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Abstract ─ The hybrid volume-surface integral 
equation (VSIE) method has the advantage of 
solving electromagnetic scattering problems 
involving complex structure mixed metal with 
dielectric. In this paper, a method combining VSIE 
with overlapped domain decomposition method 
(ODDM) is used to analyze electromagnetic 
scattering problems successfully. To further 
improve efficiency, the multilevel fast multipole 
algorithm (MLFMA) is adopted, then a novel 
VSIE-ODDM-MLFMA is proposed. Numerical 
results show that the proposed method has low 
memory requirement, fast convergence, and 
accurate simulation result. It indicates that the 
proposed method has the ability to analyze 
complicated electromagnetic problems. 
  
Index Terms ─ volume-surface integral equation, 
electromagnetic scattering, overlapped domain 
decomposition method, multilevel fast multipole 
algorithm. 
 

I. INTRODUCTION 
The solution of the hybrid volume-surface 

integral equation (VSIE) is based on the method of 
moments (MoM) which has been widely used for 
numerical analysis of electromagnetic radiation 
and scattering problems [1-3]. For direct solver, 
the memory requirement is O(N2) and the CPU 
time is O(N3) in MoM. However, both of them in 
MoM are O(N2) for iterative solvers, where N 

denotes the number of unknowns. For the 
electrically large problems, it is difficult to fulfill 
the requirement of memory and efficiency on 
single personal computer presently. The 
overlapped domain decomposition method 
(ODDM) has the function of decomposing the 
computed domain into several subdomains. Each 
subdomain is extended with a buffer domain. The 
solution of the whole domain could be completed 
by solving the extended subdomains circularly. 
Due to introducing buffer domain, the current 
edge-effect in each subdomain could be depressed 
effectively and the convergence of the outer 
iteration is much fast. For solving only one 
subdomain at a time, the ODDM has the 
advantage of saving computing resources. The fast 
multipole method (FMM) can accelerate the 
matrix vector product with complexity of O(N1.5) 
and its extension, the multilevel fast multipole 
algorithm (MLFMA) [4-7], further reduces the 
complexity to O(NlogN) [8]. In this paper, a new 
VSIE-ODDM-MLFMA is proposed which 
combines both ODDM and MLFMA with VSIE. 
Numerical results show the accuracy and 
efficiency of the proposed method. It demonstrates 
that the proposed method has the ability to analyze 
complicated electromagnetic problems. 
 

II. FORMULATION  
The section presents the VSIE-ODDM-

MLFMA solver and its computational complexity 
analysis. 
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A. Outline of the VSIE 

Using the equivalence principle, the 
conducting bodies are replaced by equivalent 
surface currents and the dielectric materials are 
replaced by equivalent volume currents [9]. Above 
is the basic idea of the VSIE [10-11] method. 

For the electromagnetic scattering problems 
involving complex structure mixed metal with 
dielectric, the integral equations can be expressed 
by mathematical relationship with corresponding 
magnetic vector and electric scalar potentials. As 
follows, the volume integral equation (VIE) and 
the surface integral equation (SIE) are given by 
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total electric flux density   in equation (1). 
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To solve the equations (1) and (2), the 
conducting surface is discretized into small 
triangular patches, while the dielectric region is 
divided into tetrahedral elements [9]. Employing 
both the Schaubert-Wilton-Glisson (SWG) [12] 
and the Rao-Wilton-Glisson (RWG) [1] basis 
functions in equations (1) and (2), then testing (1) 
with SWG basis function and testing (2) with 
RWG basis function, we can get a matrix equation 
which could be written as a submatrix form in the 
following: 
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where the first matrix is impedance matrix, DnI  

and MnI  are the unknown expansion coefficients, 
DE  and ME  denote the excitation vectors. The 

more details of the VSIE can be found in [9]. 
 

B. Basic principle of ODDM 
When decomposing the whole computed 

domain to several subdomains, the corresponding 
impedance matrix [ ]Z  will be decomposed into 
several submatrices. The solution of the whole 
domain could be got by solving submatrix 
equations circularly. Above-mentioned process is 
the idea basis of domain decomposition method 
(DDM) [13]. For solving only one submatrix 
equation at a time, the memory requirement can be 
reduced. However, as the whole matrix equation 
need to be solved by iterative solvers, the 
computing time would become longer usually. 
Using parallel computation could improve 
efficiency. Similarly, employing preconditioned 
techniques can reduce iteration number and CPU 
time.  
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Fig. 1. The illustration of the DDM model. 
 

As is shown in figure 1, if the domain is 
decomposed along the thin solid lines, there would 
be no common elements among the submatrices. 
In this way, the electric current of subdomain 
boundary would have singularity which can lead 
to the problem of low efficiency and slow 
convergence, even no convergence. In order to 
restrain electric current singularity, Brennan 
proposed a forward and backward buffer region 
(FBBR) iterative scheme which regards the 
forward or backward domain of subdomain 
boundary as buffer domain of the subdomain [14]. 
However, only the current edge-effect in one side 
of each subdomain is depressed. On the basis of 
the idea presented in [14], the ODDM was 
proposed in [15]. The dotted line in Figure 1 is the 
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boundary of the extended subdomain whose 
solution is restricted to the original subdomain by 
discarding the currents in buffer domain. The 
whole domain current could be got by solving 
circularly. Above paragraph has illustrated the 
basic principle of ODDM. 

The ODDM involves twofold iterations 
including inner iteration and outer iteration. The 
iteration solving subdomain is inner iteration while 
the process of solving all the subdomains once is 
called as an outer iteration, in which the current in 
the whole domain is updated once by the inner 
iteration. The following figure has explained the 
relation between inner iteration and outer iteration. 

 

(k-1) (k-1) 

(k-1) (k) 

(k) (k) 
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i=2 

i=3 

Computed domain 

Iterative domain 
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Fig. 2. The relation between inner iteration and 
outer iteration. 
 

In figure 2, the iterative domain denotes the 
extended subdomain that need to be computed and 
its complementary domain is the corresponding 
incident domain, the thin solid line is subdomain 
boundary, the dotted line is the boundary of the 
extended subdomain with buffer domain, i 
represents the sequence number of the solved 
subdomain and k denotes kth outer iteration. 
 
C. FMM and MLFMA 

Based on FMM, the MLFMA has gained great 
success in solving electromagnetic problems with 
electrically large size [16-17]. MLFMA is the 
promotion of FMM in hierarchical structure. The 
basic principle of FMM is to divide scattering 
units which derived by discretizing scattering 
object into groups. The mutual coupling of any 
two scattering units is calculated by different 
methods according to the relative position of their 
groups. When they are adjacent, we use direct 
calculation method, otherwise, separate into three 
steps containing aggregation, translation and 

disaggregation. As shown in Fig.3, for a given 
group of field point, firstly, the contributions of all 
scattering units in its non-adjacent group would be 
aggregated to the center of each group, secondly, 
the contributions of these groups would be 
translated from each center to the center of the 
given group, finally, all the contributions of the 
non-adjacent groups would be disaggregated from 
the center of the given group to each scattering 
unit in the group. For a group of source point, the 
group center represents the contributions of all 
scattering units in this group to its non-adjacent 
groups. For a group of field point, the group center 
represents the contributions of all non-adjacent 
groups to this group. In this way, the number of 
scattering center is considerably reduced [18-19]. 

 

pGqG
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translation 
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Fig. 3. The direct interaction between two far-field 
elements is separated into three steps containing 
aggregation, translation and disaggregation. 
 

The expression for matrix vector product in 
FMM is written as 
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The first term in (6) denotes the contribution from 
nearby groups (including the self-group) which is 
represented by the symbol pB , the second term is 

the far-field interaction calculated by FMM, the 

, ˆ( )qn kF ˆ( , )pq pqr k , and  donate the 

aggregation, translation, and disaggregation factor, 
respectively. 

ˆ( )mp kR

 
D. The VSIE method combined with ODDM 

As is shown in (3) and (4), using the volume 
current  and surface current  to respectively 

denote magnetic vector and electric scalar 
potentials in equation (1) and equation (2), we get 
the incident field expression. To derive the 

VJ SJ
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formulation of VSIE-ODDM conveniently, we 
define one F linear operator as  

 0( ( )) ( , )u u uu
F j g  J r J r r r du   
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Then the equation (1) and equation (2) could 
be expressed as 
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   To build the integral iteration formula 
between subdomains, we define two linear 

operators  and  for the VIE (8). 
The two linear operators can be written as 
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where  is the sequence number of subdomain, the 

th extended subdomain  includes 
i

i i iV   and iS  , 

i  is the complementary domain of i . Here, 

 where  denotes the buffer 

domain of . Similarly,  and 

. Combining equation (8) with 

equation (10) and equation (11), we get the VIE-
ODDM iteration scheme which is expressed as  
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Comparing equation (12) with equation (8), the 
computed domain is reduced from V  to iV  , and 

the excitation source in the computed domain 
includes both the information of incident plane 
wave and the coupling from other subdomains. 

A similar procedure can be applied for the SIE 

(9). We define two linear operators  and 

, then we can get the SIE-ODDM 
iteration scheme, expressed as 

( , )MT r J
( , )MK r J
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   tan( )      .i
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Expanding the equation (12) by RWG and 
SWG basis function and testing it with SWG basis 
function, the matrix form of the VIE-ODDM can 
be obtained. Similarly, for equation (13), selecting 
RWG basis function as testing function, we can 
get the matrix form of the SIE-ODDM. Combining 
the two matrix equations, a VSIE-ODDM iteration 
scheme is presented as 
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Here, M  denotes the number of subdomain, 

i i

TM
S 

D
VE E  
   represents the vector of incident 

field in the ith extended subdomain i . DD
iiZ , 

DM
iiZ , MD

iiZ , and MM
iiZ  are the self-impedance 

matrices in i . DD
ijZ , DM

ijZ , MD
ijZ , and MM

ijZ  are 

the mutual-impedance matrices between j  and 

i . By solving the equation (14) and discarding 

the current in the buffer domain , the current 

in subdomain 

( )b i

i  could be updated. The process 

of solving the equation (14) is an inner iteration. 
By several outer iterations, we can get the current 
in the entire domain. 

 
E. The VSIE-ODDM-MLFMA solver 

The MLFMA may be employed to accelerate 
the matrix vector product. The entire object is first 
enclosed into a large cube, which is partitioned 
into eight smaller cubes. Each subcube is then 
recursively subdivided into smaller cubes until the 
edge length of the finest cube is about 0.1 
wavelength. In ODDM, the whole computed 
domain needs to be decomposed into iterative 
domain and incident domain. However, when 
combining the ODDM and MLFMA, it is 
necessary to consider the problems of 
decomposition and grouping simultaneity. 
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(a) (b) (c)
 

Fig. 4. The cube belongs to iterative domain and 
incident domain simultaneity. ( ,  represent 
basis function units in the ith iterative and incident 
domain, respectively.)  

 

 
In VSIE-ODDM-MLFMA, for a certain cube 

of a certain MLFMA layer, if no less than one 
basis function unit is located in ith iterative 
domain or incident domain, the cube belongs to ith 
iterative domain or incident domain. As is shown 
in Fig. 4, the cube (a) belongs to ith iterative and 
incident domain simultaneity because it has both 

 and  basis function units. As a cube in ith 
iterative domain, the cube (a) is equal to cube (b), 
while as a cube in ith incident domain, the cube (a) 
is equal to cube (c). Due to outside of the iterative 
domain, the   basis function units will contribute 
outgoing radiation (called aggregation) but do not 
receive updates via translation and disaggregation. 

 

 
F. Computational complexity analysis of the 
VSIE-ODDM-MLFMA 

The computational complexity for the VSIE-
ODDM-MLFMA is composed of the inner and 
outer iterations. We define the average number of 
unknowns in every iterative domain as 
Ni=N/M+Nb where N is the total number of 
unknowns, Nb denotes the average number of 
unknowns in buffer domain. Suppose that the 
average number of inner iterations is ξ, the average 
CPU time of solving each iterative domain is 
O(ξNilogNi). Assuming that the number of the 
outer iterations is ς, then the total CPU time of the 
inner iteration is about 

    ( log )i iO M N N     

( ( ) log( ))b b

N N
O M N N

M M
        

( ( ) log( )).b

N
O N MN N

M
      b

cross section (RCS) could generally meet the 

III. NUMERICAL RESULTS 
To ncy of 

the 

           (15) 

When the size of the whole coefficient matrix 
is fixed, the CPU time of inner iteration is mostly 
determined by ς·ξ. According to past experience, 
the accuracy of both electric current and radar 

requirements when ς is 3. Obviously, the memory 
requirement for the inner iteration is O(NilogNi). 
When using an iterative solver to solve the 
problems, only near-field matrix elements need to 
be stored. So the VSIE-ODDM-MLFMA is better 
than VSIE and VSIE-ODDM in the aspects of 
memory requirement or computational efficiency. 
In contrast to VSIE-MLFMA, the memory 
requirement is reduced significantly, which is very 
important to analyze electrically large problems. 

 

demonstrate the accuracy and efficie
proposed method, several numerical examples 

are presented in this section.  

  
Fig. 5. Perfectly conducting sphere co ted with a
dielectric layer. 
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Fig. 6. Bistatic radar cross sections of a dielectric-

The first example is a perfectly conducting 
sph

coated sphere. 
 

ere with a diameter of 0.3423λ0, which is 
coated with a 0.1017λ0 thick dielectric layer whose 
relative dielectric constant is εr=2. The mixed 
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structure is illuminated by a plane wave. In order 
to use the VSIE-ODDM-MLFMA, the target is 
decomposed into four domains. The dielectric 
domain is discretized into tetrahedrons and the 
metal domain is discretized into triangles, as a 
result, 14332 SWG basis functions and 963 RWG 
basis functions are generated. 

The bistatic RCS computed by the VSIE-
ODDM-MLFMA is shown in Figure 6. The 
comparison with the exact Mie series solution is 
given and excellent agreement is found. The 
example demonstrates the accuracy of VSIE-
ODDM-MLFMA for analyzing the structure 
mixed metal with dielectric. 
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1m 

0.05m 

 
Fig. 7. A dielectric cuboid coated with a me l 

As shown in Figure 7, the second example is a 
diel

, VSIE-
OD

 1, the comparison of the 
tota

ta
layer on the surface. 
 

ectric cuboid coated with a metal layer on the 
surface whose specific size is marked. The relative 
permittivity of the dielectric cuboid is 1.6. The 
incident wave frequency is 300MHz. To apply the 
ODDM, first we divide the computed domain into 
two domains averagely in X direction. Then we 
discretize the dielectric and metal domains as the 
first example, as a result, 4959 basis functions are 
generated, which includes 4323 SWG basis 
functions and 636 RWG basis functions. 

We use VSIE-MLFMA program
DM-MLFMA program, VSIE-ODDM program 

and VSIE program to compute bistatic RCS of the 
target respectively. The comparative results are 
presented in Figure 8.  

As shown in Table
l memory requirement and CPU time between 

VSIE-ODDM-MLFMA and VSIE-MLFMA is 
provided. In VSIE-ODDM-MLFMA, the total 
memory requirement is 42288KB, which is 
reduced by 35.3% significantly in contrast to 
65364KB in VSIE-MLFMA. If we divide the 
computed domain into more subdomains, the 
memory requirement will be further reduced. This 

experiment results also tell us that the total 
memory requirement of VSIE-ODDM-MLFMA 
only accounts for 10.6% of VSIE, 20.4% of VSIE-
ODDM, and the CPU time is reduced significantly 
in contrast to VSIE and VSIE-ODDM. 
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Fig. 8. Bistatic radar cross sections of a dielectric 

able 1: The comparison of the total memory 

requ B) 
CPU 

t

cuboid coated with a metal layer on the surface. 
 
T
requirement and CPU time between VSIE-
MLFMA and VSIE-ODDM-MLFMA 

Method 
Memory 
irement(K ime(s)

VSI A E-MLFM 65364 88 
VSIE-ODDM-

MLFMA 
42288 132 
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Fig. 9. The illustration of a 7×7 planar FSS array 
and the square ring unit. 
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Fig. 10. Bistatic radar cross sections computed b
the VSIE-ODDM-MLFMA and FEKO. 

he VSIE
ODDM-MLFMA has the ability to solve the 
pro

56mm in width, and 0.5mm in thickness with the 

tic scattering problems of 
com

d MLFMA are 
introduced to the VSIE simultaneity, which could 
solve the prob ware sources 
and

o, D. R. Wilton and A. W. Glisson, 
agnetic scattering by surface of arbitrary 

shape,” IEEE ropagat., vol. AP-

 

y 

 
In order to further demonstrate t -

25

blems of complicated structure, we take the 
third example of a 7×7 FSS array whose 
dimension is shown in Figure 9. The FSS unit is 
square ring whose outside edge length D1 is 7mm, 
inside edge length D2 is 6mm, and cycle is 
8mm.The dielectric substrate has 56mm in length, 

relative permittivity εr=3.0. To use the ODDM, we 
first divide the computed domain into four 
inhomogeneous domains, then discretize them into 
tetrahedrons in dielectric domain and triangles in 
metal domain, respectively. As a result, 30213 
SWG basis functions and 1372 RWG basis 
functions are generated. The FSS array is 
illuminated by a TM polarization wave from the 
vertical direction at 14 GHz. The RCS results 
computed by the proposed method are plotted in 
Figure 10. The comparison with the FEKO is 
given and the good agreement between the two 
methods is obtained.  

The experimental results in Figure 10 have 
demonstrated the proposed method has the ability 
to solve electromagne

plicated structure accurately. 
 

IV. CONCLUSION 
In this paper, the ODDM an

lem of insufficient hard
 improve the efficiency. Numerical results of 

the presented examples demonstrate the accuracy 
and efficiency of this proposed method. It shows 
that the VSIE-ODDM-MLFMA can solve 
complicated electromagnetic problems 
successfully. 
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