
 

Optimum Cell Size for High Order Singular Basis Functions  
At Geometric Corners 

 
1M. M. Bibby, 1A. F. Peterson, and 2C. M. Coldwell 

 
1School of ECE, Georgia Institute of Technology, Atlanta, GA 30332, 

 mbibby@ece.gatech.edu, peterson@ece.gatech.edu 
 

2Red Hat Inc., 10 Technology Park Drive, Westford, MA 01886, 
 coldwell@frank.harvard.edu 

 
Abstract −  Both low-order and high-order singular basis 
functions have been previously proposed for modeling 
edge singularities in the current and charge densities at 
geometric corners in electromagnetic integral equation 
formulations. This paper attempts to identify an optimum 
dimension for the cells adjacent to corners, as a function 
of the polynomial degree of the representation used away 
from the corner cells. The residual error obtained via the 
solution of an over-determined system of equations is 
used to judge the relative accuracy of various approaches. 
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I. INTRODUCTION 
 

For several decades, most numerical procedures for 
solving the integral equations for electromagnetic field 
problems have been based on low-order methods, where 
the representation of the primary unknown is in terms of 
constant or linear polynomials, and the convergence rates 
are often no faster than O(h2), where h is the 
characteristic cell dimension associated with the 
numerical model. Higher order methods have been shown 
to provide a better trade-off between high accuracy and 
improved computational efficiency than low-order 
methods. However, many practical structures contain 
corners or edges, where the charge density or current 
density may exhibit a singularity. In the absence of an 
explicit attempt to incorporate the actual singularity into 
the representation for the unknown quantity, the accuracy 
improvements offered by high order basis functions are 
negated. A number of authors have proposed singular 
basis functions [1-5], including the possibility of 
incorporating multiple singular terms to provide high 
order behavior [6-7]. 

Reference [7] proposed a methodology for high order 
modeling of edge singularities in two-dimensional 
problems. In cells not adjacent to corners or edges, a 
complete polynomial representation was employed up to 

order q, or degree q–1. In cells adjacent to corners, this 
representation was augmented with approximately 
(q+1)/2 additional, singular terms. The singular terms 
were obtained from the asymptotic series for the current 
density near the tip of the appropriate infinite wedge [8]. 
However, the work reported in reference [7] only 
considered the case where the cells adjacent to the corners 
were of the same dimension as the other cells used 
throughout the model. 

In the following, the investigation of [7] is extended 
to consider the relative cell size of the corner cells, in an 
attempt to optimize the overall computational efficiency. 
The number of additional singular terms used in the 
corner cells and the corner cell dimension are permitted to 
vary, while local and global error levels are monitored. 
Results show that the accuracy in the corner cells 
improves as additional singular terms are included, and as 
the corner cell dimension is reduced. However, if the 
corner cell dimension is made too small, the accuracy 
degrades in the cell adjacent to the corner cell. Until this 
limit is reached, an optimum balance between the error in 
the corner cells and the non-corner cells is achieved when 
the number of singular terms is approximately equal to q 
and the corner cell size is roughly twice that of the non-
corner cells.  

 
II. SINGULAR BASIS FUNCTIONS FOR CORNER 

CELLS 
 

A solution for the surface current density on an 
infinite wedge is developed in [8]. Based on those results, 
a general asymptotic expression for the current density as 
a function of ρ on the face of the wedge, near the tip (ρ = 
0), can be written for the transverse magnetic (TM)-to-z 
case as, 
 

 
  
Jz : cmn

n=1

∞

∑
m=0

∞

∑ ρ2m+υn−1         (1) 

 
where a cylindrical coordinate system (ρ, φ, z) is 
employed in equation (1), 
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υn =

nπ
(2π −α )

,    n = 1,  2,  3,  ...        (2) 

 
A similar expression for the transverse electric (TE)-

to-z case is, 
 

 
  
Jρ : dmn

n=0

∞

∑
m=0

∞

∑ ρ2m+υn         (3) 

 

where  υn  is defined as, 
 

 
   
υn =

nπ
(2π −α )

,    n = 0,  1,  2,  ...        (4) 

 

Reference [7] proposed a hierarchical family of basis 
functions for use in cells adjacent to geometric corners. 
For cells that are not adjacent to a corner of the contour, a 
Legendre expansion of order q is employed. In the corner 
cells, the same representation is augmented by including 
some number of terms with non-integer exponents from 
equation (1) or equation (3).  

As an illustration, consider the representation used in 
the cell adjacent to a 90 degree corner. The exponents 
arising from the expansion in equation (1) can be 
arranged in a sequence, 
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Table 1 illustrates the specific exponents that would 

be included in an “order q” representation for two 
different approaches. In the first, [(q+1)/2] singular terms 
are included in the expansion, where the square brackets 
denote the greatest integer. In the second approach, q 
singular terms are incorporated. In either case orthogonal 
hierarchical basis functions are constructed from the set 
of exponents in Table 1, using a Gram-Schmidt procedure 
as described in [7]. For the case of q = 3, and Nsing = 
[(q+1)/2], the representation at a 90° corner involves 5 
basis functions, constructed from terms of the form, 
 

   
u−1/3 ,  1,  u1/3 ,  u,  u2{ } 

 
As another example, the expansion functions for a 60° 
corner were previously given in [7]. 

While [7] concluded that approximately (q+1)/2 
singular terms were required in corner cells to produce 
higher order behavior and accuracy comparable to that in 
non-corner cells, that conclusion was limited to the case 
where the corner cells were the same size as the non-
corner cells. In the present investigation, the optimum 
number of singular terms is considered as the corner cell 
dimensions are varied relative to the non-corner cells.  

Table 1. Exponents used in the representation for TM 
current density in the case of a 90 degree angle, as a 
function of the order q and the parameter Nsing. 
 

q Regular 
exponents 

Singular 
exponents when 
Nsing =[(q+1)/2] 

Singular exponents 
when Nsing = q 

1 0 –1/3 –1/3 
2 0, 1 –1/3 –1/3, 1/3 
3 0, 1, 2 –1/3, 1/3 –1/3, 1/3, 5/3 
4 0, 1, 2, 3 –1/3, 1/3 –1/3, 1/3, 5/3, 7/3 

 
 

III. DEFINITIONS 
 

A specific representation of the surface current 
density will involve some number of unknown 
coefficients that must be determined. We refer to that as 
the number of degrees of freedom (DoF) in the expansion. 
As indicated above, non-corner cells will employ an 
expansion of order q, meaning q degrees of freedom per 
cell. Corner cells will employ Nsing additional terms, for a 
total of (q + Nsing) degrees of freedom per cell. Our 
expansions do not straddle adjacent cells or impose cell-
to-cell continuity. 

Numerical results will be obtained using the electric-
field integral equation (EFIE) and the magnetic field 
integral equation (MFIE). These equations and the 
method of moments numerical solution procedure are 
described in [9]. For the present investigation, a weighted 
point-matching procedure is used to enforce the integral 
equations. The procedure uses an over-determined system 
of equations obtained by employing twice as many testing 
points within each cell (m = 2) as there are unknowns to 
be determined in that cell. Thus, a cell with q expansion 
functions produces mq equations. The equations are 
obtained at nodes of a Gauss-Legendre quadrature rule 
and weighted by the square root of quadrature weights, 
and the resulting numerical solution minimizes the 
integrated square error of the residual on the scatterer 
surface [10-11]. The primary motivation for the use of an 
over-determined system is that, as a byproduct of the 
least-square solution algorithm, we obtain the local 
residual error at each test point. The residual error 
associated with the integral equation is used to assess the 
relative accuracy of each numerical result.  

The residual error is scaled by the excitation to 
produce the normalized residual error (NRE). For 
instance, the NRE is expressed for the TM-to-z EFIE on a 
perfectly conducting scatterer as, 
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where {ti} and {wi} denote Gauss-Legendre quadrature 
nodes and weights. Ntp is the total number of points 
included in the measure. To provide a local error 
estimate, equation (5) is computed for each cell with Ntp 
equal to the number of test points within that cell. The 
number of test points in a corner cell is usually different 
from the number of test points in cells not adjacent to a 
corner. To obtain a global error estimate, equation (5) is 
computed for the entire problem domain with Ntp = 
m(DoF). For the other integral equations considered, 
equation (5) is modified in an obvious way to implement 
the appropriate residual. 

The rate at which the global NRE decreases as a 
function of cell size or number of unknowns can be used 
to judge the extent to which high order behavior is 
exhibited by the results. Consider two results, the first 
yielding NRE1 with N1 unknowns, and the second 
exhibiting NRE2 with N2 unknowns. The incremental 
slope of the associated error curve may be obtained from 
successive results using [12], 
 

      
  
Slopeq =

log10 (NRE2 ) − log10 (NRE1)
log10 (N2 ) − log10 (N1)

        (6) 

 
where the subscript serves as a reminder that the principal 
expansions are of order q. For smooth scatterers, values 
of equation (6) often approximate integers as N increases. 

The edge cell size ratio (ECSR) will be used to 
denote the ratio of the dimension of the corner cells to 
that of the non-corner cells. In the following, all non-
corner cells will be maintained at a common dimension, 
while all corner cells are scaled from that dimension by 
the factor ECSR. 

 
IV. RESULTS FOR ECSR = 1 

 
In a previous work by the authors with high order 

representations [12], circular cylinders were considered 
since they offer exact analytical solutions. To establish a 
baseline for reference, Figs. 1(a) and 1(b) show the global 
NRE and Slopeq versus the degrees of freedom for a 
circular cylinder of 12 λ circumference, where λ is the 
wavelength. These plots illustrate uniform h-refinement 
(shrinking all the cells in unison for a fixed degree 
representation). These data were obtained from a solution 
of the MFIE for the TM polarization, using Legendre 
polynomial representations for the current density, and 
models employing equal-sized curved cells.  

The data in Fig. 1 clearly exhibit higher order 
behavior, and the Slopeq values approximate integers as 
the discretizations are refined. A general goal of higher-
order representations for problems with edges or corners 
is to achieve similar behavior. Figures 2(a) and 2(b) show 
plots of the global NRE and Slopeq versus the degrees of 
freedom for a cylinder of triangular cross section shape, 
and a total periphery of 12 λ.  

 
(a) 
 
 

 
(b) 

 
 

Fig. 1. (a) Global NRE values and (b) Slopeq values for 
the TM MFIE solutions for a circular cylinder of 12 λ 
circumference, when illuminated by a uniform plane. 
wave. Uniform cell sizes were used with a Legendre 
polynomial representation of order q. 
 
 
 

Results in Fig. 2 were obtained from the TM MFIE. 
Corner cells have the same dimension as non-corner cells 
(ECSR = 1). In this situation, Legendre polynomial 
representations of order q are used in non-corner cells, 
while corner cells employ an additional Nsing=[(q + 1)/2] 
singular terms, where the square bracket denotes greatest 
integer. As the number of degrees of freedom increases, 
the NRE curves in Fig. 2(a) level off, and the global 
results do not appear to produce high order convergence. 
This is reflected in the Slopeq curves in Fig. 2(b). 

 

370BIBBY, PETERSON, COLDWELL: OPTIMUM CELL SIZE FOR HIGH ORDER SINGULAR BASIS FUNCTIONS



 

 
(a) 

 
 

 
(b) 

 

Fig. 2. (a) Global NRE values and (b) Slopeq values for 
the TM MFIE solutions for a triangular cylinder of 12 
wavelength perimeter. The solutions were obtained using 
ECSR = 1 and Nsing = [(q + 1)/2].  
 
 

An analysis of the local error in the triangular 
cylinder example shows that as uniform h-refinement is 
applied and the cell sizes are reduced, the error in the 
corner cells steadily drops. However, the error within the 
cell next to the corner cell actually begins to grow as that 
cell gets closer to the corner, and that neighboring cell 
error dominates the global error measure. 

One possible remedy to this situation is to modify the 
expansion in additional cells near a corner, to better 
represent the more rapid variation in current density in 
that region. An alternative remedy is to increase the 
dimension of the corner cells, relative to the other cells, as 
suggested by a previous study [6]. This possibility will be 
investigated in the following. 
 

V. OPTIMUM CORNER CELL DIMENSION 
 

A systematic parameter study was carried out, with 
the goal of determining the ECSR values that minimize 
the global NRE, as a function of q and Nsing. The non-
corner cell dimensions were fixed at wnc = q/10 λ, with 
the corner cells defined by wc = ECSR wnc. Thus, as the 
order q increases, the cell dimensions increase to maintain 
a similar number of unknowns. This study considered TM 
scattering from triangular cylinders, square cylinders, and 
infinite strips, over a range of sizes. The MFIE was used 
for the triangular and square cylinders, while the EFIE 
was used for strips. 

Figure 3 shows a plot typical of those generated 
throughout this investigation. In Fig. 3, the ECSR that 
minimizes the global NRE is plotted as a function of q and 
Nsing for the triangular cylinder with perimeter 12 λ. The 
ECSR value is observed to be a rather strong function of 
both parameters. However, a further study of Fig. 3 yields 
the observation that the NRE-minimizing ECSR value for 
a choice of Nsing = q is always near ECSR = 2. This 
observation suggests that the combination of ECSR = 2 
and Nsing = q will generally produce a more accurate result 
than other values of ECSR.  

 

 
Fig. 3. The ECSR value that minimizes the global NRE, 
as a function of q and Nsing. The TM MFIE solutions 
involve a triangular cylinder of 12 λ perimeter. The non-
corner cell size is wnc = q/10 λ; the corner cells have 
dimension wc = ECSR wnc. 
 

Figures 4(a) and 4(b) show plots of the global NRE 
and Slopeq versus the degrees of freedom for the same 
triangular cylinder, obtained from the TM MFIE for 
ECSR = 2 and Nsing = q. These are improved as compared 
with Fig. 2, although they still do not offer the ideal 
behavior of the circular cylinder illustrated by Fig. 1 as h-
refinement pushes the cell dimensions smaller. 
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(a) 

 
(b) 

 

Fig. 4. (a) Global NRE values and (b) Slopeq values for 
the TM MFIE solutions for a triangular cylinder of 12 
wavelength perimeter. The solutions were obtained using 
ECSR = 2 and Nsing = q. 

 
Additional parameter studies were carried out, 

allowing both the non-corner cell dimensions and the 
ECSR value to vary. One result of that study is shown in 
Fig. 5, which shows the corner cell dimension that 
minimizes the global NRE versus the non-corner cell 
dimension, for various values of q with Nsing = q, for the 
triangular cylinder used in Figs. 2 and 4. These data 
indicate that while ECSR = 2 is nearly optimal over a 
wide range of cell sizes, the optimum ECSR value 
generally increases as the cells become small. The data in 
Fig. 5 are closely tracked by the simple formula, 
 

            wc ≅ 0.0364 +1.6723 wnc + 0.0096q .          (7) 
 
 

 
 

Fig. 5. The corner cell dimension that minimizes the 
global NRE for the TM MFIE solutions for a triangular 
cylinder of 12 wavelength perimeter. The solutions were 
obtained using Nsing = q. 
 

 
Figures 6(a) and 6(b) show plots of the global NRE 

and Slopeq values versus the degrees of freedom for the 
triangular cylinder, for Nsing = q, with each individual 
result adjusted for the optimum value of ECSR 
corresponding to the results in Fig. 5 (identical results are 
obtained using the formula in equation (7)). These curves 
illustrate a much better approximation to the ideal 
behavior of the circular cylinder, at least for q ≤ 4. Of 
course, the identification of the optimal ECSR in this 
manner is not practical for non-canonical targets, and a 
formula such as equation (7) will vary somewhat from 
target to target. However, Fig. 6 suggests that a suitable 
corner cell dimension does exist. Furthermore, it is likely 
that in the not-too-distant future, some form of adaptive 
refinement algorithm (perhaps initiated with ECSR = 2 
and incorporating singular basis functions) should be able 
to approximate the ideal behavior presented in Fig. 1.  

Table 2 summarizes the TM results for several 
scatterer geometries, including square cylinders and 
strips, with a range of sizes. Over this range of 
parameters, it appears that ECSR = 2 is a good 
compromise for q in the range 2 ≤ q ≤ 8 and Nsing = q. 
Additional studies were carried out for the TE 
polarization, and lead to similar conclusions as to the 
optimal ECSR value. As an illustration, Figs. 7(a) and 
7(b) show plots of the global NRE and Slopeq values 
versus the degrees of freedom for a TE MFIE analysis of 
the equilateral triangular cylinder with 12 λ perimeter, for 
Nsing = q and ECSR = 2. 
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(a) 

 

 
(b) 

 

Fig. 6. (a) Global NRE values and (b) Slopeq values for 
the TM MFIE solutions for a triangular cylinder of 12 
wavelength perimeter. The solutions were obtained using 
optimal ECSR values and Nsing = q. 
 
Table 2. ECSR that provides the minimum NRE, for 
models with non-corner cell size = q/10 wavelengths, 
Nsing=q, and the TM polarization. 
 

 Side = 4 
wavelengths 

Side = 8 
wavelengths 

Side = 12 
wavelengths 

q 

Strip 

Triangle 

Square 

Strip 

Triangle 

Square 

Strip 

Triangle 

Square 

1 1.19 2.42 2.59 1.19 2.44 2.15 1.18 2.49 2.03 
2 1.74 2.17 1.85 1.67 2.12 1.77 1.64 2.12 1.73 
3 1.84 1.96 1.91 1.77 2.02 1.84 1.73 2.03 1.81 
4 1.92 1.93 2.03 1.77 1.97 1.93 1.72 1.97 1.89 
5 2.00 2.01 2.19 1.87 2.08 2.06 1.81 1.97 2.03 
6 2.03 2.09 2.36 1.82 1.77 2.12 1.79 2.01 2.04 
7 2.19 1.94 2.67 1.90 1.88 2.20 1.87 1.90 2.12 
8 2.27 1.88 2.04 1.97 1.98 2.38 1.90 1.91 2.23 

Figures 2, 4, 6, and 7 all involve the triangular 
cylinder. In these plots, for a constant number of degrees 
of freedom, as q increases the cell dimensions also 
increase. Despite the larger cell sizes, the NRE is 
substantially reduced for each increase in q. These curves 
clearly show the improved accuracy possible with high 
order basis functions, even for problems that contain an 
edge singularity. 

 

 
(a) 

 

 
(b) 

 

Fig. 7. (a) Global NRE values and (b) Slopeq values for 
the TE MFIE solutions for a triangular cylinder of 12 
wavelength perimeter. The solutions were obtained using 
ECSR = 2 and Nsing = q. 
 

VI.  CONCLUSIONS 
 

This investigation has shown that the local accuracy 
of the singular representation used in a corner cell is a 
function of both the number of singular terms employed 
in that representation, and the corner cell dimension.  If 
uniform h-refinement is carried too far in an attempt to 
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improve accuracy, the global error will tend to be 
dominated by the error in cells near (but not immediately 
adjacent to) the corners, unless the corner cells are not 
reduced in size to the same extent as the non-corner cells. 
The parameter studies carried out in this investigation 
suggest that a fairly optimal combination employs corner 
cells that are twice the dimension of the non-corner cells 
(ECSR = 2), with an expansion in corner cells that 
contains a number of singular terms equal to the number 
of regular terms incorporated within the non-corner cell 
basis function definition (Nsing = q).  These guidelines 
should provide a good initial starting point for an 
electromagnetic analysis of structures containing edges. 
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