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Abstract ─ A new design technique for elliptic ridged 

and sectoral waveguides is presented. The PSO 

technique has been employed, using FDFD to compute 

the propagation data of the guide. Conflicting 

requirements of wide bandwidth and high power 

handling capability are taken both into account with a 

suitable objective function. 

 

Index Terms ─ Cutoff frequency, elliptical ridged 

waveguide analysis, finite difference frequency domain, 

microwave components, microwave filters, optimization, 

PSO, ridged waveguides, waveguide modes. 
 

I. INTRODUCTION 
In many applications, microwave propagation 

structures with high power handling capabilities and 

low-losses are required. The most effective structures 

which satisfy these requests are metallic hollow 

waveguides (WG). The modal structure [1] of WG 

propagation implies that WGs can be used only as long 

as single mode propagation takes place. Moreover, the 

propagation of each mode is high-pass and dispersive. 

Therefore, the useful bandwidth of a given WG is 

relatively narrow. The most popular approach to 

increase significantly the bandwidth, retaining all the 

useful WG properties, is the use of ridged waveguides 

R-WG [2].  

First studies on R-WGs were made by Cohn [3], 

who showed how rectangular ridge waveguides have a 

lower cutoff frequency and a greater bandwidth 

compared to a standard rectangular waveguide with the 

same dimensions. Then Hopfer [4] analysed the 

microwave properties of single and double ridge 

waveguide, such as cut-off frequency, bandwidth, 

attenuation and power handling: in particular he showed 

that a ridge structure provides a larger bandwidth but, 

on the other hand, it has a reduced power handling 

capability. Transverse resonance technique [5] has been 

the first approach of analysis of rectangular R-WG, [2] 

despite its reduced accuracy. Application of ridged 

circular waveguides, ridged elliptic waveguides (REW) 

and sectoral elliptic waveguides (SEW) [6] can be 

found in many components like filters, matching 

networks, orthomode transducers, polarizers and 

circulators that are widely used in satellite and terrestrial 

communication systems [7]-[11]. Low-cost design, small 

size, and optimum performance of these components 

are essential to satisfy today’s stringent payload 

requirements.  

An analytical, closed form solution exists also for 

elliptic waveguides, and has been found by Chu [12] 

since the 30’s. Unfortunately, the field distribution is 

described by the Mathieu functions [13], whose 

numerical evaluation is very cumbersome. The best 

approach seems the expansion of those functions in a 

series of (more tractable) Bessel functions [14]. In [15], 

the cutoff wavelengths have been computed efficiently 

applying by the method of fundamental solutions. In 

[16], using Mathieu functions and their addition 

theorem, was presented the general exact solution for 

evaluation the cutoff frequency in eccentric elliptical 

waveguides. 

Aim of this work is to devise a FDFD [17]-[20] 

approach for SEW [21] and REW homogeneous elliptic 

waveguides, tailored to the structure, but as simple as 

the standard one in the formulation. Use of a suitable 

elliptical grid (which perfectly fits the waveguide 

boundary) allows to evaluate the SEW and REW modes 

with the required accuracy using order of magnitude 

less sampling points than the standard approach of 

FDFD [22], namely the use of a rectangular grid with a 

staircase approximation of the boundary. In addition a 

REW configuration have been effectively optimized 

through a synergic use of PSO and the FDFD, aiming at 

the best trade trade-off of the different requirements of 

bandwidth and power handling. 
 

II. DESCRIPTION OF FDFD TECNIQUE 
The TE and TM modes of waveguide can be 

calculated [1] by solving the eigenvalue equation 
2 2

t tk    , with the boundary conditions (BC) 

0n    for TE modes and 0   for TM modes. In 

the eigenvalue equation   is a scalar potential and tk  is 
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the “transverse eigenvalue”, from which the propagation 

constant and the characteristic impedance can be 

obtained. Apart some canonical geometries, this 

eigenvalue problem must be solved numerically. 

Probably, the most effective approach is FDFD [23], 

i.e., the direct discretization of the problem on a 

suitable grid. Such a technique has been shown to be 

well suitable to ridge waveguide through proper 

approximations of the equation and the boundary 

conditions (BC). A rectangular lattice of sampling points 

is a very accurate grid for rectangular and staircase 

ridges [23], whereas it reduces a curvilinear geometry 

to a staircase approximate structure. Since the analysis 

presented in this paper is focused on elliptic boundaries, 

a set of sampling points in elliptic coordinate has been 

considered (Fig. 1). 

 

 
 

Fig. 1. Geometry of the elliptic coordinates [24]. 

 

Let’s define u , v  the spacing steps, and 

 ,pq p u q v    . The elliptical grid is characterized 

by a number of points un  and vn  respectively along the 

axes u and v. The Helmholtz equation takes the form: 
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For each internal point P (see Fig. 2) is simpler to 

discretize the term in brackets (1) using a fourth-order 

Taylor expansion, 
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leading to: 

  
2

2 2

1
16 16 30

12
B D N Q P

P
u u


    


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. (6) 

By repeating the same for the v direction: 

  
2

2 2

1
16 16 30H G A C P

P
v v


    


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, (7) 

an approximation of the term in square brackets is 

obtained: 
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, (8) 

which provides an approximation of the Helmholtz 

equation suitable to the FDFD’s application. 

Due to geometric singularities, Equation (8) is not 

applicable in the two foci, in the segment of points 

between them and in the external points. 

For a generic point P in the segment joining the 

two foci, it is possible to integrate 2 2
t tk    : 

 2 2
t tdS dSk     , (9) 

and apply the Gauss theorem: 

 2 ,
F F

t
S

dl k dS
n







  

   (10) 

wherein FS  is the cell surface, and F  is the cell 

boundary. 

The grid presents two types of boundary points, the  
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radial ones (Fig. 3 (a)) and the angular ones (Fig. 3 (b)). 

 

 
 

Fig. 2. Internal point of the elliptic coordinates grid TE 

and TM. 

 

 
 

Fig. 3. (a) Radial boundary point P, and (b) angular 

boundary point P. 

 

Both the boundary points request the same 

enforcement of the TE boundary conditions, so only the 

radial one will be considered. The point X in Fig. 3 (a) 

is not a discretization point, so the application of the 

Taylor expansion would require the computation of 

 u  outside the sampling region. Therefore a different 

approach has been devised using either X  to enforce 

the boundary condition 0
n





. 

By considering an “edge” sampling point P (Fig. 3 

(a)), the second derivative in u  direction can be written 

as follows: 
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where: 
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are linear combination of the unknown coefficient iF ,  

and , ,B N S  is the points used in the expression of 

coefficient B . 

Now can be expanded / 0u    using a Taylor 

series: 

 

2

2

2 33 4

3 4

2

1 1
0

2 2 6 2

X P P

P P

u

u u u

u u

u u

  

 

    
   

    

      
       

    

, (12) 

which can be solved for 
Pu




. Its expression can be 

used to replace the first term in the right hand side of 

Equation (11): 
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Equation (13) is an approximation of 
2

2u
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and coefficients 
iF  are given by the solution of the 

linear system (13), so (6) is replaced, in this case by: 
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and the Equation (8) became: 
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A significant advantage of the present approach is that 

TM modes can be computed on the same TE grid, at 

variance of the standard approach [22], which calls for 

two different sets of sampling points, to cope with the 

different BC (2). To get the TM modes on the same 

grid, as TE, only the BC needs to be changed to,  

which becomes 0X   (see Fig. 3 (a)). This BC can be 

enforced by expressing the potential in X has been 

approximated through Taylor: 
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and set 0X  . The second derivative in P (17) is 

obtained by adding (11) and (16), and solving the linear 

system (13): 
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The final expression is obtained from the 

combination of (7) and (17) into (8): 

 

2 2 2

2 2 2

2 2

2 2

7 2 1

3 5 21

1 5 2

3 3 15

4 16

3

B N S

G H A

P t P

u u u

v v v

k
v u

  

  

 

  
  

  
  

 
    

  

. (18) 

Of course all other points can be dealt with in the same 

way as for TE modes. 

 

III. DESCRIPTION OF PSO 
PSO is an iterative algorithm designed to find out 

the solution of optimization problems, very efficient in 

solving multidimensional problems in a large variety of 

applications. It has been proposed first by Kennedy and 

Eberhart [25] for non-linear functions optimization and 

neural network training. Later on, it has been introduced 

in electromagnetic research for antenna design [26]-

[29], and subsequently it has been applied to artificial 

ground plane for surface wave antennas [30], microstrip 

antennas [31]-[33], linear and planar array geometry 

[34]-[35], log-periodic array dipole antennas, aperture 

antennas and so on. 

PSO takes inspiration from the animal kingdom, in 

particular from the group movement in search of a 

common objective. The algorithm consists of a swarm 

randomly initialized inside a predetermined solution 

space, which represents the set of the admissible 

solution for the problem. The quality of the solution is 

measured through a suitable objective function, 

associated with each position in the solution space. The 

choice of the objective function is a key point of every 

PSO procedure, since it must be accurately defined to 

well describe the requests of the problem. The group of 

particles moves iteratively inside the solution space, 

trying to reach the position which represents the 

optimal solution, corresponding to the minimum value 

of the objective function. The movement of each 

individual is based on its own instinct, on the memory 

of its path and on the iterations with the other 

individuals. Each particle is described by a vector of 

variables x, which are the coordinates of the solution 

space and, at the same time, the parameters to be 

optimized. In the j-th iteration, the i-th particle is 

characterized by its position ,i jx  (19) and velocity ,i jv  

(20). Next position, direction and velocity of the single 

particle are updated according to its position and 

velocity at the previous step, the best solution found by 

the particle in its path (personal best, p) and the best 

solution found by the whole swarm (global best, g): 

 , , 1 , ,i j i j i jx x v   (19) 

 
, , 1 1 1 , , 1

2 2 , , 1

( )

( )

i j i j i j i j

i j i j
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c r g x

 



      

   
, (20) 

w scales the velocity component at the same direction 

of the previous step (inertia weight), r1, r2 are two 

random numbers between 0.0 and 1.0 which simulate 

the random component of the swarm behaviour, c1, c2 

provide a weight between the pull of g and p: low 

values allow particles to roam far from target positions 

before being attracted to, whereas high values provide 

movements more strongly orientated to target. Eberhart 

suggested that the best choice for c1 and c2 is 2.0 [36] 

for most of applications. In general, velocity is applied 

to position updating for a time-step Δt which is set to 1 

in this work. 

The algorithm main steps (Fig. 4) are: 

1. Initialization of swarm position and velocity. 

2. Systematic particles movement in the solution 

space. For each particle: 

       a) Fitness evaluation (g, p update) 

       b) Velocity update 

       c) Position update (swarm movement). 

3. Iteration of point 2 until a stop criterion 

(convergence or maximum number of iterations) is 

reached. 

The objective function shown in Fig. 4 contains the 

electromagnetic problem and evaluates the propagation 

characteristics of the ridge WG, whose parameters are 

variable to be optimized and thus the PSO particles’ 

coordinates.  

 

 
 

Fig. 4. PSO block diagram. 
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IV. PARAMETER REW AND SEW 
The implementation of an optimization algorithm 

starts from the definition of the optimization variables, 

which define the solution space through their constraints. 

In our case, the variables are the geometrical dimensions 

of all the ridges (width w and height h) and the horizontal 

spacing s between them, therefore they constitute the 

solution space. 

The chosen objective function includes both the 

bandwidth of the simple mode propagation regime, and 

the maximum power flux. These data can be obtained 

by the computation of the eigenvalues of the REW (or 

SEW) section. This is performed by the FDFD described 

in Section II, after a suitable discretization of the 

section has been performed. Once the eigenvalue 

problem is solved we have both the scalar potential and 

the eigenvalue for the first modes of the guide. From 

the former, by numerical derivatives, we can compute 

the mode field [1]. The smallest two eigenvalues 1TEk , 

2TEk  gives directly the WG bandwidth. The bandwith is 

equal to: 

  2 1 2 1
2

TE TE TE TE

c
BW f f k k


    , (21) 

where 1TEf  and 2TEf  are respectively, the first and 

second cut-off frequencies of the TE modes of the SEW 

and c is the free-space light-speed. The knowledge of 

the mode distribution allows to compute the power flux 

P through a transverse section of a SEW or REW using 

its relationship with the total energy for unit length 

EMW  [4]: 

 
20 0

0 0 0

1

2

z
EM

g S

k c
P W E dS

k

 

 
       . (22) 

The electric field in the integral is computed by the E-

field distribution on the transverse section given by the 

FDFD. This distribution is normalised so that max |E| is 

equal to the field at the dielectric breakdown ( BDE ), so 

(3) actually gives the maximum power.  

Then an appropriate objective function is devised to 

select the best-suited solution for the trade-off request 

between a large bandwidth (21) and a large power flux 

(22).To devise the objective function, the ratio between 

the actual SEW properties and the rectangular WG ones 

are considered. This is done for bandwidth and high 

power handling capability (PHC): 

 rect rect
B P

SEW SEW

BW P
R R

BW P
  , (23) 

where rectBW , SEWBW  and rectP , SEWP  are, respectively, 

the bandwidth, the PHC of R-WG [37] and SEW. The 

power flux (P) computed from (21) depends on BDE  so, 

as the field distribution in (21) is normalized, PR  is 

evaluated at the same maximum field in the WG.  

The objective functions is:  

   21P
p B

R
f k R

k
   . (24) 

This objective function allows to maximize the PHC 

with the constraint of bandwidth a k-times reduction in 

the PHC (24). The configuration has been tested with 20 

particles in the swarm, with constant accelerations equal 

to c1 = c2 = 2. The BW has been optimized with respect 

to a power reduction by a factor 2 and 3, thus considering 

 2pf  and  3pf . 

 

V. RESULTS 

A. FDFD validation 

The FDFD for elliptic ridge waveguide described 

in the previous sections has been extensively validated, 

to evaluate its accuracy and effectiveness. In the 

simulations presented in this section we will consider 

first a sector of elliptic ridged waveguide (see Fig. 5) 

and then a ridged sector. All dimensions have been 

normalized to the minor semi-axis of the ellipse.  

The FDFD procedure has been assessed against the 

analytical results of [38]. The resulting eigenvalue 

problem has been solved using standard MATLAB 

routines, on a PC with two Intel Xeon E5504 

CPUs@2.00 GHz, 48 GB RAM, OS: MS Windows 7 

Professional. The results are shown in the next tables. It 

appears that an FDFD approach provides a very high 

accuracy: the difference with respect to the analytic 

accurate data presented in [38] is smaller than 0.02% in 

most cases. 

 

 
 

Fig. 5. Elliptic sectoral guide  1 2,u u u ,  1 2,v v v , 

with 1 0.1u  , 2 0.5u   and 1 50v    , 2 50v   . 

 

The total time spent by the FDFD approach is 

given by the matrix filling time and by the eigenvalue 

and eigenvectors extraction. For example, for a grid 

with 0.0040u  , 0.0009v   and 1010000 points, the 

filling matrix time is 2,07 sec and the time to extract 

eigenvalue and eigenvectors is 93.02 sec. The tk  

normalized with respect to the focal length, of the first 

three modes are shown in Table 1.  

In Fig. 6, left, we shown the contour plots of the  
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potential eigenfunctions for the first three TE modes 

(corresponding to the data of Table 1). 

In order to show the flexibility of this approach, a 

different ridged sector has been considered. Only the 

eigenfunctions has been reported, since no analytic data 

are available. 

 

Table 1: Analytical [38] and FDFD tk , for the guide of 

Fig. 5. 0.00563u  , 0.00017v   

Modes tk a  [38] tk a  (our) 

1TE 2.6564 2.6564 

2TE 6.8370 6.8370 

3TE 9.5446 9.5448 

1TM 14.2832 14.2831 

2TM 14.2995 14.2999 

3TM 19.5616 19.5594 

 

 
 

Fig. 6. Lowest-order eigenvectors for the examples 

presented. (a) Left: structure of Fig. 4. (b) Right: ridged 

sectoral guide with 1 0.1u  , 2 0.74u  , 1 50v    , 

2 50v    and 3 0.1u  , 4 0.9u  , 3 10v    , 4 10v   . 

 

B. Constraints and optimal dimensions 

The correct scaling of the variables has been 

obtained by choosing as variables the ratio to the upper 

ridge part and by imposing the constraints shown in 

Table 2. In the Table 3 summarize the optimal 

dimensions and the performance of the considered 

structure of Fig. 7. The structure SEW (Fig. 7) require 

six variables in the PSO algorithm. 

Table 2: Constraints for staircase SEW 

1w w   

2 1w Aw  A∈[0.01:0.99] 

3 2w Bw  B∈[0.01:0.99] 

1 2h Ch  C∈[0.01:0.99] 

2 3h Dh  D∈[0.01:0.99] 

2h h   

 , 2 1 , ,6 4u v u v u vvh w v v h vh       

, 24 u vvh w   

, 32 u vvh w   

, 1u vuh h   

, 22 u vuh h   

 , 3 2 1 , ,3 2u v u v u vuh h u u h uh       

 
Table 3: Optimal Dimension of SEW. 

Objective 

Function 
1 ,/ u vw h  

2 ,/ u vw h  
3 ,/ u vw h   

 2pf   1.17 1.15  

 3pf   1.02 0.99  

Objective 

Function 1 ,/ u vh h  2 ,/ u vh h  3 ,/ u vh h  BW 

(GHz) 

 2pf
  0.02 0.09 3.55 

 3pf
  0.09 0.94 3.86 

 

 
 

Fig. 7. A typical SEW with 1 0.1u  , 2 0.5u   and 

1 5v    , 2 5v    . 

 

VI. CONCLUSION 
An approach to the FDFD computation of modes 

of SEW and REW have been presented. An elliptic 

mesh has been used in order to avoid staircase 

approximations of the boundary. The presented results 

show both the flexibility of the method, as well its 

simplicity for the computation for TE and TM modes in 

SEW and REW.  Moreover the effectiveness of PSO in 

the geometrical optimization of a SEW has been 

illustrated. 
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