using the Sabine method. Then the value of 
n  will be graphed for a square room as a function of the 
power absorption coefficient of the walls for various 
room areas from small to large.  
 

II. THE SABINE METHOD 
 

The Sabine method [12] divides the electric field 
strength into the direct field Ed, which is the field of the 
transmitter in free space, the and the multi-path field, Em, 
which is the net field strength due to rays which reflect 
and re-reflect from the surfaces of the room. The power 
received by an antenna of effective area equal to unity 
and operating into a matched load is,  
 

( ) ( )( )221
mds ErErP +=

η
   watts, (2)

 
where η  is the intrinsic impedance of space and r  is the 
separation distance. Assuming that there is an 
unobstructed path between the transmitter and the 
receiver, that is, that the first Fresnel zone is clear of 
furnishing and clutter [4, 13], the direct field is given by, 
 

( ) 24 r
DPrE t

d π
η

=  volts/meter (3)

 
where D  is the directive gain of the transmitter, and tP  
is the transmitted power. The Sabine method gives the 
local mean value of the multipath field as [12], 
 

mE~

in

t

A
Pη4

=    volts/meter 
 

 (4)

 
where the tilde indicates the local area average. The 
“indirect” room absorption [12] is,  
 

AS
ASA
T

T
in −
=  

 
 (5)

 
where TS  is the total area of the surfaces of the room, and 
where the room is characterized by the Sabine room 
absorption, given by,  
 

∑
=

=
N

k
kkSA

1

~α . 
 

 (6)
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The room has N  surfaces, the area of the k th surface 
is kS , and kα

~  is the angle- and polarization-averaged 
power absorption coefficient [8, 12]. If the walls of the 
room are modelled as uniform layered structures, the 
power absorption coefficient is readily evaluated. If the 
surfaces of the room are highly absorbing, then the room 
might be classified as “dead” or in the “non-reverberated 
regime” in the terminology used in [10], and the Eyring 
formula can be used to calculate the room absorption 
according to,  
 

⎟
⎠
⎞

⎜
⎝
⎛
−

=
α1

1lnTE SA  
 

(7)

 
where TSA /=α . The Eyring indirect absorption is 
given by, 
 

⎟
⎠
⎞

⎜
⎝
⎛
−−

=
αα 1

1ln
1,

T
inE

SA . 
 

 (8)

 
Thus the Sabine model consists of either using 

equations (5) or (8) to calculate the indirect room 
absorption, then equation (4) for the multipath field 
strength, which is by definition constant throughout the 
room, and equation (3) for the direct field, which varies 
with distance from the transmitter. Then equation (2) is 
used to find the received power. Note that functional 
form of the decline in received power with distance is 
contained in the direct field term and is different from 
that of the log-distance path loss model of equation (1).  
 
III. EVALUATING THE PATH LOSS EXPONENT 

 
The Sabine model relates the decline in field strength 

with distance from the transmitter to the geometry of the 
room, to the room construction, and to the electrical 
properties of the room surfaces thorough the average 
power absorption coefficients. Consider a path running 
radially away from the transmitter from distance ra to 
distance rb. The value of the path loss exponent will be 
found by minimizing the mean square error in decibels 
between the path loss model (1) and the Sabine model 
(2). The square of the mean square error is given by,  
 

( )( )∫ ⎟⎟
⎠
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⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

−
=

b

a

r

r

sn
ab

drrP
r
P

rr
e

2
02 lnln1 . 

 
 (9)

 
To minimize the error, choose n  such that 

( ) 02 =
∂
∂ e
n

 to obtain,  
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Equation (10) is readily evaluated as follows. 

Parameter 0P  is the power at r=1 m from the antenna in 
free space and using equation (3), ( )π4/0 tDPP = W. The 
integrals in equation (10) can be approximated with the 
rectangular rule. Thus choose a set of evenly-spaced 
distances { }Nkrk ,...,1: =  over the interval ar  to br  with 

( ) ( )1/ −−=∆ Nrr ab and use equation (2) to compute the 
received power at each distance ( ){ }kssk rPP = . Then,  
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 (11)

 
Equation (11) is readily evaluated with a short 

computer program. Note that the received powers 
( ){ }kssk rPP =  could also be computed from ray-tracing 

field strengths using the “power sum method”.  
In the Sabine model, the received power of equation 

(2) is always greater than that of the transmitter in free 
space, because it is enhanced by the multipath field given 
by equation (4). Hence, the value of the path loss 
exponent computed with equation (11) will always be 
less than two. As the average power absorption 
coefficient α  approaches unity, the room absorption 
approaches the surface area of the room, TSA→ , and 
the indirect absorption becomes large, ∞→inA . Then 

the multipath field  mE~  becomes small, and the signal 
strength approaches that of free space, from above. The 
value of n  given by equation (11) approaches the free 
space value of two.  
 

IV. FIELD STRENGTH IN A RECTANGULAR 
ROOM 

 
This section compares the field strength found using 

the log-distance path loss model (1) with the field 
strength from the Sabine model and from the ray-tracing 
model. The value of the path loss exponent n  is obtained 
using equation (11). 

Figure 1 is a plan of a rectangular room, 6.83 m wide 
by 8.68 m deep, with a ceiling height of =h 3.75 m. The 
transmitter was a vertical, half-wave dipole radiating 100 
mW at 2388 MHz, with directivity 64.1=D , centered 
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1.03 m above the floor. The receiver was moved along 
the path shown in the figure, starting at ra=1 m from the 
antenna and ending at rb = 4.8 m away, and was 1.07 m 
above the floor. The walls of the rectangular room were 
modelled as layered structures with 1.5 cm of concrete 
( rε =5.37, σ =149.5 mS/m), 0.8 cm of brick ( rε =4.38, 
σ =18.5 mS/m), a center air layer 7.8 cm thick, and 
symmetric layers of brick and concrete. The angle- and 
polarization-averaged power absorption coefficient at 
2388 MHz was =α~ 0.65. The floor and ceiling were 
modelled as concrete slabs of thickness 30 cm, and 
average power absorption coefficient of 0.79. One wall of 
the room had a row of metal lockers, 3.48 m from the 
path, as shown in Fig. 1, with a power absorption 
coefficient of zero. In the ray-tracing simulation, ray 
paths with up to 32 reflections were calculated. Field 
strengths were measured in this room, and [12] reports 
reasonable agreement with the Sabine model using 
equation (5) and with the ray-tracing model.  

 

 
 
Fig. 1. Plan of the rectangular room. 

 
To use the Sabine model, the area of the room 

surfaces was calculated to be 239=TS  m2, and the 
Sabine room absorption was =A 166 m2, hence the 
average power absorption coefficient for the room was 

69.0/ == TSAα . This was high enough that the room 
might classified as “dead”, in which case the Eyring 
model for the absorption might be used. The Eyring value 
for the room absorption was 284=EA  m2. The Sabine 

indirect absorption of equation (5) was 543=inA  m2, and 
the Eyring indirect absorption of equation (8) was 

903, =inEA  m2. These values were used with equation (3) 
to calculate the multipath field strength, which was 
smaller by a factor of about 0.78 when the Eyring model 
was used.  

Figure 2 shows the electric field strength as a 
function of separation distance from the transmitter along 
the path shown in Fig. 1. The ray-tracing method was 
used to find the local mean field strength (solid curve) by 
the “power sum method” [3]. The Sabine approximation 
(dashed curve with crosses) using the Sabine room 
absorption agreed closely with the ray-tracing curve. 
When the Eyring room absorption was used (long-dashed 
curve) the field strength was too small in comparison to 
the ray-tracing value. Thus, although the room might be 
classified as “dead”, the Sabine absorption led to better 
agreement with the ray tracing model than did the Eyring 
absorption.  
 

 
 
Fig. 2. Electric field strength as a function of distance 
from the antenna in the rectangular room. 

 
The path loss exponent of 58.1=n  was found by 

evaluating equation (11) using received powers along the 
path computed with equation (2) using the Sabine 
absorption. The electric field strength associated with the 
path loss model is given by, 
 

( ) 2/
0

nr
E

rE = , (12)

 
where )4/(0 πη tDPE =  is the field strength at one-
meter distance from the transmitter. Figure 2 compares 
the field strength from the path loss model (dotted curve), 
from ray tracing (solid curve), and from the Sabine 
method (dashed curve with crosses). Choosing n  with 
equation (11) leads to a best-fit approximation of the 
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Sabine model by the path loss model. The field strength 
of the path loss model was too large between 1 and 3.5 m 
distance, but the error is small. Towards the end of the 
path, the field strength of the path loss model decreased 
too quickly with distance, with a 0.8 dB error at the end 
of the path.  

Figure 2 showed that the Sabine absorption led to a 
better approximation of the ray-tracing mean value than 
did the Eyring absorption, so in the following the Sabine 
absorption will be used to demonstrate the dependence of 
the path loss exponent on the power absorption 
coefficient of the room surfaces and the room geometry.  
 

V. PATH LOSS EXPONENT 
IN A TYPICAL ROOM 

 
Figure 3 shows the variation of the path loss 

exponent n  with the floor area of a square room and with 
the average power absorption coefficient of the room 
surfaces, for a square room of ceiling height h=2.75 m. 
The room had side length w , floor area 2wSF = , and 

surface area whwST 42 2 += . The average power 
absorption coefficient of the surfaces of the room wasα , 
the Sabine absorption was TSA α=  and the indirect 
absorption was ( )αα −= 1/Tin SA . To evaluate n , a 
vertical dipole of directivity 64.1=D , radiating tP  watts, 
was used. The received power was calculated on a path 
starting at distance 1=ar  m from the dipole and ending 

at distance 12 −= wrb  m. Given the value for the 
average power absorption coefficientα , equation (2) was 
used to compute a set of received power values at 
intervals of  1=∆  cm from ar  to br , and then equation 
(11) was used to compute the path loss exponent. The 
calculation was repeated as the power absorption 
coefficient α  varied from 0.01 to 0.99, and as floor area 
varied from =FS 10 m2 (e.g., an office) to =FS 400 m2   
(e.g. a large auditorium). 

These calculations show that at a given absorption, 
the path loss exponent increases with room size. Thus for 
absorption =α 0.5, an office of area 10 m2 would have a 
path loss exponent of =n 0.69, a mid-sized room of area 
50 m2  would have =n 1.13, and an open-plan office of 
area 200 m2 would have =n 1.32. For small rooms and 
low power absorption coefficients, the multipath field 
strength of equation (4) dominated the direct field over 
most of the area of the room, and the received power of 
equation (2) was almost constant with distance. Thus it 
was not possible to calculate a path loss exponent. For 
example, for an office of area 10 m2 with power 
absorption coefficient less than 0.3, no path loss exponent 
could be evaluated. For a power absorption coefficient 
greater than 0.3, the path loss exponent increased rapidly 

with absorption. As the room got larger, the minimum 
absorption for which a path loss exponent could be found 
decreased. Thus for a room of floor area 50 m2, the path 
loss exponent increased from zero starting at 
absorption 1.0=α . For all rooms, as the power 
absorption coefficient approached unity, corresponding to 
perfectly-absorbing or “free space” walls, the path loss 
exponent approached 2=n , corresponding to free space 
propagation.  
 

 
 
Fig. 3. Path loss exponent as a function of power 
absorption coefficient and floor area in a square room.  

 
The rectangular room of Fig. 1 had surface area 

239=TS  m2 and average power absorption coefficient 
α  =0.69. Using Fig. 3, the value of n  is between 1.5 and 
1.55, which is close to the value of 1.58 found above for 
the rectangular room. Note that the ceiling height of the 
rectangular room was 3.75 m, considerably higher than 
the ceiling height of 2.75 m used to draw Fig. 3. 

Table 4.6 in [5] gave values of =n 1.6 and 1.8 for a 
metal-working factory and a paper/cereals factory 
respectively, both with a LOS path. However, no floor 
area or ceiling height was given, nor an indication of the 
wall construction. Assuming a power absorption 
coefficient of 7.0=α , typical of many wall 
constructions, Fig. 3 shows that for a 200 m2  area, 

57.1=n ; for 400 m2, 61.1=n , these values being not 
greatly different from those in [5]. A larger floor area 
would lead to a larger value of n . 
 

VI. CONCLUSION 
 

The log-distance path loss model (1) is often used to 
approximate the received power as a function of distance 
from a transmitter, using values of the path loss exponent 
n  based on measurements in an indoor environment 
when there is a line-of-sight path from the transmitter to 
the receiver. This paper showed how to derive the value 
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of n from the geometry of the room, and from the 
electrical properties and construction of the walls, floor 
and ceiling.  

Figure 2 demonstrated that in a mid-sized rectangular 
room, field strengths from the Sabine model and from a 
ray-tracing model agreed closely. The value of n  was 
derived from the Sabine field strengths, and then the field 
strength of the path loss model were close to the Sabine 
values.  

Figure 3 showed the behavior of the path loss 
exponent as a function of the floor area of a square room 
and of the power absorption coefficient of the walls. For 
very low absorption, the path loss model was not useful. 
For higher absorption, the path loss exponent increased 
rapidly and approached 2=n  as the absorption 
coefficient of the walls approached unity, making the 
walls perfectly absorbing. Figure 3 can be used to 
estimate the path loss exponent and hence the received 
power when there is an unobstructed LOS path in an 
indoor environment, from a knowledge of the wall 
materials and construction of the room dimensions, and 
should be useful in the design wireless local area 
networks.  
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