
A Comparison between Vector Algorithm and CRSS Algorithms for Indoor 

Localization using Received Signal Strength 
 

 

Huthifa A. Obeidat 1, Yousif A. S. Dama 1,2, Raed A. Abd-Alhameed 1, Yim F. Hu 1, 

Rami Qahwaji 1, James M. Noras 1, and Steven M. R. Jones 1 
 

1 School of Engineering and Informatics 

University of Bradford, Bradford, UK, BD7 1DP 

H.A.Obeidat@student.bradford.ac.uk, r.a.a.abd@Bradford.ac.uk, R.S.R.Qahwaji@bradford.ac.uk, 

j.m.noras@Bradford.ac.uk, s.m.r.Jones@Bradford.ac.uk 

 
2 Department of Telecommunication Engineering, An Najah National University, Nablus, Palestine 

yasdama@najah.edu 

 

 

Abstract ─ A comparison is presented between two 

indoor localization algorithms using received signal 

strength, namely the vector algorithm and the 

Comparative Received Signal Strength (CRSS) algorithm. 

Signal values were obtained using ray tracing software 

and processed with MATLAB to ascertain the effects on 

localization accuracy of radio map resolution, number of 

access points and operating frequency. The vector 

algorithm outperforms the CRSS algorithm, which 

suffers from ambiguity, although that can be reduced by 

using more access points and a higher operating 

frequency. Ambiguity is worsened by the addition of 

more reference points. The vector algorithm performance 

is enhanced by adding more access points and reference 

points while it degrades with increasing frequency 

provided that the statistical mean of error increased to 

about 60 cm for most studied cases.  

 

Index Terms ─ CRSS, indoor localization, ray tracing, 

RSS. 

 

I. INTRODUCTION 
Indoor localization is the process of locating an 

object within a building, ideally with high accuracy and 

low computational effort [1]. Localization using Received 

Signal Strength (RSS) aims to establish a one-to-one 

relationship between the target location and the measured 

data [2]: as the distance between the target node and the 

receiver increases, the signal generally becomes weaker. 

Knowledge of the radio attenuation helps to establish the 

relationship between distance and RSS, a process known 

as radio mapping [2]. 

RSS-based localization techniques offer low cost, 

and low sensitivity to the bandwidth and undetected 

paths [3, 4]. On the other hand, they are sensitive to 

shadowing, low SNR, and non-line-of-sight propagation, 

with errors increasing with resulting rapid power 

attenuation [5]. 

It is noteworthy that actual distance does not always 

scale linearly with the RSS value, especially in indoor 

environments, where obstacles may reduce the strength 

of the signal, thus giving a false indication that the target 

is far away from the transmitter [6-8]. Deployment of 

AP, taking into account environmental features, enhances 

the localization accuracy [9]. The variability of RSS 

measurements is due to many factors [10, 11]: 

 the orientation of the receiver; 

 temporal factors - readings differ throughout the day 

because of the people movements; 

 human factors since 50% of the human body is water; 

 interference factors due to having devices operating 

in the same channel, although by using different 

channels the correlation becomes trivial. 

Using wireless sensor networks for localization 

purposes brings the advantages of continuous monitoring, 

low cost, and a capability to work unattended, even for 

years [12]. However, some problems can arise as those 

devices operate at 2.4 GHz, and may experience 

interference with devices such as microwave ovens and 

Bluetooth devices, with a resulting increase in error 

probability [6]. 

There are many different RSS–based algorithms 

used for indoor localization, including radio frequency 

(RF) fingerprinting, one of the best-known algorithms 

[12-14]. This has two phases. In the off-line or training 

phase, predetermined points are chosen. At each 

location, the system collects RSS values from the access 

points, either experimentally which will consume effort, 

time and cost, or using ray-tracing software, whereby the 

system builds a database of RSS with locations. This 

database is called a radio map [15]. The software takes 

account only of approximate building information, and 
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details are ignored. This introduces more error in 

comparison with measurement data.  

In the on-line phase, RSS measurements are 

collected from unknown locations, and then values are 

compared with the existing radio map. The closest match 

to the database is taken as the best estimate of the target 

location [15]. 

The present research work compares two indoor 

localization algorithms based on RF-fingerprinting, the 

vector algorithm and the Comparative Received Signal 

Strength (CRSS) algorithm. It extends previous work 

[16, 17]: here, we have adopted lower operating 

frequencies. Section II offers a brief explanation of the 

methodology, and then Section III sets out the 

environment and specifications of the study. Finally, 

Section IV presents a discussion of the results.  

 

II. VECTOR AND CRSS ALGORITHMS 
In our investigation, the relative benefits and 

drawbacks of two localization algorithms were 

investigated. The first algorithm, the vector algorithm, 

uses a vector of received signal strength readings 

measured at the reference point from the different access 

points within the facility. The readings are arranged 

according to the access point order. 

Vectors from the reference points are stored in the 

database, and the test node vector is compared with the 

database, by calculating the Euclidean distance between 

the test vector and the database vectors. The smallest 

Euclidean distance represents the closest reference point 

to the test node. 

The second algorithm is the CRSS algorithm. We 

extend the work done by authors in [18], whereby the 

vectors of the previous approach are converted into 

constraint matrices, which comprise the database of the 

radio map. Test node readings also are converted into a 

matrix, and then the Euclidean distance between this test 

node matrix and the database matrices is calculated, 

where again the smallest distance indicates the closest 

reference location to the test node.  

In the initial off-line phase, Ri(x, y) is the RSS from 

the transmitter or access point i at tag location (x, y). The 

elements of this matrix depend on RSS values, as shown:  

𝑀𝛼(𝑥, 𝑦) = [cij(𝑥, 𝑦)].   𝑖, 𝑗 = 1,2, … , 𝛼, (1) 

cij(𝑥, 𝑦) = |

+1      Ri(𝑥, 𝑦) >  Rj(𝑥, 𝑦)

−1      Ri(𝑥, 𝑦) <  Rj(𝑥, 𝑦)

 0         Ri(𝑥, 𝑦) =  Rj(𝑥, 𝑦)

, (2) 

cij(𝑥, 𝑦) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 𝑗, (3) 

where Ma(x, y) is the constructed matrix, and cij(x, y) 

compares the RSS access point for access point i with 

that for access point j. (x, y) is the location for the mobile 

which is considered to be known. The following example 

illustrates the method: assuming there are three APs,  

the RSS values received at the RP located at (x, y) are  

[-20 dBm, -12 dBm, -14 dBm]. The first row compares the 

power received from the first AP with the other AP 

readings as explained in Equation (2), the second row 

compares the power received from the second AP with 

the RSS values from the other APs, etc. The resultant  

matrix is: 

𝑀3(𝑥, 𝑦) = [
0 −1 −1
1 0 1
1 −1 0

]. (4) 

In the on-line phase, the radio map is constructed 

just as in the off-line phase, except that the location of 

the test devices is estimated by comparing the constraint 

matrix of a tag with those in the radio map. The closest 

matrix is the one with the smallest Euclidean distance, 

thus the corresponding location for the closest matrix is 

taken to be the closest location to the tag.  

The inherent redundancy that exists in each 

constraint matrix (i.e., insensitivity to the absolute RSS 

values) gives rise to an acceptable performance for the 

positioning algorithm and makes the system more robust. 

In this work, we assume that the tags operate a 

protocol that avoids collision, so that in the case of 

multiple tags there will be no cross talk. 

This study is based on a simple scenario without 

clutter, in order to clarify the relative merits of the 

proposed algorithms. We initially investigate a single 

room without clutter; further studies will examine the 

multipath fading arising from clutter.  
 

III. SIMULATION AND RESULTS 

A. The CRSS algorithm 

A severe drawback of the CRSS algorithm was 

exposed during the analysis of the results obtained in the 

project, termed “the ambiguity problem”. 

While generating the CRSS radio map, it was noted 

that some RPs have identical same constraint matrices, 

in that although each RP is likely to have unique power 

readings, the relative power readings are found frequently 

to coincide. 

The generated matrix does not depend on the absolute 

RSS readings only, but also on the descending order of 

the received power readings of the APs. Thus, a test area 

may divide into regions in which all the RPs located in 

that region can be represented by identical matrices. 

Consider a test area with three APs with RSS values: 

[x dBm, y dBm, z dBm]: we sort them according to these 

values, giving 13 possible arrangements as shown in the 

Table 1.  

This means that if this test area has 20 RPs, then in 

the best case the area can be represented by 13 matrices, 

or even fewer. As shown above, this algorithm is 

dependent on the number of RPs and APs.  

In the localization process, a test point will create a 

matrix based on its RSS readings, using which the 

Euclidean distance is calculated. Because we are 

interested in the elements with the same matrix indices 

the Euclidean distance is estimated as in following: 
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𝑒 =  √∑ ∑ (𝑐𝑖𝑗 − 𝑡𝑖𝑗)2𝑁
𝑗=1

𝑁
𝑖=1 , (5) 

where cij represents the elements in a radio map matrix c 

in row i and column j, and tij represents the corresponding 

element in the on-line matrix t. 

Some RPs have identical matrices, and consequently, 

more than one RP will appear as closest to the test point. 

This problem is termed ambiguity. Figure 1 illustrates an 

example; four RPs appear equally closest to the test 

point, as their corresponding matrices have the same 

Euclidean distance to the test point matrix. 

The effect of the ambiguity problem becomes worse 

if closest matrix is the same matrix for more than one RP. 

This can arise when RPs have similar propagation 

environments as shown in Tables 2, 3, 4 and 5: when 

more than one RP has the same matrix, the phenomenon 

is called similarity.  
 

Table 1: Possible arrangements for RRS data from three APs 

1 𝑥 > 𝑦 > 𝑧 7 𝑦 > 𝑥 > 𝑧 

2 𝑥 > 𝑧 > 𝑦 8 𝑦 > 𝑧 > 𝑥 

3 𝑥 > 𝑦 = 𝑧 9 𝑦 > 𝑥 = 𝑧 

4 𝑥 = 𝑦 > 𝑧 10 𝑦 = 𝑧 > 𝑥 

5 𝑥 = 𝑧 > 𝑦 11 𝑧 > 𝑥 > 𝑦 

6 𝑥 = 𝑦 = 𝑧 12 𝑧 > 𝑦 > 𝑥 

13 𝑧 > 𝑥 = 𝑦 

 

 
 

Fig. 1. Ambiguity example for a test area. 
 

Table 2: Similarity in CRSS matrices for three APs at 

200 MHz 

No. of RPs 4 9 20 30 

Unique Matrices 4 3 0 0 

Matrix for 2 RPs 0 0 2 0 

Matrix for 3 RPs 0 2 2 0 

Matrix for 4 RPs 0 0 0 1 

Matrix for 5 RPs 0 0 2 4 

Matrix for 6 RPs 0 0 0 1 

Table 3: Similarity in CRSS matrices for four APs at  

200 MHz 

No. of RPs 4 9 20 30 

Unique Matrices 4 7 11 8 

Matrix for 2 RPs 0 1 3 5 

Matrix for 3 RPs 0 0 1 4 

 

Table 4: Similarity in the CRSS matrices for three APs 

at 400 MHz 

No. of RPs 4 9 20 30 

Unique Matrices 4 4 0 0 

Matrix for 2 RPs 0 1 2 1 

for 3 RPs 0 1 1 0 

for 4 RPs 0 0 2 1 

for 5 RPs 0 0 1 2 

for 6 RPs 0 0 0 1 

for 7 RPs 0 0 0 0 

for 8 RPs 0 0 0 1 

 

Table 5: Similarity in the CRSS matrices for four APs at 

400 MHz 

No. of RPs 4 9 20 30 

Unique Matrices 4 7 10 15 

Matrix for 2 RPs 0 1 5 7 

Matrix for 3 RPs 0 0 0 1 

 
The example in Fig. 2 helps more clearly to explain 

these tables. Consider the similarity in the CRSS 

matrices for twenty RPs, four APs and 200 MHz as in 

Table 3: among the RPs, 11 of them have distinct 

matrices, while in 3 pairs of RPs each shares the same 

matrix. Finally, another 3 RPs generate the same matrix.  

Inspection of the identical matrices shows them to 

be in adjacent location in groups of 2, 3, 4… etc. as also 

shown in the other tables.  

Increasing the number of RPs tends to worsen the 

effect of ambiguity, with more RPs having the same 

constraint matrix. Table 3 shows the effect of increasing 

RPs in a test area with four APs and an operating 

frequency of 200 MHz. With only four RPs, all four 

generated matrices are unique, but with nine RPs two 

RPs share the same matrix while the other seven have 

unique matrices. With twenty RPs, three pairs of RPs 

share the same matrix, with a further triplet of three RPs 

having one matrix in common. The thirty RP case is even 

worse, with ten RPs sharing five matrices in pairs and 

twelve RPs sharing four matrices, i.e., four sets of triplet 

RPs with a matrix in common. 

Similarity in CRSS matrices is affected by the 

number of APs used in the system, as the matrix size will 

correspondingly increase. Table 3 shows the similarity 

in the generated matrices using four APs for the same 

test area and the same operating frequency.  

The difference between the cases of four APs and 

three APs is obvious; adding more APs reduces the 
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similarity in the generated matrices. From the previous 

tables, it can be seen that adding more APs will reduce 

similarity, while adding more RPs will increase 

similarity.  

Results obtained when changing the frequency from 

200 MHz to 400 MHz are shown in Tables 4 and 5, 

which show that the similarity is reduced as the 

frequency increased.  

 

 
 

Fig. 2. Example of similarity.  

 

Ambiguity need not always have negative 

consequences, namely if the estimated locations 

surrounded the test point. Rather than identifying the test 

point as close to a certain RP, it would be located within 

a specific area. 

However, throughout all the experiments such a 

thing rarely happened. It is true that with increasing 

frequency, the similarity in the generated matrices will 

be less, but this does not mean that localization 

performance is thereby improved: a test point considered 

to be close to fewer RPs using 400 MHz does not mean 

that these RPs are closer than those estimated at 200 MHz, 

as shown in Fig. 3. 

The localization process includes the calculation of 

the Euclidean distance between all the matrices in the 

database and choosing the one representing the least 

error. As a result, more matrices may have the same 

Euclidean distance, therefore, more RPs will be 

considered as the closest RP. There have been sincere 

efforts to characterize the effect of the ambiguity 

analytically, however, the results show randomness in 

the number of the linked RPs to the test point as Fig. 4 

shows. Based on results obtained from one experiment, 

this shows the number of the closest RPs using different 

radio map resolution. The similarity in the twenty RPs is 

less relatively when compared to the system with thirty 

RPs, but still this does not necessarily mean that the 

ambiguity effect will be less. Moreover, even if the 

number of the estimated “closest locations” is less, this 

does mean that an estimated location lies closest to the 

test point, as depicted previously in Fig. 3.  

The ambiguity problem is a severe drawback of  

the CRSS algorithm, which jeopardizes the system’s 

credibility, despite claims that it outperforms the vector 

algorithm due to the redundancy in the information 

embedded within the matrix [2]. A similar analysis was 

conducted for a more elaborate scenario including a 

number of rooms adjoining a corridor on a single floor 

of the author’s recent work [19] as shown in Fig. 5, and 

similar conclusions have been drawn.   

 

 
 

Fig. 3. Less ambiguity does not imply better localization. 

 

 
 

Fig. 4. The number of estimated RPs in the CRSS using 

different sets of radio maps. 
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Fig. 5. The 3rd floor of the Chesham Building, University 

of Bradford.  

 

As the present work shows that the CRSS algorithm 

is unreliable, in the following we consider the vector 

algorithm only.  

 

B. The vector algorithm 

This algorithm is deemed successful as long as the 

estimated location is the closest to the actual location of 

the mobile terminal. When the estimated RP is not 

closest to the actual location of the mobile terminal, then 

the algorithm is said to have failed. The percentage of 

correctly estimated locations gives the success rate. 

Figure 6 shows the localization performance for the 

vector algorithm using three APs and different radio map 

resolutions. The performance is enhanced as the number 

of the RPs increases; e.g., P(Error ≤ 2 m) was about 0.26 

for the four RP system, and increased gradually up to 0.8 

for the thirty RP system. 

 

 
 

Fig. 6. Localization error for the vector algorithm using 

three APs, at 200 MHz. 

 

The statistical mean of error was also reduced as 

shown in Fig. 7. Moreover, the performance shows more 

stability as the number of RPs increases; error deviation 

was reduced and the high error estimates were less 

common. For thirty, twenty, nine and four RPs the error 

for 85% of locations was less than (2.7, 3.2, 4.8, 6.15) m 

respectively. Thus, increasing the number of RPs 

improves localization and enhances stability. 

 

 
 

Fig. 7. Statistical mean error for the vector algorithm. 

 

Figure 7 shows the statistical mean error for the 

vector algorithm using three and four APs at different 

frequencies. The figure shows that the overall 

performance of the algorithm is poor for low-resolution 

radio maps. It improves gradually as the number of  

APs and RPs in the system increases. The system 

performance at 200 MHz improves steadily until it 

reaches a maximum level of accuracy. As shown in the 

metrics in Table 6, the algorithm performance does not 

give satisfactory accuracy at 400 MHz except for the 

system that used thirty RPs and four APs. In general, the 

performance at 200 MHz is significantly better than at 

400 MHz, however high-resolution radio maps and 

adequate numbers of APs will improve the algorithm’s 

performance to acceptable levels. 

 

Table 6: Success rates for different sets of RPs, APs and 

frequencies 

No. of APs No. of RPs 200 MHz 400 MHz 

3 APs 

4 RPs 65% 67% 

9 RPs 58% 47% 

20 RPs 49% 32% 

30 RPs 49% 32.7% 

4 APs 

4 RPs 78% 72% 

9 RPs 72% 58% 

20 RPs 58% 54% 

30 RPs 52% 61% 

 

It can be noted that the success rate decreases as the 

number of RPs increases, as shown in Table 6, although 

the localization error improved. This can be justified 

thus: the algorithm is considered successful when the 

estimated location is the closest RP to the test point. 

OBEIDAT, DAMA, ABD-ALHAMEED, ET AL.: A COMPARISON BETWEEN VECTOR ALGORITHM AND CRSS ALGORITHMS 872



When the number of RPs in the radio map is limited, the 

RPs will be large distances away, and it is expected that 

they will be exposed to different fading parameters, so it 

will be easier for the algorithm to estimate the closest 

RP. However, as the number of RPs increases, they 

become closer to each other, and they will have more 

similar propagation environments, and thus comparable 

RSS readings. It will be more difficult for the algorithm 

to estimate the closest RP, and therefore the error will be 

enhanced.  

Figure 8 shows the localization performance using 

four APs for different numbers of RPs, showing the 

outstanding performance of the algorithm especially 

with a high-resolution radio map, and they underline the 

importance of the number of APs in determining the 

overall system performance. They also suggest that even 

low-resolution systems could provide a system with 

good accuracy as long as there were an adequate number 

of APs in the system. If we exclude the 4 RPs system, 

the algorithm shows stability and robustness, with 

deviations constant for the other systems. The most 

interesting result obtained is the performance of the 

localization using nine RPs, which is almost the same as 

for those using twenty and thirty RPs in the 0-2 m 

window, and outperforms them slightly in the 2-4 m 

window. For thirty, twenty, nine and four RPs the error 

for 85% of locations was less than (3.37, 3.2, 2.28, 

5.385) m respectively. This may be considered as the 

optimum system, which has good performance metrics 

with only a few RPs used. 

 

 
 

Fig. 8. Localization error for the vector algorithm using 

four APs, at 200 MHz. 

 

Figure 9 shows a localization error comparison 

between the three AP and four AP systems. The four AP 

system shows better performance, with a success rate 

enhanced from 58% to 74%. The statistical mean of error 

was improved from 2.52 m to 1.86 m. Standard deviation 

was reduced from 2.12 m to 1.7 m. The error performances 

of the two systems are almost the same in the 0-1 m 

window, but they do vary in the 1-2 m window.  

P(Error ≤ 2 m) for three RPs was about 0.6 whereas 

it was around 0.8 for the four RP system. This accuracy 

is satisfactory for many applications. The effect of 

adding an extra AP to the system is obvious as all the 

metrics reflect enhancement in performance. 

Figure 10 shows the localization performance for 

the vector algorithm using three and four APs with a 

radio map resolution of thirty RPs. The success rate was 

enhanced from 49% to 52%, and the mean error has 

changed slightly from 1.68 m to 1.7 m. Standard deviation 

remained the same at 1.68 m. The performance of the 

two systems is effectively identical. It is clear that 

increasing the number of RP points will make the need 

for more APs less. In addition, increasing the number of 

RPs will enhance the performance of localization but the 

enhancement obtained may become insignificant, as the 

accuracy will saturate at a certain level. 

 

 
 

Fig. 9. Localization error for the vector algorithm using 

nine RPs. 

 

 
 

Fig. 10. Localization error for the vector algorithm using 

twenty RPs, at 200 MHz. 
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As mentioned above, two operating frequencies, 

200 MHz and 400 MHz, were used to conduct the 

experiments. In general, the localization performance 

with 200 MHz is better. A justification for such results 

can be found in propagation theory. When a signal 

travels in space over a surface, as well as the direct wave 

there is also a ground wave traveling with it. Due to the 

different paths that the signals take, a phase shift of  

180 degrees occurs every λ/2, leading to destructive 

interference and thus reduced power at those points. For 

example, at 400 MHz, this happens every 0.375 m, so 

test points at such locations will be completely irrelevant 

to the RP measurements. As the power readings in the 

area around the RP will change significantly, mapping 

the received power vector with the location will result in 

weaknesses in RSS-based algorithms. At 200 MHz, 

cancellation occurs every 0.75 m and so the fluctuation 

in power readings is slower than with 400 MHz.  

Figure 11 shows the performance of the vector 

algorithm for two different operating frequencies and a 

radio map resolution of twenty RPs. The algorithm 

performance with 200 MHz is clearly better than with 

400 MHz. The error for 85% of locations was less than 

3.2 m (three and four APs at 200 MHz), 6.3m (three APs 

at 400 MHz) and 6.6m (four APs at 400 MHz). 

Moreover, Table 7 shows that the algorithm performance 

at 200 MHz with the use of three APs only is better than 

its performance with the use of four APs at 400 MHz 

provided that the statistical mean of error increased to 

about 60 cm for most studied cases. These results 

emphasize the importance of the operating frequency in 

determining the algorithm performance. 

 

 
 
Fig. 11. Localization error at 200 MHz and 400 MHz, for 

twenty RPs. 

 

Table 7: Performance metrics of the vector algorithm for 

200 MHz and 400 MHz 

No. of APs Metric 200 MHz 400 MHz 

3 APs 

Success rate 49% 32.7% 

Mean 2 m 2.97 m 

Standard deviation 1.75 m 2.27 m 

4 APs 

Success rate 58% 54% 

Mean 1.82 m 2.57 m 

Standard deviation 1.61 m 2.75 m 

 

IV. CONCLUSIONS 
The paper compares two indoor localization 

algorithms using received signal strength, the vector 

algorithm, and the CRSS algorithm. The experiment was 

carried out at 200 MHz and 400 MHz, and the 

localization performance was tested for different 

numbers of access points (AP), and for different numbers 

of reference points (RP). In the vector algorithm, 

increasing the number of RPs enhances the localization 

process up to a certain limit, while increasing the number 

of APs will also result in better performance. 

Experiments show that increasing the number of RPs 

will compensate for a reduction in the number of APs, 

which seems to be attractive commercially. The CRSS 

algorithm suffers from ambiguity since more than one 

RP may have the same matrix, and increasing the number 

of RPs will only make the ambiguity worse. Reducing 

the number of the APs will increase the algorithm’s 

ambiguity. 

It is noted that a lower frequency is better for 

localization than a higher one. Based on the experimental 

results the vector algorithm is better in terms of accuracy, 

cost, and effort.  
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