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Abstract ─ Although the Multilevel Fast Multipole 

Method (MLFMM) and the parallel technology 

can accelerate the matrix-vector product operation, 

the iteration number does not reduce at all in the 

iterative solution. A new proposed two-level 

spectral preconditioning technique is developed 

for the generalized minimal residual iterative 

method, in which the MLFMM is used to 

accelerate the calculation. The Multifrontal 

Massively Parallel Solver (MUMPS) is used to 

damp the high frequencies of the error, and the 

low frequencies of the error are eliminated by a 

spectral preconditioner in a two-level manner. 

This technique is a combination of MUMPS and a 

low-rank updated spectral preconditioner, in which 

the restarted deflated Generalized Minimal 

Residual (GMRES) with the newly constructed 

spectral two-level preconditioner is considered as 

the iterative method for solving subsequent 

systems. Numerical experiments indicate that the 

proposed preconditioner is efficient for the 

MLFMM and can significantly reduce both the 

iteration number and computational time. 

 

Index Terms ─ MLFMM, MUMPS, 

preconditioning, scattering problems, spectral. 
 

I. INTRODUCTION 
The Method of Moments (MoM) is widely 

used to solve the Electric Field Integral Equation 

(EFIE) in RCS calculations [1]-[3]. There are two 

means to accelerate the computing of large-scale 

objects scattering problems. One is to accelerate 

the construction of the impedance matrix and the 

other is to fast solve the linear equations [4]-[6]. It 

is meaningless to construct impedance matrix 

efficiently if the linear equations can not be solved 

quickly. Therefore, it plays a very important role 

in fast solve linear equations which the MLFMM 

formed. Direct method has memory requirement 

of O(
2N ) and computational complexity of 

O(
3N ), where N  is the number of unknowns. 

Therefore, iterative solution has become a 

successful application in recent years for 

electrically large objects. More improvements are 

needed for the iterative solution because of the 

slow convergence or the misconvergence. 

It is well known that EFIE provides ill-

conditioned linear system. Therefore, it is natural 

to use preconditioning techniques to improve the 

condition number of the system. Many scholars 

have done a lot of research on improving the 

efficiency of the iterative solution in the past few 

decades [7]-[14]. Diagonally perturbed incomplete 

factorization preconditioned CG algorithms is 

used in [7], incomplete LU preconditioner is 

applied for FMM implementation in [8]-[9]. And a 

sparse approximate inverse preconditioner is used 

for nonsymmetrical linear systems [10]-[13]. 

However, every preconditioner has its merits and 

demerits. Diagonal preconditioner (Diag) and 

Symmetrical Successive Over-Relaxation 

preconditioner (SSOR) are simple to construct, but 

can not improve the convergence rate of the 

iterative algorithm greatly because of the bad 

approximation of the inverse matrix. Incomplete 

LU decomposition preconditioner (ILU) and 

Sparse Inverse preconditioner (SAI) can improve 

convergence speed greatly, but needs long 

construction time and large structure complexity. 

ILU is unstable under many circumstances to 

destroy the convergence of the iterative algorithm. 
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In most of the cases, a single preconditioner 

can improve the iteration convergence speed to a 

certain extent. We can get more obvious 

convergence improvements when combining 

different preconditioners. A spectral two-level 

preconditioning was presented for electromagnetic 

problems [15]-[18]. The two-level spectral 

preconditioning technique proposed in [17] 

obtained a good performance. However, the SAI 

preconditioned two-level spectral method may 

result in bad convergence for some structures, 

because the SAI preconditioner can only obtain 

the approximate inversion of the near-field 

impedance matrix. In this paper, the Multifrontal 

Massively Parallel Solver (MUMPS) is used 

together with a spectral preconditioner in a two-

level manner that results in a faster convergence 

rate. 

This paper is organized as follows. Section 2 

gives an introduction to the proposed two-level 

spectral preconditioner in detail. Numerical 

experiments with a few electromagnetic scattering 

problems are presented in Section 3 to show the 

efficiency of the spectral two-step preconditioner. 

Section 4 gives some conclusions and comments. 
 

II. THEORY AND FORMULATION 
The problem we focus on in this paper is the 

monostatic RCS calculation of an object. The 

procedure consists of considering a set of waves 

with the same wavelength but different incident 

angles that illuminate the object. For each of these 

waves, we compute the electromagnetic field 

backscattered in the direction of the incident wave. 

This requires solution of one linear system per 

incident wave. Therefore, a sequence of linear 

systems with the same coefficient matrix but 

different right-hand sides is derived, 

 
1 2 1 2( , ..., ) ( , ..., )p pZ I I I V V V . (1) 

Where iIZ , and iV are the EFIE impedance 

matrix, the induced current vector and the 

excitation vector with respect to p different 

incident waves, respectively. 

The MLFMM is applied to reduce the memory 

requirement and the computational complexity. In 

MLFMM, the impedance matrix Z  can be split 

into two parts as: 

  NF FFZ Z Z . (2) 

Where NFZ  denotes the sparse matrix that 

corresponds to near-filed interactions, while FFZ  

denotes the matrix that corresponds to far-field 

interactions. The near-filed interactions can be 

calculated directly by MoM, while the far-field 

interactions can be computed by MLFMM. 

The matrix based on EFIE is usually ill-

conditioned and requires a large number of 

iterations to reach convergence. In order to speed 

up the convergence rate, the preconditioning 

techniques are often used. To this end, we first 

consider a MUMPS preconditioner based on a 

multifrontal approach. MUMPS is a package [19] 

for solving systems of linear equations. MUMPS 

implements a direct method based on a 

multifrontal approach which performs a direct LU 

factorization. And the sparse matrix can be either 

unsymmetric, symmetric positive definite, or 

general symmetric. MUMPS exploits both 

parallelism arising from sparsity in the matrix and 

from dense factorizations kernels. MUMPS 

distributes the work tasks among the processors, 

but an identified processor (the host) is required to 

perform most of the analysis phase, to distribute 

the incoming matrix to the other processors 

(slaves) in the case where the matrix is centralized, 

and to collect the solution. The parallel version of 

MUMPS requires MPI for message passing and 

makes use of the BLAS, BLACS, and 

ScaLAPACK libraries [20]-[22]. 

Since FFZ  is not readily available, it is 

customary to construct the preconditioner from 

NFZ . NFZ  is assumed to be a good approximation 

to Z . In this paper, we chose the preconditioning 

matrix 1  NFM Z . Through the MUMPS package, 

the preconditioning matrix can be factorized 

efficiently, 

 1  NF NF NFM Z L U . (3) 

Where NFL  is a lower triangular matrix and NFU  

is an upper triangular matrix. Then 
1

1

M  can be 

obtained by the MUMPS package with high 

efficiency. And 
1

1

M is stored in sparse storage 

format. 

To accelerate iterative solvers, the linear 

equation (1) is always converted to: 

 
1 1

1 1

                  ( 1,2..., )

 



i iM ZI M V

i p
. (4) 
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Where 
1

1

M  is a matrix for preconditioning the 

matrix Z from the left. The purpose of 

preconditioner is to make the preconditioned 

matrix 
1

1

M Z  as close to the identity matrix I  as 

possible. 

Although, the MUMPS preconditioner 

described above is very effective as shown in the 

following numerical results; the construction of it 

is inherently local. When the exact inverse of the 

original matrix is globally coupled, this lack of 

global information may have a severe impact on 

the quality of the preconditioner. We can get more 

obvious convergence improvements if recovering 

global information. In this case, some suitable 

mechanism has to be considered to recover global 

information. 

We firstly let the most of eigenvalues of the 

near-field interactions concentrate on the unit by 

using the parallel MUMPS preconditioner, which 

eliminates the high frequency component of 

iteration process and accelerates the iteration 

convergence speed. A spectral preconditioner 

proposed in [23] can be introduced and used in a 

two-level manner for the above parallel MUMPS 

preconditioned system. The purpose here is to 

recover global information by removing the effect 

of some smallest eigenvalues in magnitude in the 

MUMPS preconditioned matrix, which potentially 

can slow down the convergence of Krylov solvers 

[24]. In this paper, the first right-hand side system 

is solved particularly with the MUMPS 

preconditioned GMRES-DR algorithm, which also 

generates approximations to eigenvectors as a 

byproduct. 

Suppose 1 2, ,......, n    be the eigenvalues of 

the MUMPS preconditioned matrix 
1

1

M Z  from 

small to large, where n  represents the number of 

unknowns. And suppose U be a set of 

eigenvectors of dimension k  associated with the 

smallest eigenvalues of 
1

1

M Z . It will take a long 

time to extract the eigenvalues if k is large. On the 

other hand, it will obtain small improvement if 

k is small. 

Define the second spectral preconditioner as: 

 
1

2 (1/ )    H

n n kM I U T I U . (5) 

Where 1

1( ) HT U M Z U , nI and kI  are unit 

matrix of dimension n  and k , respectively. 

From the above analysis, we can convert the 

k  smallest eigenvalues of the coefficient matrix 
1

1

M Z ’s characteristic spectrum, which is based 

on parallel MUMPS preconditioner to k  

arithmetic numbers whose values are 
n . This 

process can eliminate negative influences of the k  

smallest eigenvalues. Combining the second 

preconditioner with the previously preconditioner 

in a two-level manner, a new two-level 

preconditioner is derived and has the form of: 

 
1 1 1 1

2 1 2 1

                             ( 1,2..., )

   



i iM M ZI M M V

i p
. (6) 

Supposing that 1

1

M  is a preconditioner of Z , 

1

2

M  is a preconditioner of
1

1

M Z . Therefore, a 

new two-level spectral preconditioning for 

multilevel fast multipole method is presented, 

which is a combination of a parallel MUMPS 

preconditioner and a parallel spectral 

preconditioner. The procedure can be concluded as 

follows: 

(1) Construct the MUMPS preconditioner 
1

1

M  by 

using the near-field matrix element of the 

impedance matrix NFZ ; 

(2) Solve the k  smallest eigenvalues of the matrix 
1

1

M Z and construct the second spectrum 

preconditioner 
1

2

M  by using the information of 

eigenvectors; 

(3) Solve the linear equations (6) by the iterative 

method. 

 

III. NUMERICAL RESULTS 
In this section, we show some numerical 

results that illustrate the effectiveness of the 

proposed method for the solution of linear systems 

with multiple right-hand sides arising from the 

discretization of EFIE formulation in monostatic 

RCS computation. The first system (system with 

the first right-hand side) is solved with the 

MUMPS preconditioned GMRES-DR algorithm, 

and at the same time eigenvector information is 

extracted to construct the spectral two-level 

preconditioner. In our experiments, the restarted 

version of GMRES(m) [25] algorithm is used to 
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solve subsequently left systems, where m is the 

dimension size of Krylov subspace for GMRES. 

All cases are tested on HP server with Intel Xeon 

CPU X5550 (2.67 GHz). The operating system is 

Red Hat Enterprise Linux Server release 5.3. The 

environment of compiling is Intel Visual Fortran 

9. Additional details and comments on the 

implementation are given below: 

·Choose m=100 as the maximum size of the 

subspace and k=80 as the desired number of 

approximate eigenvectors in the GMRES-

DR(m,k). 

·The maximum number of iterations is limited to 

be 5000. 

· Zero vector is taken as initial approximate 

solution for all examples and all systems in each 

example. 

·The iteration process is terminated when the 

normwise backward error is reduced by 310  for 

the first two examples and by 35*10  for the last 

war craft example. 

· The third example is performed on 4-node 

cluster connected with an Infiniband network. 

Each node includes 8 cores and 48 GB of RAM. 

One node is used in the first two examples with 8 

cores. 

First of all, a comparison is made among the 

SAI preconditioned two-level spectral 

preconditioner [17], the MUMPS preconditioned 

two-level spectral preconditioner, and the 

traditional MLFMM for the hypervelocity vehicles 

X43. X43 is an open structure with the size of 3.67 

m×1.42 m×0.62 m. There are 128,458 triangles 

and 192,562 unknowns after discretization. The 

incident plane wave direction is fixed at 

0 , 0inc inc    , the frequency is 2.2 GHz, and 

the scattering angle is fixed at 

0 180 , 90    s s  . 

As shown in Fig. 1, the comparison is made 

for the bistatic RCS of parallel polarization. It can 

be found that there is an excellent agreement 

between them and this demonstrates the validation 

of the proposed algorithm. The convergence 

history is given in Fig. 2. Since a good 

preconditioner depends not only on the 

convergence effect, but also on its construction 

and iteration time. As shown in Table 1, the 

construction time, the iteration time and the 

number of iterations are listed with different 

preconditioners, where ＊  refers to no need to 

take. The construction time is for constructing 

both 1M and 2M . It can be observed that the 

proposed new two-level spectral preconditioner 

decreases the number of iterations greatly when 

compared with the SAI preconditioned two-level 

spectral method. 
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Fig. 1. Bistatic RCS of the X43 at 2.2 GHz. 
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Fig. 2. Convergence history of GMRES algorithms 

for the X43 at 2.2 GHz. 
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Table 1: Number of iterations, construction time and iteration time (in seconds) for the X43 

 
Construction Time 

(in seconds) 

Iteration Time 

(in seconds) 

Number of Iterations 

MLFMM * 2183 4324 

SAI preconditioned two-level 

spectral method 
478 309 355 

MUMPS preconditioned two-level 

spectral method 
547 118 116 

 

The second example is an analysis of 

monostatic RCS from a satellite. The length of the 

cube in the middle is 2 m, the length of the solar 

panels beside the cube is 8 m and the interval 

between the cube and the solar panels is 1.87 m. 

The incident plane wave direction is fixed at 

0 180 , 90inc inc      , the frequency is 2.0 

GHz and the scattering angle is fixed at 

0 180 , 0    s s  . The number of unknowns 

is 861,204. 

Figure 3 shows the convergence histories of 

the GMRES method with or without 

preconditioning for solving the linear system 

associated with the first right-hand side. It can be 

found that the two-level spectral preconditioned 

method decreases the number of iterations by a 

factor of 5.73 when compared with the MUMPS 

preconditioned method. Larger improvements can 

also be found when compared with the GMRES 

method without preconditioning in terms of 

iterations. As shown in Fig. 4, the number of 

iterations with both MUMPS and two-level 

spectral preconditioning are displayed for solving 

systems with respect to different incident angles. 

The result of monostatic RCS calculation is shown 

in Fig. 5. As shown in Table 3, the construction 

time and the iteration time are listed with different 

preconditioners. The construction time of the 

MUMPS preconditioning method is for 

constructing 1M , while the construction time of 

the MUMPS preconditioned two-level spectral 

method is for constructing both 1M and 2M . It 

demonstrates the effectiveness of the proposed 

method. The parallel efficiency for the proposed 

new two-level spectral preconditioner is tested in 

the Table 2. The construction time in Table 2 is for 

constructing both 1M and 2M . 
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Fig. 3. Convergence histories of GMRES method 

with or without preconditioning for solving the 

linear system associated with first right-hand side. 
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Fig. 4. Number of iterations with both MUMPS 

and two-level preconditioning for solving systems 

with respect to different incident angles. 
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Fig. 5. Monostatic RCS of the satellite at 2 GHz.

 

Table 2: The parallel efficiency of the proposed 

new two-level spectral preconditioner for the 

satellite 

 
For 8 

Cores 

For 16 

Cores 

For 32 

Cores 

Construction time 

(in seconds) 
1149 575 351 

Total time 

(in seconds) 
33,632 25,686 21,166 

 

Table 3: Construction time and iteration time (in seconds) for the satellite 

 Construction Time 

(in seconds) 

Iteration Time 

(in seconds) 

MUMPS preconditioning method 396 59,762 

MUMPS preconditioned two-level spectral method 1149 32,822 

 

At last, the proposed method is used to 

analyze scattering from a war craft. The war craft 

is an open structure with the size of 1.91 m×2.73 

m×0.6 m. There are 5,741,073 unknowns after 

discretization, and the frequency is 8.0 GHz. The 

incident plane wave direction is fixed at 

0 180 , 0inc inc      , and the scattering 

angle is fixed at 0 180 , 0    s s  . 

Figure 6 shows the convergence histories of 

the GMRES method with or without 

preconditioning for solving the linear system 

associated with the first right-hand side. As shown 

in Fig. 7, the number of iterations with both 

MUMPS and two-level spectral preconditioning is 

displayed for solving systems with respect to 

different incident angles. It can be observed that 

the use of the spectral preconditioner in a two-

level manner improves the convergence of the 

MUMPS method by a factor of 2.8 on average. 

The result of monostatic RCS calculation is shown 

in Fig. 8. As shown in Table 4, the construction 

time and the iteration time are listed with different 

preconditioners. The construction time of the 

MUMPS preconditioning method is for 

constructing 1M , while the construction time of 

the MUMPS preconditioned two-level spectral 

method is for constructing both 1M and 2M . It 

demonstrates the effectiveness of the proposed 

method. 

0.001

0.01

0.1

1

0 100 200 300 400 500 600 700 800 900 1000

Number of iterations

R
es

id
u

al
 n

o
rm

MLFMM

MUMPS preconditioning method

MUMPS preconditioned two-level spectral method

 
 

Fig. 6. Convergence histories of GMRES method 

with or without preconditioning for solving the 

linear system associated with first right-hand side. 
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Fig. 7. Monostatic RCS of the war craft at 8 GHz. 
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Fig. 8 Number of iterations with both MUMPS 

and two-level preconditioning for solving systems 

with respect to different incident angles. 

Table 4: Construction time and iteration time (in seconds) for the war craft 

 
Construction Time 

(in seconds) 

Iteration Time 

(in seconds for 19 angles) 

MUMPS preconditioning method 634 60,547 

MUMPS preconditioned two-level spectral method 1342 16,704 

IV. CONCLUSION 
In this paper, a parallel two-level spectral 

preconditioner utilizing MUMPS is proposed for 

solving systems with multiple right-hand sides in 

monostatic RCS calculation. The MUMPS 

preconditioner is used to damp the high 

frequencies of the error, and the low frequencies 

of the error are eliminated by a spectral 

preconditioner in a two-level manner. The first 

right-hand side system is solved by the use of the 

GMRES-DR algorithm, and the approximate 

smallest eigenvector information is obtained for 

constructing the spectral preconditioner for 

subsequent systems. Numerical results are 

presented to demonstrate the efficiency of the 

proposed method. And the comparisons are made 

among different preconditioners. It can be found 

that the proposed preconditioner can not only get 

better convergence, but can also reduce the overall 

simulation time when compared with other 

preconditioners. 
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