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Abstract ─ Interest in accurate modeling of the 
electromagnetic wave scattering from grating 
surfaces has been renewed due to recent advances 
in the manipulation and localization of the light in 
novel application of plasmonic resonance. This 
work briefly reviews the frequency-domain finite 
methods that have been used extensively to solve 
the grating problem. Emphasis will be placed on 
the finite methods that use local boundary 
operators or matched layers to truncate the 
computational boundary. It is shown that 
significant errors can be generated when using 
either of these two mesh truncation techniques 
even if the truncation boundaries are receded to 
avoid any evanescent waves emanating from the 
gratings. To quantify the error, the solutions 
obtained using the boundary condition or matched 
layers are compared to the solutions obtained 
using either mode matching or the surface integral 
equation method, both of which are devoid of 
truncation boundary related approximations and 
errors. Additionally, limitations on the use of the 
periodic boundary condition to truncate the mesh 
for periodic problems are also addressed. 
  
Index Terms ─ Finite element method, global 
boundary condition, infinite structures, local 
boundary condition, surface integral equation.  
 

I. INTRODUCTION 
Recent advances in manipulation and 

localization of the light in novel applications of 
plasmonic resonance such as near-field 
microscopy, sub-wavelength lithography, surface 
defect detection, and development of tunable 
optical filters has renewed interest in accurate 

modeling of wave scattering from grating surfaces. 
Several methods such as field decoupling by 
equivalent magnetic current [1, 2], integral 
equation [3], and mode matching [4-10] are 
reported in the literature to solve the problem of 
scattering from cavities engraved in a metallic 
screen. Although these methods are powerful, they 
are not general enough to address cavities with 
general shapes or cavities having inhomogeneous 
and anisotropic fillings. In contrast, the methods 
based on finite mathematics, such as, the finite 
element method (FEM) and the finite-difference 
time-domain method (FDTD) are suitable for the 
problem of scattering from general-shape cavities 
with anisotropic and inhomogeneous fillings [11-
14]. 

When solving the scattering problem from a 
bounded target using finite mathematics, it is 
essential to introduce an artificial boundary to 
truncate the solution region surrounding the target. 
Appropriate boundary condition must be imposed 
on the artificial boundary to guarantee a well-
posed and unique solution to the wave equation. In 
addition, the boundary condition must model the 
behavior of the wave at infinity. In other words, 
the artificial boundary must be as transparent as 
possible for impinging waves from the interior 
region. 

There are two types of boundary conditions to 
truncate the solution region, viz., (i) non-local or 
integral type; (ii) local or differential type. Non-
local types of boundary conditions are analytical 
integral equations which accurately model the 
behavior of the wave at the boundaries [15]. 
Therefore, they are exact for all range of incident 
angles. In addition, they can be imposed on the 
boundary which is very close to the scatterer body. 
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The major drawback of those types of boundary 
conditions is that they result in dense system 
matrix, which spoils the sparsity of the FEM 
system matrix. In contrast, local types of boundary 
conditions are partial differential equations which 
approximate the exact behavior of the wave at the 
artificial boundary [16-18]. 

When solving the problem of scattering from 
infinite grating surfaces containing multiple 
cavities using non-local boundary conditions, the 
solution region can be truncated at the opening of 
the cavities [11-14]. In [11-14], the domain of the 
surface integral equation as a boundary constraint 
is limited to the aperture of the cavities, and, thus, 
the infinitely extended perfect electric conducting 
(PEC) walls have no contribution in calculating 
the boundary condition. On the other hand, a 
difficulty in truncating the solution region arises 
when using local boundary conditions or matched 
layers (typically referred to in the literature as 
absorbing boundary conditions, ABC, or perfectly 
matched layer, PML) in solving the problem of 
scattering from gratings in infinite PEC screens. 
Since it is impossible to fully enclose the 
scatterer's geometry by the ABC or PML, the 
behavior of the scattered field due to the infinite 
PEC wall outside of the computational domain 
boundary cannot be modeled properly. Therefore, 
errors can be generated in the solution when using 
ABC or PML even if the truncation boundary is 
receded. 

In this paper, we analyzed the performance of 
commonly used ABC or PML in solving the 
problem of scattering from grating surfaces 
containing a single or multiple cavities engraved 
in an infinite PEC screen. In particular, we focused 
on the errors introduced in the solution due to 
grazing incident waves. Next, we analyzed the 
dependence of this error on the location of the 
ABC. Finally, we addressed the error when using 
periodic boundary conditions when solving the 
problem of scattering from an infinite periodic 
array of cavities engraved in a PEC screen. The 
errors were calculated by comparison to the 
solutions obtained using an FEM-based method 
where the surface integral equation is used as a 
boundary constraint [14] and the mode matching 
technique reported in [7]. 
 

II. GENERAL DESCRIPTION OF THE 
PROBLEM 

As a representative example of the problem of 
scattering from gratings in metallic screens, we 
consider the problem depicted in Fig. 1 which 
shows an electromagnetic wave impinging on a 
cavity engraved in an infinite metallic wall. The 
solution region can be truncated using the ABC as 
a local boundary condition as it is shown in Fig. 1. 

 

 
Fig. 1. Schematic of the scattering problem from a 
cavity with arbitrary shape in an infinite PEC 
surface. An ABC or PML is used to truncate the 
computational domain. 
 

Because generic types of ABCs and PMLs are 
ineffective in absorption of evanescent waves, the 
introduced error due to these mesh truncation 
techniques is in general inversely proportional to 
the distance between the truncation walls and the 
cavity. Therefore, an ABC or PML cannot be 
located very close to the cavity. In addition, it is 
impossible to fully enclose the scatterer's geometry 
by an ABC or PML. Therefore, the behavior of the 
scattered field due to the PEC surface that lies 
outside of the computational domain boundary 
cannot be modeled properly and thus any 
consequential physical interaction cannot be 
included in the solution. In fact, more explicitly, as 
can be shown in Fig. 1, a portion of the scattered 
field from the PEC wall propagates into the 
solution region which causes error that would 
most likely depend on the incident angle. By 
increasing the incident angle, more energy is 
reflected into the solution region by the PEC walls 
located outside of the ABC, whereas, at zero angle 
of incidence, the reflected energy from the surface 
surrounding the cavity does not enter the 
computational domain depicted in Fig.1. 
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Therefore, this error is expected to increase as the 
incident angle increases. 

To minimize this error, the domain truncating 
boundaries should be located far enough from the 
cavity to enclose a larger segment of the PEC wall 
in addition to the cavity. However, placing the 
boundary of the computational domain far from 
the cavity leads to prohibitive increase in the 
computational cost, in addition to inaccuracy in 
the solution due to the exclusion of a large part of 
the scatterer. The computational cost is most 
critical when considering cavities whose sizes are 
several wavelengths, and when loading the 
cavities to minimize the radar cross-section (RCS), 
requiring extensive optimizations. Notice, also, 
that enlarging the computational domain by 
including a larger segment of the PEC wall while 
keeping the upper boundary (the horizontal 
terminating boundary in Fig.1) very close to the 
PEC wall does not reduce the errors as in such 
scenario the upper boundary experiences a large 
concentration of waves incident at oblique angles, 
which cannot be absorbed effectively by typical 
PML or ABC methods. There are specialized ABC 
or PML methods that are designed to absorb 
waves incident at oblique angles, or even 
effectively absorb evanescent waves such as in 
[19, 20]. However, these truncation techniques are 
specialized and typically add additional 
computational overhead. 

 
III. NUMERICAL EXPERIMENTS 
To study the limitations on the use of ABC or 

PML to truncate the computational domain for the 
gratings problems considered in this work, we use 
the highly robust and widely used full-wave 
simulator, HFSS [21] which employs a highly 
effective implementation of PML. We emphasize 
that the purpose of the comparison is to accentuate 
the limitations of PML or ABC rather than the 
effectiveness of the simulator in general. Since the 
PML implementation in HFSS provides much 
higher accuracy than the ABC implementation in 
the same solver, we make comparison to the 
solution obtained using PML. This solution, 
henceforth, will be referred to as HFSS-PML. 
However, in the first example we showed the 
results obtained using ABC as a benchmark. This 
solution is referred to as HFSS-ABC. It is 
important to note that HFSS uses multilayer 

biaxial anisotropic materials in the PML 
implementation [22].     

Absence of analytical solutions to the problem 
of scattering from cavities, the solutions generated 
by two methods will be used for gauging the errors 
caused by the HFSS-PML or HFSS-ABC 
solutions. The first method employs the surface 
integral equation to truncate the computational 
domain at the aperture of the cavity [14], and the 
second method employs the mode matching 
techniques [7]. These two solutions are considered 
highly accurate in the sense that the 
approximations used in their respective solution 
procedures involve discretization of the field 
rather than any boundary condition 
approximations. 

The solutions presented here are made over a 
wide range of incident angles. For the transverse 
magnetic incident plane wave where the electric 
field vector lies along the axis of the cavities, the 
error in the magnitude of the total electric field at 
the aperture of the cavity is calculated as: 
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                (1) 

 
where E is total electric field obtained using the 
HFSS-PML or HFSS-ABC solutions and E0 is 
total electric field calculated using the surface 
integral equation method reported in [14] 
(throughout this work we refer to this methods as 
FEM-TFSIE), or the mode matching technique [7], 
respectively. The integration domain is the 
aperture of the cavities. 

In the first example, we considered an 0.8λ X  
0.4λ  (width X depth) rectangular cavity in a PEC 
sheet where λ is the wavelength in free space. The 
solution region using HFSS-PML or HFSS-ABC 
is truncated by a rectangular mesh. The vertical 
distance of the truncation boundary from the PEC 
screen is h=1λ and the distance of the lateral 
truncation walls D from the edge of the cavity is 
set to be 4λ (see inset of Fig.2). Figure 2 shows the 
error using the results calculated using FEM-
TFSIE and mode matching technique for incident 
angle range of 00-850. It is observed that by 
increasing the incident angle, the error increases in 
an almost exponential trend. This is because by 
increasing the incident angle, more reflected 
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waves from the PEC screen outside of the PML or 
ABC propagate into the solution region. As shown 
in Fig. 2, the increment trend is uniform in HFSS-
PML case while it highly depends on incident 
angles in HFSS-ABC case for θ>300. To validate 
this reason, we changed the distance of the lateral 
truncation walls (i.e. D) from the cavity. Figure 3 
shows the effect of increasing D on the error for 
grazing incident angle of θ=850. By increasing the 
D from 4λ to 16λ, the error decreases from 37% to 
8% in HFSS-PML case. Notice that to achieve 8% 
solution accuracy, a computational space of 
approximately 32λ2 would be needed when using a 
PML-based truncation technique; whereas, the 
solution space using FEM-TFSIE which is 
confined to the cavity's area, would require a 
computational domain of 0.32λ2. (It is important to 
emphasize here that while approximate 
computational areas are used to highlight the 
efficiency and accuracy of the methods discussed 
here, other aspects of different code 
implementations are intentionally not discussed 
here such as the algorithm used to solve the 
systems matrix, the type of bases functions used in 
the FEM implementation, ...etc.) 

 

 
Fig. 2. Error versus incident angle θ for a 0.8λ X 
0.4λ air-filled rectangular cavity, TM case, D=4λ, 
h=1λ. Error between results obtained using: 
Case1) HFSS-PML and FEM-TFSIE, Case2) 
HFSS-PML and Mode Matching Technique, 
Case3) HFSS-ABC and FEM-TFSIE, Case4) 
HFSS-ABC and Mode Matching Technique. 
 

As a second example, we considered five 
identical cavities in a PEC screen. The cavities are 
rectangular with dimension of 0.8λ X 0.4λ and are 
separated by distance of 0.2λ. The vertical distance 
of the mesh truncation wall from the PEC screen is 

h=1λ and the distance of the lateral truncation 
walls from the cavities is set to be D=4λ (see the 
inset of Fig. 4). Figure 4 shows the error for 
incident angle varying from θ=00 to θ=850. Figure 
5 shows the decrease in the cavity field error from 
30% to 14% when D is increased from 4λ to 16λ. 
Notice that despite the excessive computational 
domain needed when D is increased to 1λ resulting 
in a computational domain of 37λ2, the error in the 
apertures field remains above 10%. 

 

 
Fig. 3. Error versus distance D of the lateral PML 
walls from a 0.8λ X 0.4λ air-filled rectangular 
cavity, TM case, θ=85, h=1λ. Error between 
results obtained using: Case1)  HFSS-PML and 
FEM-TFSIE, Case2) HFSS-PML and Mode 
Matching Technique, Case3) HFSS-ABC and 
FEM-TFSIE, Case4) HFSS-ABC and Mode 
Matching Technique. 

 

 
Fig. 4. Error versus incident angle θ for five 
identical 0.8λ X 0.4λ air-filled rectangular cavities, 
TM case, D=4λ, h=1λ. The cavities are separated 
by 0.2 λ. Error between results obtained using: 
Case1) HFSS-PML and FEM-TFSIE, Case2) 
HFSS-PML and Mode Matching Technique. 
 

As the final example, we considered an infinite 
array of identical cavities in a metallic screen. The 
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cavities are rectangular with dimension of 0.8λ X 
0.4λ and are separated by a distance of 0.2λ. 
Therefore, the periodicity of the cavity is P=1λ. 
Using Floquet theorem, the solution region can be 
limited to one unit-cell containing one period of 
the infinite array (see inset of Fig. 6). In the HFSS 
solution, the periodic boundary condition and the 
PML are applied on the lateral walls and the top 
wall of the truncation boundaries, respectively. 
 

 
Fig. 5. Error versus distance D of the lateral PML 
walls from the marginal cavities in an array of five 
identical 0.8λ X 0.4λ air-filled rectangular cavities, 
TM case, θ=85, h=1λ. The cavities are separated 
by 0.2λ. Error between results obtained using: 
Case1) HFSS-PML and FEM-TFSIE, Case2) 
HFSS-PML and Mode Matching Technique. 
 

As the final example, we considered an infinite 
array of identical cavities in a metallic screen. The 
cavities are rectangular with dimension of 0.8λ X 
0.4λ and are separated by a distance of 0.2λ. 
Therefore, the periodicity of the cavity is P=1λ. 
Using Floquet theorem, the solution region can be 
limited to one unit-cell containing one period of 
the infinite array (see inset of Fig. 6). In the HFSS 
solution, the periodic boundary condition and the 
PML are applied on the lateral walls and the top 
wall of the truncation boundaries, respectively. 

We calculated the truncation error in the 
electric field at the aperture of the cavities in the 
unit-cell using the results calculated for a finite 
array of 21 identical cavities with the same 
dimension using FEM-TFSIE. Figure 6 shows the 
error for a unit cell containing 1, 3 and 9 cavities 
for incident angle varying from θ=00 to θ=850. 
Notice that changing the size of the number of 
cavities in the unit cell does not change the 
physical problem at hand. We observe that by 
increasing the size of the unit cell to three and nine 

periods of array (see inset of Fig. 6), the error 
decreases significantly. We are not in a position to 
discuss the particular implementation of the 
periodic boundary condition in HFSS, however, 
what is quite interesting is that the error in the 
HFSS solution which directly depends on the 
periodic boundary condition implemented in 
HFSS, changes appreciably depending on the 
number of periods considered. 

 

 
Fig. 6. Error in field calculation versus incident 
angle θ at the aperture of the center cavity of the 
unit-cell in an infinite array of identical 0.8λ X 
0.4λ rectangular air-filled cavities, TM case. The 
cavities are separated by 0.2λ. Case a) 1 cavity in a 
unit-cell, Case b) 3 cavities in a unit-cell, Case c) 9 
cavities in a unit-cell. Error between results is 
obtained using HFSS and FEM-TFSIE. 
 

IV. CONCLUSION 
In this study, we highlighted the inherent 

limitation in truncation the infinite structure using 
local boundary operators, such as ABC or PML, in 
context of the problem of scattering from gratings 
containing a single or multiple cavities engraved 
in an infinite PEC screen. In fact, we showed that 
there is an inherent error in the solution due to the 
truncation of the solution region and ignoring the 
portion of PEC walls located outside the solution 
region. Numerical examples of single and multiple 
cavities engraved in an infinite PEC wall were 
presented to calculate the error in field 
computation using PML. The root mean square 
error in the field computation using PML is 
calculated with respect to the FEM-based method 
using a non-local boundary condition and mode 
matching technique as the accurate solutions. First, 
we analyzed the error which introduced to the 
solution due to the grazing incident waves. We 

656ALAVIKIA, RAMAHI: LIMITATIONS ON OPEN-REGION BOUNDARY CONDITIONS AND MATCHED LAYERS TO SOLVE GRATINGS



showed that the error in the solution due to 
truncation increases almost exponentially as the 
incident angle increases. Next, we analyzed the 
dependence of this error to location of the mesh 
truncation boundary. We showed that the error 
decreases by receding the boundary but cannot be 
eliminated completely while incurring prohibitive 
increase of computational resources. Finally, we 
addressed the error in solution while using 
periodic boundary condition in truncating the 
solution region into a unit-cell when solving the 
problem of scattering from an infinite periodic 
array of cavities engraved in a metallic screen. 
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