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Abstract ─ In this paper, the model of the rotor dynamics 

of the flywheel is given using a rigid rotor supported on 

magnetic bearings. The phase lag of the control loop is 

modeled by a simple time delay. Limits of stability and 

the associated vibration frequencies are described in 

terms of nondimensional magnetic bearing stiffness and 

damping and nondimensional parameters of flywheel 

speed and time delay. Compared to the theoretical values, 

the simulation results and experimental measurements 

show the stability boundaries of the PD controller have 

the same qualitative tendencies. 

 

Index Terms ─ Flywheel, magnetic bearing, PD 

controller, stability, time delay. 
 

I. INTRODUCTION 
As a new type of attitude control actuator of 

spacecraft, the magnetic levitation flywheel has many 

advantages such as no friction, high energy density, long 

life capability for up to 90 percent depth of discharge, 

peaking or pulse power capability and so on. Flywheels 

can be also an alternative to batteries and reaction wheels 

for the space system. Therefore magnetic levitation 

flywheel is an important direction of space technology 

development. 

Since 1960’s, developed countries have begun to 

work on the magnetic levitation flywheel [1-4]. After 

decades of development, the magnetic suspension 

flywheel technology have made great progress in the 

magnetic bearing structure design and optimization, the 

dynamics and mechanics analysis, modeling and model 

identification, control method, high performance sensors 

and power amplifier and so on; but there are still many 

technical difficulties. The vibration suppression control 

of maglev flywheel is a key to display the maglev 

flywheel space applications such as low loss, high 

precision, long life and other advantages [5]. 

The magnetic bearing system uses magnetic forces 

to levitate the shaft between opposing magnetic poles. 

The rotor is attracted to one pole or the other pole and is 

inherently unstable, then the magnetic bearing system of 

a flywheel is stabilized with an active control system. In 

the process of eddy current proximity sensors, anti-alias 

filters, digital controller, re-construction filter, power 

amplifier, the magnetic bearing forces, each of the 

components involved in the magnetic bearing and 

control system has a time delay associated with the 

components. The total time delay is the sum of the 

individual time delays [6]. Time-delayed systems, which 

have been studied for various applications and control 

systems, may admit rich dynamics, including bifurcations 

and chaotic motions [7-11]. Hosek [12] developed a 

single-step automatic tuning algorithm as a means  

of increasing robustness against uncertainties and 

variations in the mechanical properties of the absorber 

arrangement. In studying the stability robustness of 

systems with multiple independent and uncertain delays, 

Fazelinia [13, 14] used the building hypersurfaces to 

arrive at the complete stability robustness picture in the 

domain of the delays. In recent years, some scholars 

began to study the characteristics of magnetic suspension 

flywheel from a dynamics behavior aspect, thus 

providing theoretical guidance to suppress vibration [15-

19]. Based on decentralized PD controller, Polajzer [15] 

and Kascak [6] established the coupled dynamics model 

for the active magnetic bearing and analyzed the rotor 

critical speed using the Hopf bifurcation theory; Zhang 

[16] studied the global bifurcation and chaotic vibration 

for time-varying stiffness of the magnetic bearing, and 

discussed the bifurcation of the average equation using 

the normal form theory. Zhang [17] derived the averaged 

equation using the perturbation analysis method, then 

studied the transient and steady-state vibration response 

of the nonlinear magnetic bearing with the numerical 

simulation method. In these above research, only a few 

papers consider the effect of the time delay on the  
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stability of the magnetic flywheel. 

According to the details of the flywheel mechanical 

design and the performance requirements, many different 

approaches have been used, varying from PID to modal 

or adaptive methods [20]. For example, Pichot [21] 

discussed the benefits of a notch filter based controller in 

comparison to a PID control for a large flywheel. 

Palazollo [22] developed a modal control system which 

was applied to a 60,000 rpm flywheel. In this paper, we 

will use a P-D controller which causes the magnetic 

bearing to produce two forces: one is proportional to  

the displacement and the other is proportional to the 

derivative of the displacement, the velocity. 

This paper theoretically describes the stability 

boundaries of the magnetic bearing controller which 

levitates the high speed flywheel rotor. In Section 2, 

based on current stiffness and displacement stiffness of 

magnetic bearing, linear motion differential equation for 

maglev flywheel is established. Section 3 analyzes the 

stability limits and the associated vibration frequencies 

about two variables of these system parameters and 

control parameters. We give the simulation and 

experiment results in Section 4 and compare them to the 

theoretical values. Finally, the main conclusions drawn 

in this paper are summarized in Section 5. 

 

II. FLYWHEEL STABILITY ANALYSIS 
Figure 1 shows the rotor displacement of magnetic 

suspension flywheel with four axes and lateral axis of  

a flywheel [23]. The magnetic bearing sensors 
1 4s s  

are installed on the forward whirl and 
5 8s s  on the 

backward whirl, and the distance of the up and down 

sensor planes is l. The magnetic bearing axis is OZ and 

the direction of radial axis points to the sensor 

measurement point. From Fig. 1, the displacement 

signals of the rotor 1 8u u  are measured by the eight 

sensor measurement points of the magnetic suspension 

flywheel with four axes. By the differential process, we 

can get the displacement signals of the flywheel rotor 

1 2 1, ,x x y  and 
2y , as follows: 

 1 3 2 4
1 1, ,

s s

u u u u
x y

k k

 
   

 5 7 8 6

2 2
,

s s

u u u u
x y

k k

 
  , 

where 
sk  represents the sensor gain. 

Denote the displacement of the center of mass by x 

and y, then, 

 1 2 1 2,
2 2

x x y y
x y

 
  . 

Denote the angles motion of the center of mass 

about X an Y axes respectively:  

 

2 1 2 1,
y y x x

l l
 

 
  . 

In the definition of the angles, we use the upper 

plane parameters minus the under plane parameters, 

therefore   denotes the positive direction along the Y 

axis and   represents the negative direction along the X 

axis. 
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Fig. 1. The rotor displacement of magnetic suspension 

flywheel with four axes and lateral axis of a flywheel. 

 

The control currents 
1 2 3 4, , ,i i i i  are applied to the port 

voltage of the electromagnet according to these four 

position signals, the induced forces are: 

 
1 1 1x x iF k x k i  ,  

2 2 2x x iF k x k i  , (1) 

 
1 1 3y x iF k y k i  ,  

2 2 4y x iF k y k i  , (2) 

where xk   and ik  represent the control gains of the 

displacement and the current respectively. 

The rotor dynamics of the flywheel can be described 

in terms of the motion of the center of mass and rotations 

about the center of mass. For small displacements the 

lateral motion is uncoupled from the axial motion. The 

lateral equations of motion of the center of mass are: 

 
1 2 1 1 2 2( )

2
x i x i

m
x x k x k i k x k i     , (3) 

 
1 2 1 3 2 4( )

2
x i x i

m
y y k y k i k y k i     , (4) 

where m is the mass of the flywheel rotor. 

For small rotations, the equations of angular motion 

about the center of mass are: 

 
   2 4 1 3

2
d p x i x i

l
J J k y k i k y k i          , (5) 

 
   2 2 1 1

2
d p x i x i

l
J J k x k i k x k i          , (6) 

where   is a circular frequency of the flywheel, 
dJ  and 

pJ   are the transverse and polar moments of inertia 

respectively. 
pJ   and 

pJ 
 
are the gyro items. 

Using P-D controller, the control currents are as 

follows: 
 

1 1 1p di k x k x  ,  2 2 2p di k x k x  , (7) 

 3 1 1p di k y k y  ,
  4 2 2p di k y k y  , (8) 

where 
pk  and dk  are proportional and derivative feed- 
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back control gains respectively. Combining Equations 

(3)-(8), we have: 

  1 2 1 2 1 2( )( ) ( ),
2

x i p i d

m
x x k k k x x k k x x     

 (9) 

  1 2 1 2 1 2( )( ) ( ),
2

x i p i d

m
y y k k k y y k k y y       (10) 

  
2 2

,
2 2

d p x i p i d

l l
J J k k k k k         (11) 

  
2 2

.
2 2

d p x i p i d

l l
J J k k k k k       

 (12) 

The solution for the motion of the center of mass and 

that for the rotation about the center of mass is of the 

same form, if the shaft speed   is set equal to zero [24, 

25]. Therefore only motion of the rotation about the 

center of mass will be solved. The classical small signal 

stability analysis assumes an eigenvalue solution of the 

equation of motion. 

A centralized controller decouples the motion of  

the center of mass and the rotation about the center of 

mass. The controller terms have a time delay associated 

with the various components in the control loop. Let 

( ) [ , ,, , ]Tx t     and the equations of motion become: 

 ( ) ( ) ( )x t Px t Qx t    , (13) 

where 

2

2

0 1 0 0

0 0
2

,
0 0 0 1

0 0
2

px

d d

p x

d d

Jl k

J J
P

J l k

J J

 
 

 
 

  
 
 
 
 
 

2 2

2 2

0 0 0 0

0 0
2 2

.
0 0 0 0

0 0
2 2

i p i d

d d

i p i d

d d

l k k l k k

J J
Q

l k k l k k

J J

 
 
 
 
 
 
 
 
 
 

 

If the characteristic solution is assumed to be: 

 ( ) tx t Ae . 

We only consider the first term of the corresponding 

characteristic Equation of (13): 

 
2 2 2

2 0.
2 2 2

d p i d i p x

l l l
J i J k k e k k e k            (14) 

The characteristic equation does not have a real 

solution unless   is zero. If the eigenvalue is complex, 

let .i     The vibrations grow in time and the 

system is unstable with 0   and the vibrations decay 

in time and the system is stable with 0.   0   

defines the stability boundary. Substituting i   into 

[14] and separating the real and imaginary parts of [14], 

we obtain: 
2 2 2

2 cos sin 0
2 2 2

d p x i p i d

l l l
J J k k k k k         

 
2 2

sin cos 0
2 2

i p i d

l l
k k k k    . 

From the above imaginary and the real parts 

equations respectively, we can get the expression of    

and  , that is Equations (15) and (16). By means of 

solving the real and the imaginary parts equations group, 

we would get the expressions of the control parameters 

pk  and dk  ((17) and (18)): 

 1
arctan , 0,1,2,3, ,d

p

k
k k

k


 


    (15) 

2
21

( ( ( cos sin ))),
2

d x i p d

p

l
J k k k k

J
   


     (16) 

 
2 2

2 2 2

2

2
( ) ( ) ,

2 2
p d p x i d

i

l l
k J J k k k

l k
        (17) 

 
2 2

2 2 2

2

2
( ) ( ) .

2 2
d d p x i p

i

l l
k J J k k k

l k
 


      (18) 

Combing (15) with another one of (16), (17) and 

(18), we can get the stability boundary. For example, 

Equations (15) and (16) define the non-dimensional 

flywheel speed and the time delay at the transition 

between stable and unstable operation of the flywheel; 

Equations (15) and (17) describe curves in the ,pk   

parameter space which are parameterized by .  

Similarly, we can get any two variables from the 

transformation of the real part and the image part 

equations, for example, 
2

2

2

2sin
( ), cot .

2
d d p x p d

i

l
k J J k k k

l k


   


      (19) 

From (19), we can get the stability boundary for the 

flywheel in the ,p dk k  parameters space. 

We will illustrate these results with two examples. 

The realistic values for the physical parameters are given 

in Table 1. For magnetic suspension flywheel system, the 

gyro effect is very small when the rotor is static or rotates 

at low speed. Therefore by dividing into four single 

degree of freedom, the appropriate stiffness and damping 

can make the rotor suspend stably in this case. In this 

paper, the rotate speed is about 20  rad/s, which is 

below the critical value, and then the effect of the rotor 

is omitted. 
 

Table 1: Physical parameter values 

Jd Jp m l ki kx ks 
0.01kg·m2 0.02kg·m2 4kg 0.016m -150N/A 650000N/m 8000V/m 

 

Case (1) 

With the proportional gain 0.7pk   and the shaft 

speed 20 ,   we use (15) and (18) with 0k   to plot 

the time delay   and the derivative gain 
dk  as   is 

varied (Fig. 2). We do not show the curves with 0k   as 

they all lie on the right of the corresponding curve with 

0,k   and hence, do not form part of the stability 

boundary. 
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Fig. 2. The correlation of stability limits of a flywheel 

supported on magnetic bearings with time delay for 

0.7, 20 .pk    

 

Case (2) 

With the time delay 0.001s   and the shaft speed 

20 ,   we use (17) and (18) to plot the proportional 

gain 
pk and the derivative gain 

dk  as   is varied. 

Figure 3 shows both the static and dynamic stability for 

a magnetic flywheel with time delay. The proportional 

gain 
pk  for the static stability analysis is given by (14) 

with 0.   For both the static and dynamic stability 

analysis, if the real part of the eigenvalue   is defined 

positive, the vibrations grow in time and the system is 

unstable. If   is negative, the vibration will decay in 

time and the flywheel system is stable. 0   defines the 

stability boundary. 

 

 
 

Fig. 3. The correlation of stability limits frequency of a 

flywheel supported on magnetic bearings with time 

delay for 0.001 , 20 .s     

 

III. NUMERICAL SIMULATIONS 
In this section, we consider the flywheel system 

(11)-(12) with the physical parameters given in Table 1. 

According to the two examples in Section II (Fig. 2 and 

Fig. 3), we will compare these theoretical results with 

numerical simulations of the system (11)-(12). Using the 

DDE Toolbox for Matlab, we can get the numerical 

solutions for the angular motions ,   of the center of 

mass about X and Y axes and draw their trajectory. 

Together with (15) and (18), if the time delay and 

the derivative gain change, we will study the stability of 

the flywheel system with 0.7, 20 .pk    Choosing 

the point ( , ) (0.004,0.01)dk   which lies in the stable 

region of Fig. 2, from Fig. 4 (a), the angular motions 

,   of the center of mass about X and Y axes approach 

the trivial solution, indicating that it is asymptotically 

stable. Then we adjust the parameter 
dk  as 0.02 and  

the time delay   remains the same, that is the point 

( , ) (0.004,0.02)dk   is out of the stable region of Fig. 

2, the values of ,   grow quickly, which suggests  

that the flywheel system is unstable from Fig. 4 (b). If 

the derivative gain 0.02dk   remains unchanged and 

the time delay changes as 0.003 ,s   that is the point

( , ) (0.003,0.02)dk   lies in the stable region of Fig. 2 

again, the flywheel system will restore to the stable 

operation from Fig. 4 (c). 
 

 
  (a) 0.004 , 0.01ds k    

 
  (b) 0.004 , 0.02ds k    
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  (c) 0.003 , 0.02ds k     

 

Fig. 4. Numerical simulations of the maglev flywheel 

system (13),   and 
dk  as indicated. (a), (b), and (c) are 

(pseudo) phase portraits of the angular motions (  and 

 ) of the center of mass about X and Y axes. 

 

In another example of Section II, with (19), 

0.001 , 20 .s    Choosing the point ( , ) (1,0.02)p dk k   

which lies in the stable region of Fig. 3, from Fig. 5 (a), 

the angular motions ,   of the center of mass about X 

and Y axes approach the trivial solution, indicating that 

the equilibrium point is stable. Then we adjust the 

parameter 
pk  as 0.008 and the derivative gain 

dk
 
remains 

unchanged, that is the point ( , ) (1,0.008)p dk k   is out of 

the stable region of Fig. 3, the values of ,   grow 

rapidly, which suggests that the flywheel system loses 

the stability from Fig. 5 (b). If the derivative gain 

0.008dk   remains the same, the proportional gain 

changes as 0.6pk  , that is the point ( , ) (0.6,0.008)p dk k   

lies in the stable region of Fig. 3 again, the flywheel 

system will restore the stability from Fig. 5 (c). 

 

 
  (a) 1, 0.02p dk k   

 
  (b) 1, 0.008p dk k   

 
  (c) 0.6, 0.008p dk k   

 

Fig. 5. Numerical simulations of the maglev flywheel 

system (13). 
pk
 
and 

dk  as indicated. (a), (b), and (c) are 

(pseudo) phase portraits of the angular motions (  and 

 ) of the center of mass about X and Y axes. 

 

Thus, the numerical simulations agree with the 

stable boundary diagrams of Figs. 2, 3 as predicted by 

the theory. When the values of the time delay, the shaft 

speed and the control parameters fall in the stable region 

(Fig. 2 and Fig. 3), the numerical solutions for the 

magnetic flywheel system will tend to be stable (Figs. 4 

(a), (c) and Figs. 5 (a), (c)). If these values in the unstable 

region, the numerical solutions for the magnetic flywheel 

system will lose their stability (Fig. 4 (b) and Fig. 5 (b)). 

These results suggest that the magnetic flywheel will 

remain stable in the experiment and practical application 

by choosing the appropriate parameters values according 

the theoretical results. 

 

IV. EXPERIMENT 
Test was performed in Changsha. We will use the 

physical parameters given in Table 1 and choose 

0.07, 20 .pk    
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For a given time delay, the derivative gain is varied 

noting the region of stable operation. The measured 

result for the forward whirl is shown as Fig. 6 (a), which 

describes the correlation of stability data of the forward 

whirl shown on Fig. 2. The region of stable operation is 

limited at small time delay by the derivative gain. That 

is, there is no stable region of operation if the time delay 

at a high value. Then using 0.001, 20 ,     for a 

given derivative gain, the proportional gain is varied 

noting the region of stable operation. The measured 

result Fig. 6 (b) shows the correlation of stability data of 

the forward whirl shown on Fig. 3.There is no stable 

region of operation if the proportional gain at a low 

value. The measured result for the forward whirl is 

shown in Fig. 6. The experiment results have the similar 

shaped regions of stability compared to the theoretical 

simulation. 

 

 
  (a) 20  

 
  (b) 0.7pk   

 

Fig. 6. The measured result for the forward whirl 

compared to the theoretical simulation. 

 

We have tried different pairs of 
pk  and   and the 

shapes of the curves defined by (15) and (18) and their 

behaviors as 
pk  and   are varied are similar to what is 

shown in Fig. 7. Figure 7 (a) shows the stability region 

for   fixed and varying 
pk . Increasing the value of 

pk  

decreases the size of the stability region. Figure 7 (b) 

shows the stability region for 
pk  fixed and varying  . 

Increasing   decreases the size of the stability region. 

 

 
 (a) 20  

 
 (b) 0.7pk   

 

Fig.7. The stability map for a flywheel supported on 

magnetic bearings with time delay for various values of 

the proportional gain 
pk  or the shaft speed  . 

 

Note that in all cases, the range of values of 
dk  for 

which the flywheel system is stable decreases as   

increases and there is a critical value of , c , such that 

the equilibrium point is unstable for any 
dk  if c  , 

where c  is the   value at the maximum. 

 

V. CONCLUSIONS 
In this paper, the stability boundaries of the 

suspension system of a magnetic flywheel with time-

delayed proportional, derivative feedback are studied. 

According to the characteristic equation of the 

flywheel system, we get the stable region in the any two 

parameters spaces of , , ,p dk k  . For example, a set of 

values of the time delay and the derivative feedback gain 

ACES JOURNAL, Vol. 32, No. 8, August 2017647



for which the flywheel system is stable can then be 

described. For the parameter values that we investigated, 

the larger the proportional gain, the smaller the region of 

the stability; the lager the shaft speed, the smaller the 

region of the stability. At the same time, we should also 

control the time delay of the system, if the time delay 

larger than the critical value, the equilibrium position is 

unstable for any derivative gain. Numerical simulations 

of the full model confirmed the predictions of the 

analysis. Experimental measurements showed that the 

results of the modeling have the same qualitative 

tendencies as theoretical analysis. 

To completely understand the dynamic behavior of 

the flywheel system, further research needs be carried 

out. Although the magnetic flywheel has the similar 

magnetic bearing system with the magnetic train [26, 

27], but the principle of the flywheel is more complicated 

for considering the motion of the center mass and 

rotations about the center of mass. In the next step, with 

DR (delayed resonator) and CTCR (Cluster Treatment of 

Characteristic Roots) [12-14], we will carry up a more 

detailed stability treatment of delayed flywheel system 

to increase robustness against uncertainties and variations. 

Therefore it would be interesting to extend the dynamical 

behaviors research of the flywheel system such as Hopf 

bifurcation, chaotic behavior and so on. 
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Abstract ─ This study presents two novel nonlinear 

controllers for a single one-degree-of-freedom (1–DOF) 

active magnetic bearing (AMB) system operated in  

zero-bias mode with externally bounded disturbance. 

Recently developed controllers are complicated and 

inherently difficult to implement. The simple and low-

order controllers proposed in this paper are designed 

using nonlinear feedback tools, including Lyapunov-

based techniques and control Lyapunov functions 

(CLFs). The control objective is to globally stabilize the 

mass position of the nonlinear flux-controlled AMB 

system with control voltage saturation. The zero-bias 

AMB control model is derived from the voltage 

switching strategy. The developed CLF-based controllers 

are verified by numerical calculations.  

 

Index Terms ─ Active magnetic bearing, control 

Lyapunov function, nonlinear flux controller, zero-bias 

control. 

 

I. INTRODUCTION 
The active magnetic bearing (AMB) control system 

with classical large bias current is a well-known linear 

control problem, and as a result, PID controllers, ℋ∞–

based control and -synthesis methods can be applied, 

e.g., see author references: [1, 2, 3]. However, large bias-

current or a bias-flux implies power loss, where the loss 

mechanisms are generally proportional to the square of 

the electromagnetic force. Moreover, a large bias causes 

heat dissipation and further changes the electromagnets' 

parameters. In order to improve the energy efficiency of 

the AMB system, zero-bias flux control can be applied. 

In this system, the dynamics become strongly nonlinear. 

Therefore, nonlinear control methods can be applied in 

order to design a stable AMB system with zero-bias or 

low-bias [411]. All of the aforementioned approaches 

are fundamentally based on position-current or position-

flux state feedbacks. 

In particular, a nonlinear and uncertain flux-

controlled AMB system operated with zero-bias was 

considered in paper [10]. The major parametric 

uncertainties of the AMB such as: magnetic saturation 

perturbation, bias flux (premagnetization) and uncertain 

losses increase the nonlinearity of the AMB system. In 

response to this problem, paper [10] presents the robust 

stability and robustness analyses of a nonlinear closed-

loop AMB system with inherent uncertainties. The so-

called small gain theorem can be used to calculate the 

robust stability of an uncertain AMB system [10].  

Flux-based control with zero-bias increases the 

nonlinearity of an AMB system. Nonlinear control 

approaches intended for AMBs have been developed 

[12, 13]. In the last century, stability concepts pertaining 

to nonlinear systems were formulated by Lyapunov and 

were first expounded upon by Malkin in 1952 [14]. 

Later, Lyapunov functions were applied, for example, to 

the passivity theorem and to dissipative systems in 1972 

[15] as well as to solving optimal and inverse optimal 

control problems. The Lyapunov technique has been 

extended to control systems in [1619], for example. 

Since characterizing stability in terms of the smooth 

Lyapunov function is not possible in some cases, the 

stabilizing feedback design should be used. This is the 

main reason for using the so-called control Lyapunov 

function (CLF). Its concept was introduced by Artstein 

and Sontag in 1983 [20, 21]. The idea of CLF-based 

control is to select a Lyapunov function V(x) and then  

to try to find a feedback control u(x) that renders 

d𝑉(𝑥, 𝑢)/dt , defined negatively. Thus, by choosing a 

suitable V(x), and when V(x) is the CLF, we can find  

a stabilizing control law u(x) for the system feedback 

[22]. The CLF-based control concept was extended to 

dynamic systems with known disturbance [2325], 

where V(x) is the RCLF (a robust CLF), if, for a bounded 

disturbance,  ensures that �̇�(𝑥, 𝑢,) < 0 [17, 26]. The 

linear ℋ∞ control method was used to solve a 

disturbance attenuation problem in a nonlinear system 

which is analogous to the RCLF [27, 28].  

The main aim of the present work is to show simple 

nonlinear controllers that contribute improvements to 

flux-controlled AMB systems operated in zero-bias 

mode in comparison with existing approaches. The 

proposed nonlinear control laws are based on the control 

Lyapunov function (CLF) and are effective in AMB 

zero-bias control systems with control voltage saturation. 

However, the control law based on Artstein-Sontag’s 

theorem includes Lie derivative terms and leads to a 

complex solution [29]. The main advantages of the 
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proposed controllers, if compared with CLF based on 

Artstein-Sontag’s theorem, are that they are simpler and 

inherently easier to implement in low-power micro-

controller AMB hardware. Performed simulations show 

that simple low-order controllers based on CLF give 

satisfactory results in comparison with complex solutions 

based on Artstein-Sontag’s theorem [29]. In comparison 

with previous solutions [29, 30], the obtained control 

laws ensure similar or even better transient responses and 

better disturbance attenuation. 

The paper is organized as follows. Section 2 

presents a simplified one-dimensional active magnetic 

bearing (AMB) system. Section 3 formulates conditions 

for zero-bias flux-feedback control and flux-switching 

strategy. Section 4 proposes Lyapunov-based controllers 

and describes control law design functions. Section 5 

provides numerical examples which prove the control 

laws proposed in Section 4. Finally, Section 6 closes the 

paper with some concluding remarks. 

 

II. THE 1-DOF AMB MODEL 
Let us consider the simplified 1–DOF (one-degree-

of-freedom) AMB model that consists of two opposite 

and presumably identical electromagnetic actuators 

(electromagnets), which generate attractive forces, F1 

and F2, on the rotor [31]. To control the position x of the 

rotor mass m to the stable state x=0, the voltage inputs of 

the electromagnets, 𝑣1 and 𝑣2, are used to design the 

control law, see Fig. 1. 
 

 
 

Fig. 1. Simplified one-dimensional AMB. 

 

The 1-DOF model of the AMB is nonlinear where 

mechanical and electrical dynamics are coupled. Consider 

Fig. 1, in which, neglecting gravity (for the horizontal 

rotor control direction), the dynamic equation is given by 

[31]: 

 𝐹𝑗 =
cos

𝜇0𝐴
𝑗
2,    for 𝑗 = 1,2, (1) 

where Fj is the total force generated by each 

electromagnet, Φ𝑗 is the total magnetic flux through 

each active coil, A is the cross-sectional area of  

each electromagnet pole,  is the angle at which 

electromagnetic force acts, and µ0 is the permeability of 

free space (=1.25  10-6 H/m). 

The total flux generated by the j-th electromagnet is 

𝑗 = 0 + 𝑗 . In the case of zero-bias operation, the 

bias flux 0 equals zero, and the total flux equals control 

flux 
𝑗
. Then, we define the generalized control flux as: 

 
 ∶= 

1
− 

2

 ∶=
1

𝑁
(∫ (𝑣1 − 𝑅𝑖1)𝑑𝑡

𝑡

0
− ∫ (𝑣2 − 𝑅𝑖2)𝑑𝑡

𝑡

0
)
, (2) 

where N denotes the number of turns of the coil of each 

electromagnet. 

If 0 = 0, then according to (1), the mass motion 

equation is given by: 

 
𝑑2

𝑑𝑡2
𝑥 =

cos

𝜇0𝑚𝐴
(
1
2 − 

2
2). (3) 

The electrical dynamics of the AMB system are 

given by the governing equation [31]: 

 𝑣𝑗 = 𝑁
𝑑𝑗

𝑑𝑡
+ 𝑅𝑖𝑗 , 𝑗 = 1, 2, (4) 

where R is the electromagnet's resistance. Then Eq. (4) 

can be rewritten in an equivalent form as: 

 𝑗̇ = 
𝑗
̇ =

1

𝑁
(𝑣𝑗 − 𝑅𝑖𝑗), 𝑗 = 1, 2. (5) 

 

III. ZERO–BIAS FLUX-FEEDBACK 

CONTROL 
In the case of zero-bias control, the nonlinear 

flux/force characteristic has a dead zone near the origin 

(low dynamic response of the AMB) [32]. This means 

that the slope of the magnetic force vs. flux curve near 

the origin is zero, and we need a large change in flux in 

order to generate a small control force. According to (5), 

the flux depends on the control voltage and current. 

Voltage commands are limited in real applications and 

voltage saturation is another problem. In short, zero-bias 

nonlinear control with voltage saturation is a challenging 

task. 

In zero-bias control, the control force Fj depends on 

control flux j which fulfils the following condition of 

the switching scheme [29, 30]:  

 
 = 

1
,      

2
= 0 when    0

   = −
2
,   

1
= 0 when   < 0

. (6) 

The  described by (6) is called a generalized flux. The 

switching scheme allows us to minimize control fluxes 


1
 and 

2
, since at least one of the control fluxes is zero 

at the starting time. This means that at least one of the 

electromagnets is inactive at any given instant of time. 

The system minimizes energy and power losses [31, 33]. 

For zero-bias, based on (3), according to the 

generalized complementary flux condition (8), the total 

generalized attractive force is given by: 

 𝐹() =
||

𝜇0𝑚𝐴
, (7) 

where generalized attractive force F=F1-F2. The system's 

nonlinearity in (7) is given by non-decreasing function 
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()=||. The general form of the flux-based control 

law is given by: 

 𝑢 = −𝑓(𝑟 − ), (8) 

where 
𝑟
 is the flux reference and f is a nonlinear control 

function which also ensures bounds of j such that: 

 lim
𝑡


𝑗
(𝑡) = min{

1
(0), 

2
(0)}. (9) 

Fluxes 
1
 and 

2
 remain bounded, and condition (9) 

represents convergence of 
𝑗
, which is ensured if system 

(3)–(4) is asymptotically stable. The nonlinear and fast 

dynamic flux controller generates the required fluxes in 

the AMB's structure due to nonlinear characteristics of 

controlled flux  versus generated total force F. Typically, 

when cascaded control is applied, the linearizing flux 

controller works in the inner control flux loop. The 

transfer function for the low level control feedback rule 

in the s-domain is given by: 

 𝑃(𝑠) =
(𝑠)

𝑟(𝑠)
. (10) 

The AMB closed-loop system (10) is used in the case of 

local force control in electromagnets. However, in this 

work, we present not a local, but a global nonlinear rotor 

position controller.  

From the simple analysis presented above, it follows 

that, for the dynamics of system (3) with the generalized 

control flux given by (2), under switching strategy (6), 

and with state coordinates defined as: 

 𝑥1 = 𝑥, 𝑥2 = �̇�, 𝑥3 = , (11) 

then the state-space AMB dynamic model is given by: 

 

{
 
 

 
 

𝑑

𝑑𝑡
𝑥1 = 𝑥2

𝑑

𝑑𝑡
𝑥2 =

cos

𝜇0𝑚𝐴
|𝑥3|𝑥3

𝑑

𝑑𝑡
𝑥3 =

1

𝑁
(𝑣 − 𝑅𝑖)

, (12) 

where 𝑣 = 𝑣1 − 𝑣2 is the generalized control voltage 

and 𝑖 = 𝑖1 − 𝑖2 is the generalized current.  

 

IV. LYAPUNOV-BASED CONTROL 

A. Problem statement - AMB model with disturbance 

In this section we will find the CLF that will make 

the AMB system globally stable with respect to additive 

measurement disturbances. It is well known that bounded 

disturbances in a nonlinear system can cause severe 

forms of instability [24]. Moreover, a nonlinear control 

law that guarantees global stability of a nonlinear system 

under perfect state feedback will not ensure global 

robustness to state measurement disturbances. There  

are many classes of systems for which stabilizability  

is preserved in the presence of state measurement 

disturbances, e.g., strict feedback systems [34].  

In order to simplify notation, and to work with a 

system having the minimum number of parameters, let 

us introduce the following non-dimensionalized state 

and control variables along with a non-dimensionalized 

time [29, 30]: 

 

𝑥1: =
𝑥

𝑔0
, 𝑥2: =  

�̇�

sat√𝑔0 𝜇0𝑚𝐴⁄
, 𝑥3: =

𝜙

sat

𝑢:=  
𝑣√𝑔0𝜇0𝑚𝐴

𝑁 sat
2  , 𝜏: = 𝑡

 sat

√𝑔0𝜇0𝑚𝐴
, 𝑤 =

𝜔

𝑚𝑎𝑥

, (13) 

where g0 is the nominal air gap (clearance), u – the non-

dimensionalized control variable, sat – the saturation 

flux, 𝜏 denotes non-dimensionalized time, w is an 

external non-dimensionalized input, and 𝜔 is the bounded 

disturbance with its maximum value max.  

Importantly, the AMB system parameters in (13) are 

constant and their nominal values andabsolute boundary 

values are given in Table 1. 

Let us assume that w is a known bounded 

disturbance and impact via state x1 to the AMB system. 

Then, in accordance with (13), the model of the AMB 

system with disturbance input 𝑤 ∈ ℝ is written in the 

state-space: 

 

{
 
 

 
 
𝑑

𝑑𝜏
𝑥1 = 𝑥2 + 𝑥1𝑤

𝑑

𝑑𝜏
𝑥2 = 𝑥3|𝑥3|

𝑑

𝑑𝜏
𝑥3 = 𝑢

, (14) 

where 𝑥1, 𝑥2, 𝑥3 are defined by (13) and 𝑢 is a control 

input. In this way, variables 𝑥1, 𝑥2 and 𝑥3 indirectly 

relate to the position x [m] of the rotor mass, velocity  

�̇� [m/s] and electromagnetic flux 𝜙 [Wb], respectively. 

However, the disturbance w and the control voltage 

are always limited in the AMB system. Moreover, in 

AMB applications, since the electromagnet coils are 

typically driven by power amplifiers, these amplifiers 

must be configured to operate in voltage mode or current 

mode with saturation. In a real AMB system, the voltage 

input is bounded as 𝑢(𝑡) = sat(𝑣(𝑡)), where sat(𝑣(𝑡)) 

is the saturation function of voltage 𝑣(t) defined here as: 

 sat(𝑣(𝑡)) = {

−𝑣lim if 𝑣(𝑡) < −𝑣lim
𝑣(𝑡) if − 𝑣lim ≤ 𝑣(𝑡) ≤ 𝑣lim

𝑣lim if 𝑣(𝑡) > 𝑣lim

, 

where 𝑣lim is the voltage input limit and refers to 𝑣sat 

(saturation voltage value) given in Table 1.  

 

B. CLF for AMB with disturbance 

Note that system (14) is the control affine system of 

the form: 

 �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + ℎ(𝑥)𝑤, (15) 

where 𝑢 ∈ ℝ – control input, w – bounded independent 

disturbance input, and vector fields f: ℝ3ℝ3 and  

g: ℝ3ℝ3, h: ℝ3ℝ3 are given by 𝑓(𝑥) = [𝑥2 𝑥3
[2] 0]

𝑇
, 

𝑔(𝑥) = [0 0 1]𝑇 , ℎ(𝑥) = [𝑥1 0 0]𝑇 with 𝑥3
[2]
≔

𝑥3
2sgn(𝑥3) = 𝑥3|𝑥3|.  

Recall that system, 

 �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢, (16) 

is asymptotically stabilizable with respect to the 

equilibrium pair (𝑥0, 𝑢0), where x0=x(0), if there exists  

a feedback law 𝑢 = 𝛼(𝑥), 𝛼(𝑥0) = 𝑢0, defined on a 
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neighbourhood 𝑈𝑥0  of 𝑥0 such that 𝛼 is continuously 

differentiable on 𝑈𝑥0 ∖ {𝑥0}, for which the closed-loop 

system, 

 �̇�(𝑡) = (𝑓 + 𝛼𝑔)(𝑥(𝑡)), (17) 

is locally asymptotically stable (with respect to x0). 

Recall also that (see [16, 21]) a real continuous function 

defined on open set 𝑋 ⊂ 𝑅𝑛 is a local control Lyapunov 

function for system (17) (relative to the equilibrium state 

𝑥0), if it satisfies the following properties: 

(i) V is proper at 𝑥0, i.e., {𝑥 ∈ 𝑋: 𝑉(𝑥) ≤ 𝜀} is a 

compact subset of some neighborhood 𝑈𝑥0 of 𝑥0 

for each sufficiently small 𝜀 > 0. 

(ii) V is positive defined on 𝑈𝑥0: 𝑉(𝑥0) = 0 and 

𝑉(𝑥) > 0 for each 𝑥 ∈ 𝑈𝑥0 , 𝑥 ≠ 𝑥0. 

(iii) 𝐿𝑓𝑉(𝑥) < 0 for each 𝑥 ≠ 𝑥0,   𝑥 ∈ 𝑈𝑥0 , such that 

𝐿𝑔𝑉(𝑥) = 0, where 𝐿𝑔𝑉(𝑥) ≔ 𝛻𝑉(𝑥) ⋅ 𝑔(𝑥) 

denotes the Lie derivative of 𝑉 with respect to  

𝑔, and 𝐿𝑓𝑉(𝑥) is the Lie derivative of 𝑉 with 

respect to 𝑓. 

The pair (𝑓, 𝑔)  of vector fields 𝑓 and 𝑔 given by (16) 

that satisfies conditions (i)-(iii) is called a control 

Lyapunov pair. If the origin of (15) has CLF, then there 

exists a control law that renders the system asymptotically 

stable.  

 

Proposition 1 [10]:  

If the system (15) is stabilized by a feedback 𝑢 =
𝛼(𝑥) + 𝑘𝑇𝑥, where 𝑘 = (𝑘1, … , 𝑘𝑚), 𝑘𝑖, 𝑖 = 1, … ,𝑚, 

 are roots of a Hurwitz polynomial 𝑝, and 𝛼 is 

continuously differentiable on 𝑈0 ∖ {0}, then the pair 

(𝑓, 𝑔) satisfies the Lyapunov condition (i.e., conditions 

(i) and (ii) given above) at the origin.  

After applying the control law 𝑢 = 𝛼(𝑥) + 𝑘𝑇𝑥 to 

(15), we obtain the system: 

 �̇� = 𝑓(𝑥) + 𝑔(𝑥)(𝛼(𝑥) + 𝑘𝑇𝑥) + ℎ(𝑥)𝑤, (18) 

with external disturbance input 𝑤. 
 

Case 1 

Let us assume that the nominal system �̇� = 𝑓(𝑥) +
𝑔(𝑥)𝑢 is stabilizable and the CLF for nominal system 

(17) is known. We assume that for all x ≠ 0 there is a 

positive, proper function 𝑉 ∈ ℝ+ such that, 

  ∇𝑉(𝑥)[𝑓(𝑥) + 𝑔(𝑥)𝑢] < 0. (19) 

Then, this nominal control law must be redesigned to 

account for disturbance w in the actual system. Let us 

emphasize that the nominal CLF is chosen independently 

of any knowledge of the disturbance input matrix ℎ(𝑥). 
Then after including function ℎ(𝑥) in inequality (19), 

and to keep system (15) (with disturbance w) stable, 

function V must satisfy: 

 ∇𝑉(𝑥)[𝑓(𝑥) + 𝑔(𝑥)𝑢 + ℎ(𝑥)𝑤] < 0, ∀𝑥 ≠ 0. (20) 

Let us assume that CLF describes the kinetic energy 

of system (14), i.e., 

 𝑉 =  
1

2
(3𝑥1

2 + 2𝑥2
2 + 𝑥3

2). (21) 

Then, 

∇𝑉(𝑥)[𝑓(𝑥) + 𝑔(𝑥)𝑢 + ℎ(𝑥)𝑤] = 

 3𝑥1
2𝑤 + 2𝑥2𝑥3|𝑥3| + 3𝑥1𝑥2 + 𝑥3𝑢, (22) 

and the control law, which fulfils condition (20), is 

chosen as: 

𝑢 = −sat(3𝑥1
2𝑥3 + 2𝑥2|𝑥3| + 3𝑥1𝑥2𝑥3 + 𝑥3 − 𝑢0),(23) 

where 𝑢0 = −𝑘1𝑥1 − 𝑘2𝑥2 with 𝑘1, 𝑘2 – roots of some 

Hurwitz polynomial, and saturation function is given 

according to saturated control voltage defined as 

sat(𝑣(𝑡)) in order to enforce the constraint on the 

maximum voltage allowed. 

In this way, one obtains a globally stable closed-

loop system with |𝑥3| >  ≥ 𝑥1𝑥2, and for bounded 

disturbance  𝑤 < 𝑥2(𝑥3
2 − 1)/𝑥1, where  is a positive 

design constant. In fact, note that AMB system (14), with 

non-dimensional variables [𝑥1, 𝑥2, 𝑥3] given by (13) and 

for the absolute maximum values of the physical AMB 

parameters collected in Table 1, is on the stability border. 

Then, the complementary sensitivity function S for these 

values also has its maximum value and system (14) is the 

most sensitive to disturbance w. Therefore, the inequality 

𝑤 < 𝑥2(𝑥3
2 − 1)/𝑥1 should be met for maximum system 

variables, and it is easy to check that it holds true if 

𝑤<0.1377. Then, including the non-dimensionalized 

value in (13) and maximum value of ||𝑚𝑎𝑥= 0.0001 [m] 

(see Table 1), we get that <0.00001377. Thus, it is 

implied that the above inequality is always true.  

Note that in this case, the condition: |𝑥3| >  

follows from the fact that, in the case of an AMB system 

operated in zero-bias mode, we need a large change in 

flux resulting in large voltage commands (7) in order to 

produce a small control force. Design coefficient  is a 

part of the AMB control system and its value depends on 

the parameters of the AMB system (which are given in 

Table 1). The condition  ≥ 𝑥1𝑥2 is always met in the 

flux-controlled AMB. 
 

Case 2 

The stabilization problem for system (15) is solved 

if we can assign negative value to the time derivative of 

function V, thus the stability condition is given by: 

 𝐿𝑓𝑉(𝑥) + 𝐿𝑔𝑉(𝑥) + 𝐿ℎ𝑉(𝑥) < 0, (24) 

where we suppose that function 𝑉 is given by (21). 

Following (24) and for CLF given by (21), with 

condition: |𝑥3| >  ≥ 𝑥1𝑥2, the stable feedback loop can 

be written as 𝐿𝑓𝑉 + 𝐿𝑔𝑉 + 𝐿ℎ𝑉 = 3𝑥1
2𝑤 + 2𝑥2𝑥3|𝑥3| +

3𝑥1𝑥2 + 𝑥3𝑢. Then, the second control law is selected 

as: 

𝑢 = −sat (
1

2
(−3𝑥1

2 − 2𝑥2𝑥3|𝑥3| − 3𝑥1𝑥2 + 𝑥3) − 𝑢0), 

 (25) 

with, as previously, 𝑢0 =  −𝑘1𝑥1 − 𝑘2𝑥2 where 𝑘1, 𝑘2 

are roots of some Hurwitz polynomial, and the saturation 

function in (23) is given according to saturated control 

voltage defined as sat(𝑣(𝑡)) in order to enforce the  
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constraint on the maximum voltage allowed. 

 

V. NUMERICAL EXAMPLES  
This section presents results obtained for AMB 

system (12) after applying zero-bias flux control with 

switching scheme (6) and with external disturbance .  

In this way, the first equation of AMB system (12) is 

replaced with 
𝑑

𝑑𝑡
𝑥1 = 𝑥2 + 𝑥1𝜔. The possibilities of 

compensating for disturbance  are investigated with 

control laws (23) and (25). The simplified 1–DOF model 

of the AMB (given in Fig. 1) was extended by magnetic 

saturation, coil resistance, voltage saturation and 

geometrical specifications such as: nominal air gap, 

number of coil turns over a single pole of the AMB 

stator, pole area, permeability of air, and electromagnetic 

force acting angle. The data for these AMB 

specifications are collected in Table 1. Variable x is the 

rotor displacement from the centre point (when x=0), and 

g0 is the nominal width of the air gap.  

 

Table 1: AMB specification 

Symbol Value Meaning 

|𝑥|𝑚𝑎𝑥 [m] 0.00025 Maximum rotor position 

|�̇�|𝑚𝑎𝑥  [m/s] 0.05 Maximum speed 

||𝑚𝑎𝑥  [Wb] 0.0005 Maximum control flux 

||𝑚𝑎𝑥 [m] 0.0001 
Maximum rotor position 

disturbance 

g0 [m] 0.00058 Nominal width of air gap 

m [kg] 2.5 Rotor mass 

N 108 Number of coil turns 

R [] 0.5 Coil resistance 

A [m2] 0.0014 Electromagnet pole area 

 [deg] 22.5 
Electromagnetic force 

acting angle 

sat [Wb] 0.0022 Saturation flux 

Bsat [T] 1.6 Saturation flux density 

vsat [V] 150 Saturation voltage 

isat [A] 5 Saturation current 

 
The AMB model detailed above, with dynamics 

(14) and switching scheme (6), was applied in 

Matlab/Simulink software. Numerical simulations were 

performed for position-flux zero-bias control, for bias 

flux 0 equalling zero. The system's trajectories and 

control input are illustrated for the given nonlinear 

controllers with zero-bias and voltage constraints. For 

this purpose, the initial conditions are assumed to be  

as follows: {
1
(0), 

2
(0)} = {0,0} and {𝑥(0), �̇�(0),

(0)} = {0, 0, 0}. All simulations are performed with 

optimized gains k1 and k2 equal to 0.92 and 9.94, as 

previously done in work [10]. The amplitude of step 

disturbance w equals 0.1 [mm] in all simulations.  

The AMB system's responses to disturbance w,  

in zero-bias mode, for selected controller gains: 

𝑘1 = 0.92, 1, 1.5 and 𝑘2 = 9.94, 5, 5 are presented in 

Fig. 2. Disturbance  is successfully compensated with 

zero overshoot where the control voltage amplitude does 

not exceed 100 [V]. 

 

    

  
 

Fig. 2. Responses of closed-loop system with zero-bias 

to disturbances employing control law (23) for selected 

gains k1 and k2. 

 

Figures 3 and 4 show the results of simulations using 

control laws (23) and (25), with optimized controller 

gains: 𝑘1 = 0.92 and 𝑘2 = 9.94. Figure 3 shows the 

AMB system's responses to disturbance , and Fig. 4 

shows voltage 𝑣1, 𝑣2 and flux 
1
, 
2
 trajectories according 

to each active electromagnet.  

 

  

  
 

Fig. 3. Comparison of step responses between closed-

loop systems employing (23) and (25) controllers for 

k1=0.92, k2=9.94 with zero-bias. 
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Fig. 4. Voltage switching rule with zero-bias and control 

laws (23) and (25) for k1=0.92, k2=9.94. 

 

Figure 4 presents the idea of the voltage switching 

strategy used in zero-bias control with CLF and the flux 

and voltage signal responses to disturbance . In the 

results given (see Figs. 3 and 4), the maximum voltage 

is about 60 [V], and the settling time is equal to 0.02 [s]. 

For example, the saturation level in [33] and [35] is 

set to 30 [V], and in [30] vmax=10 [V]. But in [30], the 

settling time for rotor position is equal to 0.2 [s], which 

is 10 times longer than in our simulation results. 

However, in light of the given results, one may conclude 

that higher values of control voltage lead to shorter 

settling times. As observed in Figs. 2 and 3, the settling 

time decreases as voltage saturation level increases, as 

expected.  
 

VI. CONCLUSIONS 
In this paper, nonlinear CLF–based controllers have 

been proposed and effectively applied to the AMB flux-

controlled system with zero-bias and control voltage 

saturation. Specifically, when using the switching voltage 

rule with zero-bias operation, one must preclude the 

singularities present in the control law. The stability of 

the two designs has been discussed. The desired control 

performance was achieved despite control voltage 

saturation. Simulation results have shown that the novel 

and simple low-order controllers based on CLF gave 

equivalent results compared to high-order complex 

control, e.g., based on Artstein-Sontag’s theorem [29]  

or as given in [30]. The dynamic performance of the 

proposed control laws as well as the AMB system's 

responses are similar to the ideal model case. 

Future investigations into this topic will focus on a 

Lyapunov-based nonlinear dynamic output feedback 

control method for a 5-DOF AMB system. The fabricated 

test rig of the whole system and its details can be found 

in work [3, 36]. In the first step, the rotor will be assumed 

to be rigid for simplicity. In the second step, the 

nonlinear Lyapunov controller will be considered for 

control of the 5-DOF flexible rotor.  
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Abstract ─ A novel magnetic levitation principle, 

applicable for two- and four-pole high-speed permanent 

magnet synchronous motors, is presented. The drive 

consists of two half-motors, in which two asymmetric 

star-connected windings are arranged. An additional 

active magnetic bearing part is inserted to control the 

axial displacement. The two coils of the axial magnetic 

bearing are fed by the zero-sequence current components 

of the star-connected windings. The proper control of the 

positive, the negative, and the zero-sequence currents 

permits to set the torque, the radial levitation forces and 

the axial levitation force, respectively. 

 

Index Terms ─ Magnetic suspension, permanent magnet 

synchronous motor, self-bearing motor, symmetrical 

components. 
 

I. INTRODUCTION 
In the past decades, different levitation principles 

were investigated to achieve rotor suspension with forces 

of magnetic origin. This paper focuses on a solution  

with active control of the six degrees of freedom of the  

rotor, suitable for high-speed drives. Active self-bearing 

suspension is considered to be an alternative to active 

magnetic bearings, where the same iron stack is used for 

the generation of the torque and of the levitation forces 

[1]. While most self-bearing motors generate only radial 

suspension forces [1], some unconventional motor 

designs enable to generate also an axial thrust. A solution 

is presented in [2], where axial forces are generated by 

two opposing half-motors with conical air-gap. The axial 

displacement is controlled actively using a three-point  

d-current control in each half-motor. In [3], a different 

approach is proposed, with again two conical half-motors, 

but here the permanent magnet field is controlled in  

the synchronous coordinate system. Four conventional 

windings are required, two for the torque and the axial 

force, and two for the two radial forces of the two half-

motors. Axial flux motor alternatives are proposed in [4] 

and [5], where the axial thrust results from the difference 

of the main field on both sides of an axial flux motor. A 

Lorentz-force based application can be found in [6], 

where the two counteracting axial thrusts of two 

conically shaped skewed windings are used to generate 

a net axial force. A much simpler Lorentz-force based 

solution is presented in [7]. This latest prototype is 

composed of two cylindrical half-rotors. Two oppositely 

skewed windings are brought in two half motors, so that 

a q-current feeding results simultaneously in a torque and 

an axial thrust. The net torque is produced by a common 

q-current feeding, while the net axial thrust results  

from an opposite q-current feeding. In this paper, an 

alternative topology is presented, with a thrust bearing as 

a magnetic active part, fed by two zero-sequence current 

components from two double star windings. This 

topology, restricted to two- and four-pole motors, is 

extended from the motor design presented in [8]. 

Whereas the previous design [8], requires an additional 

axial magnetic bearing and the corresponding power 

electronics, the feeding of the magnetic bearing in the 

proposed design is achieved through the drive winding 

itself. As a result, all the terminals are used to generate 

the torque, the radial and the axial levitation forces 

simultaneously. In steady-state condition, these 

components correspond to the positive, the negative and 

the zero-sequence current components, respectively, in 

each of the three-phase windings. The first part of the 

paper describes the different windings in the different 

active parts, and their feeding. It describes in particular 

the thrust bearing coils to generate an axial force and 

their connection to the main windings. The second part 

focuses on the integration of the zero-sequence current 

control into the existing control, presented in [8]. It 

presents a new set of coordinate systems, relevant for the 

field orientation control. The third part presents an 

extension of the voltage modulators, which enables to 

impress a zero-sequence voltage. It is demonstrated, that 

with simple transformations the determination of the 

pulse widths to impress the positive and negative 

sequence voltages is similar to the familiar space vector 
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modulation. The determination of the zero-sequence 

voltage is explained in the fourth part. In particular, the 

problem of over-modulation is addressed. 
 

II. WINDING CONFIGURATION AND 

FEEDING 
In order to achieve the suspension and speed control 

of a free rotating body, the six degrees of freedom (DOF) 

need to be actively controlled. To do so, the torque, the 

axial force and two sets of two radial forces, on two 

parallel, but distinct planes, are produced by several 

electromagnetic actuators. The configuration of the 

proposed magnetic active parts is represented in Fig. 1.  
 

 
 

Fig. 1. Schematic representation of the proposed motor 

with two half permanent magnet synchronous motors 

(BM) and an active thrust magnetic bearing (AMB). 
 

The proposed drive is composed of two half-motors 

(BM in Fig. 1), which generate torque and radial 

levitation forces, and one thrust magnetic bearing part 

(AMB in Fig. 1), which produces an axial levitation 

force. To prevent rotor damage in case of levitation 

control failure, an emergency bearing is present at each 

rotor end. A play between rotor and bearing inner-ring 

prevents any mechanical contact during normal operation. 

Five position sensors and a rotor angle sensor are present 

to measure the rotor position. Two parallel magnetized 

two-pole magnets are surface mounted on the rotor. In 

the stator slots of each half motor two asymmetrical 

three-phase windings are wound, as shown in Fig. 2. The 

windings are here represented with a number of slots per 

pole and phase of q = 1 for clarity. Due to coil short 

pitching (W/τp = 1/2) and an asymmetrical winding 

arrangement (Fig. 2), the two windings produce not only 

a fundamental field for the torque, but also a space 

harmonic of order two (ν = -2) for the radial forces. The 

expression of the torque (resp. of the radial forces), 

generated by a differential-mode counter-clockwise 

rotating current space vector iccw = iα,1 + j iβ,1 (resp. a 

common-mode clockwise rotating current space vector 

icw = iα,-2 + j iβ,-2), is detailed in [8]. Additionally, the star 

points NA and NB of the proposed windings (Fig. 2) are 

interconnected, so it is possible to feed a zero-sequence 

current id,0 between the two three-phase windings (Fig. 

3). This current component is used to generate an axial 

attraction force. The axial active magnetic bearing is a 

conventional thrust bearing with differential windings. It 

is composed of two ring electromagnets with two coils, 

which are fed according to the differential feeding 

principle. The outer electromagnet is removable in axial 

direction to enable the rotor insertion. The two star points 

NA and NB of the two three-phase systems from one half-

motor (Fig. 2) are connected to the terminals of one of 

the two coils (AMB Fig. 1) of the magnetic thrust 

bearing. The two other star points from the second half-

motor winding are connected to the second coil of the 

magnetic bearing. Two zero-sequence currents id,0,DE and 

id,0,NDE are flowing through the two coils of the magnetic 

bearing. The amplitudes of the currents id,0,DE and id,0,NDE 

follow the differential feeding Equation (1): 

. (1) 

 

 
 

Fig. 2. Winding disposition in one half-motor (e.g., DE 

BM), connected to a single coil of the thrust bearing 

(AMB). The thrust coil (on the right) is fed through the 

interconnected star points NA, NB. The winding disposition 

is identical for the second half-motor. 
 

Whereas the electromagnetic forces, resulting on the 

thrust disk and generated by the common mode bias 

current i0,bias, are cancelling each other, the differential 

current Δi0 produces a net axial force Δfz. This principle 

is identical to the principle of differential feeding in 

active magnetic bearings. The expressions of the phase 

currents in UA, VA, WA and UB, VB, WB in stationary 

conditions are shown in (2) and are valid for the drive 

end (DE) and the non-drive end (NDE) separately. Φ1 

and Φ2 are the phase angles of the current space vectors 

iccw and icw at the time t = 0. The current space vector iccw 

rotates with electrical frequency ω in the positive 

direction (counter-clockwise), whereas the current space 

vector icw rotates with the same electrical frequency ω in 

the negative direction (clockwise); 

 

The levitation control is identical to the one for drive  
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with active magnetic bearings [1]. It can be realized for 

example with simple PID controllers that take the 

displacement position signals as input and calculate the 

required radial and axial forces to suspend the rotor at 

the center of the stator. 
 

 
 

Fig. 3. Schematic representation of the six-phase 

winding in one half motor (Fig. 2) and definition of the 

currents and voltage potentials. The second winding in 

the second half motor is identical. 

 

III. CONTROL STRUCTURE EXTENSION 
For independent control of the torque and levitations 

forces, the six phase currents are transformed into two 

sets (DE & NDE) of three orthogonal sub-spaces KS,0, 

Kdq,1, Kdq,-2. The decomposition is done as follows: The 

six phase currents are projected on a first stator-based 

subspace KS,1 via (3) to get the differential counter-

clockwise components iα,1 and iβ,1. It is demonstrated in 

[8] that these components generate a two-pole magnetic 

air-gap field. These components are transformed into the 

synchronous coordinate system Kdq,1 to control the field 

weakening and the torque independently. The projection 

of the phase currents on a second sub-space KS,-2 via (3) 

gives the common-mode clockwise components iα,-2 and 

iβ,-2, which are necessary to produce radial forces. These 

components are exciting a four-pole air-gap field 

(harmonic order ν = -2), which interacts with the two-

pole rotor permanent magnet field to generate the radial 

forces [8]. To obtain an independent control of the 

horizontal and vertical radial forces, these components 

are transformed into a clockwise rotating coordinate 

system Kdq,-2, rotating with the electrical frequency ω. 

Since the number of pole-pairs of the levitation field 

(p2 = 2) is different from the one of the rotor field 

(p1 = 1), the levitation field harmonic ν = -2 rotates in 

stationary condition at a slip s = 0.5 (4). Finally, the 

projection of the six phase currents on KS,0 via (3) gives 

a single differential zero-sequence current component 

id,0. Whereas the radial suspension forces and the torque 

in each half motor are independent from each other, the 

net axial force results from the difference of the axial 

forces, generated by the two currents id,0,DE and id,0,NDE. 

When these two components are controlled according to 

(1), the resulting net force Δfz is directly proportional to 

Δi0. The described current projections are factorized 

according to (3). The control of each current component 

is done in the sub-spaces KS,0, Kdq,1, Kdq,-2, for each half 

motor (DE and NDE in Fig. 1) with simple PI controllers. 

The voltage outputs are then transformed back to the  

set of stator coordinate systems {KS,0, KS,1, KS,-2} before 

being sent to the modulators. The speed and position 

control scheme as well as the linearized model of the 

proposed drive is identical to the one with active 

magnetic bearing suspension and is therefore not 

explained here. An overview of the considered sub-

spaces is given in Table 1, with the corresponding space 

dimension: 

 , (3) 

  . (4) 

 

Table 1: List of the defined sub-spaces 

Name Description Dim. 

KS,0 Stator zero-sequence sub-space 1 

Kdq,1 
Counter-clockwise synchronous 

differential component sub-space 
2 

Kdq,-2 
Clockwise synchronous common-

mode component sub-space 
2 

KS,1 
Stator counter-clockwise differential 

component sub-space 
2 

KS,-2 
Stator clockwise common-mode 

component sub-space 
2 

KS,A (αβγ) stator sub-space of winding A 3 

KS,B (αβγ) stator sub-space of winding B 3 

 

IV. SPACE VECTOR MODULATION 

EXTENSION 
The proposed winding has six phases and five 

degrees of freedom (DOF). The six phase terminal 

potentials φU,A, φV,A, φW,A, φU,B, φV,B, φW,B are impressed 

by a six phase inverter. It is shown in Fig. 3 that the star-

point potentials φN,A and φN,B are not impressed by the 

inverter, so the 3D SVM is not suitable for this problem. 

Indeed, the two modulators, necessary to calculate  

the proper firing instants of the power switches, require 

a novel pulse width modulation to impress a zero-

sequence voltage ud,0. Here, a solution is proposed, based 

on the space vector modulation principle. The pulse 

pattern of a single six-phase system (Fig. 4) is described 

by six pulse widths (t0,A, t1,A, t2,A, t0,B, t1,B and t2,B).  

The voltage space, covered by this 5D SVM, forms a  

5D polytope. In contrast to the common 2D SVM, 

projections of the reference voltage vectors in 5D voltage 

spaces are difficult to apprehend. In Fig. 3, the phase 

voltages uU,A, uV,A, uW,A, can be determined as a function 

of the phase potentials φU,A, φV,A, φW,A and the star point 
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potential φN,A. Obviously, the two star point potentials 

φN,A and φN,B are functions of all the six phase potentials 

φU,A, …, φW,B. After projection of the phase voltage 

vector uA = (uU,A, uV,A, uW,A)T into the coordinate system 

KS,A with the Clarke transformation (5), it can be noticed 

that the components uα,A and uβ,A of uA, in KS,A, are 

independent of φU,B, φV,B and φW,B. Doing the same 

transformation in KS,B with uB = (uU,B, uV,B, uW,B)T, it  

is possible to split the 5 DOF problem into smaller 

problems by projection of the stator voltage vector 

uS = (uα,1, uβ,1, uα,-2, uβ,-2, ud,0)T in KS,A and KS,B. The zero-

voltage components u0,A and u0,B depend however on  

all the phase potentials φU,A, …, φW,B. While the actual 

values of u0,A and u0,B are not of interest, the zero-

sequence voltage ud,0, which drives the zero-sequence 

current component id,0 in KS,0, is given by 

ud,0 = φN,A - φN,B. To take advantage of the orthogonality 

mentioned above, a two-step calculation of the pulse 

pattern is introduced. First the four pulse widths t1,A, t2,A, 

t1,B and t2,B of the active voltage switching states V1,A, 

V2,A, V1,B and V2,B are determined to generate solely  

the counter-clockwise differential voltage space vector 

components (uα,1, uβ,1) and the clockwise common-mode 

voltage space vector components (uα,-2, uβ,-2). To do so, 

relation (6) is used, followed by two inverse Clarke 

transformations in A and B. In a second step, the pulse 

widths t0,A, t0,B, t7,A and t7,B of the zero-voltage switching 

states V0,A, V0,B, V7,A and V7,B are determined to get the 

required zero-sequence differential voltage component 

ud,0. The general determination of the zero-voltage pulse 

widths is an underdetermined problem, so that symmetry 

considerations and polytope boundaries are exploited  

to find a unique solution. Despite its simplicity, this 

algorithm is only suited to this particular problem and is 

not a general solution of the 5D SVM: 

 , (5) 

. 

(6) 

 

V. CONTROL OF THE ZERO-SEQUENCE 

CURRENT 

In the proposed scheme, the zero-sequence voltage 

ud,0 is modulated with the difference of pulse width of 

the zero-voltage switching states V0,A, V0,B, V7,A and V7,B. 

In order to produce a positive zero-voltage component 

ud,0, the pulse width t7,A, of the positive zero-voltage 

switching state V7,A (“ppp”, where all three phase 

terminals are switched to Udc) in the three-phase system 

A is increased, while the pulse width t7,B of the positive 

zero-voltage switching state V7,B in the three-phase 

system B is reduced (Fig. 4). The variation of the zero-   

of ud,0 over a switching period Tsw, becomes positive. An 

illustration of asymmetrical pulse patterns is given in 

Fig. 4. The determination of the four zero-voltage pulse 

widths t0,A, t0,B, t7,A and t7,B is formulated as (7), (8) and 

(9): 

 , (7) 

, (8) 

 . (9) 

Whereas the two first conditions (7) and (8) are very 

simple to compute, the third condition (9) requires those 

machine parameters, which are relevant for the zero-

sequence components. A simplified equivalent circuit of 

the zero-sequence system is proposed in Fig. 5, which 

considers due to the high switching frequency only the 

inductances, which are limiting the zero-sequence 

current id,0. The zero-sequence current id,0 magnetizes the 

air-gap of the two half-motors BM (Fig. 1) with a field 

space harmonic of order three (ν = 3). It magnetizes 

additional regions in the slots and winding overhangs as 

well. The equivalent leakage inductance is named Lσ,0,BM 

for A and B. It also magnetizes the leakage inductance 

of the magnetic bearing AMB (Fig. 1) itself, which is 

called Lσ,AMB. Finally it magnetizes the magnet bearing 

air-gap region of interest with a magnetizing inductance 

Lh,AMB. Integrating the left side of (9), it can be shown 

that the third condition is equivalent to (10), where  

the coefficient keq characterizes the equivalent voltage 

divider of the circuit (Fig. 5) according to (11): 

  , (10) 

 . 

(11) 

 

In order to obtain a single formulation of the 

solution, the pulse width t1 is defined so that t1 

corresponds to the first active voltage state “pnn”, where 

one of the three phases is at the DC link voltage Udc, 

while the two others are switched to ground potential. 

The pulse width t2 corresponds to the second active 

voltage state “ppn”, where two of the three phases are 

switched to Udc, while the remaining one is switched to 

ground potential. Following this convention, the third 

condition is reformulated as (12). Finally the solution 

(t0,A, t0,B, t7,A, t7,B) of the problem is given by the 

intersection of three hyper-surfaces in 4

0 , defined by 

(8) and (12). As a consequence, the solution can be 

underdetermined, or a single point, or there can be  
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no solution at all. The underdetermined case occurs, 

when the reference zero-sequence voltage ud,0 is small 

enough, and the inverter has enough voltage reserve, 

(i.e., when the modulated active voltage vectors (uα,A, 

uβ,A)T and (uα,B, uβ,B)T in windings A and B are below the 

maximal admissible voltage vector amplitude). In the 

underdetermined case, the additional constraint (13) is 

proposed where the pulse widths tZ,A and tZ,B are defined 

in (8) and the pulse width tZ,MB is defined in (12): 
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(15) 

This condition (13) is chosen to get a continuous 

transition of the solutions (t0,A, t0,B, t7,A, t7,B) when tZ,A = 0 

or tZ,B = 0 in (8) (i.e., when one modulated active vector 

(uα,A, uβ,A)T or (uα,B, uβ,B)T reaches the maximal admissible 

voltage vector amplitude). The Equations (8), (12) and 

(13) are reformulated in a matrix form and the explicit 

solution (15) is obtained by inversion of the matrix. 

When no solution is possible (i.e., when tZ,A < 0 or tZ,B < 0 

or tZ,A+ tZ,B = 0), the reference voltage amplitude is too 

high, and/or the inverter has not enough voltage reserve. 

In this case, the modulator algorithm provides the 

maximum voltage amplitude available by following  

the over-modulation (14). For proper operation of the 

levitated drive however, field weakening operation 

should be considered. The expression of keq (11) shows 

that the magnetizing inductance of the magnetic bearing 

Lh,AMB should be intentionally designed to be big, and the 

other leakage inductances should be low, to prevent an 

inverter over-sizing. The two-step calculation is done as 

follows: During a control period Tsw, after all the current 

control calculations are completed, the reference voltage 

vector u = (ud,1, uq,1, ud,-2, uq,-2, ud,0)T in {KS,0, Kdq,1, Kdq,-2} 

is transformed into the stator sub-spaces {KS,0, KS,1, KS,-2} 

to obtain uS = (uα,1, uβ,1, uα,-2, uβ,-2, ud,0)T. The vector 

components uα,1, uβ,1, uα,-2 and uβ,-2 are then projected  

on the α-β planes A and B with (6). Thanks to the 

orthogonality properties explained above, the calculation 

of the pulse widths t1,A and t2,A (resp. t1,B and t2,B, Fig. 4) 

to modulate solely the voltage components uα,A, uβ,A 

(resp. uα,B, uβ,B) is the same as for the conventional 2 

DOF SVM. In a second step, the pulse widths t0,A and t7,A 

(resp. t0,B and t7,B, Fig. 4) of the two zero-voltage 

switching states V0,A and V7,A (resp. V0,B and V7,B) are 

determined with (15). When there is no solution, (14) is 

used instead to insure maximum amplitude of the zero-

sequence voltage ud,0. 
 

 
 

Fig. 4. Example of an asymmetrical pulse pattern for a 

six-phase system UA, VA, WA, UB, VB, WB (e.g., DE BM) 

to produce a positive zero-voltage component and two 

equal active voltage space vectors (uα,A, uβ,A)T = (uα,B, 

uβ,B)T. The pulse width of the positive zero-voltage 

switching state V7 is larger in the winding A than in the 

winding B. Hence, the resulting zero-sequence current 

id,0 increases. 
 

 
 

Fig. 5. Simplified inductive equivalent circuit of the 

zero-sequence component. The two half motors (BM: 

DE & NDE) are described by the two zero-sequence 

winding leakage inductances Lσ,0,BM. The axial magnetic 

bearing is described by a winding leakage inductance 

Lσ,AMB and a magnetizing inductance Lh,AMB. 

 

Z,A Z,MB Z,B Z,MB
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t t t t
t t t t

t t t t
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 
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VI. CONCLUSION 
A new six degree of freedom magnetic suspension 

system is presented. It consists of sets of antisymmetric 

three phase windings interconnected at the star points. 

The control of such windings requires an extension of the 

field orientation control to transform the phase currents 

into three independent sub-spaces KS,0, Kdq,1, Kdq,-2. A 

two-step calculation is presented to determine the SVM 

pulse pattern, which is necessary for the control of the 

zero-sequence current component id,0. 
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Abstract ─ The design of high-precision magnetic 

levitation positioning systems requires fast 

electromagnetic models. Since three-dimensional finite 

element method (3D-FEM) is very time-consuming, in 

order to calculate magnetic forces, an interesting 

alternative is to determine the forces semi-analytically 

due to the high accuracy with a short calculation time. In 

this paper, a new compact semi-analytical equation for 

determining the magnetic propulsion forces of a new 

ironless two degrees of freedom (2-DoF) actuator for a 

high-precision magnetic levitation system is presented. 

The derived equation is based on the magnetic scalar 

potential and the Lorentz force law. An important result 

is that this new expression takes also the position 

dependence of the propulsion forces over the whole 

planar stroke into account. The calculated propulsion 

forces from the derived equations and the verification by 

3D-FEM (Maxwell 3D) are presented in this paper as 

well. 

 

Index Terms ─ Analytical calculation, ironless actuator, 

Lorentz force, magnetic levitation, magnetic scalar 

potential, Maxwell 3D. 
 

I. INTRODUCTION 
Due to the ongoing miniaturization of electronic 

components, many modern applications, such as the 

semiconductor manufacturing or nanotechnology, 

requires vacuum compatible planar positioning systems 

with long planar strokes and precisions up to the 

nanometer (nm) range [1]. One promising solution to 

achieve these requirements is the combination of multiple 

electrodynamic linear actuators with active magnetic 

guidances in a triangular or rectangular configuration 

[2].  

These high-precision 6-DoF magnetic levitation 

positioning systems can position objects precisely up to 

the nm range without any contact in multiple degrees of 

freedom with only one moving element [3]. In order to 

eliminate hysteresis effects, flux saturation and eddy-

currents, obtained from ferromagnetic materials, currently 

most of the high-precision magnetic levitation positioning 

systems known in the literature are realized with ironless 

actuators [3]. These ironless actuators consist usually  

of a stator with air-core coils and a mover with either  

a Halbach array [4] or a single permanent magnet [5]. 

The main advantage of the iron-free structure of these 

systems are the linear relationship between the currents 

and forces and the fast current changes in the air-core 

coils, which allows the realization of simple and highly 

dynamic control algorithms.  

For the purpose of designing, analyzing and 

optimizing of such systems, often 3D-FEM are required 

and used because the geometry of such positioning 

systems is a complex 3D problem [6-7]. However, the 

main problem of 3D-FEM is that it requires partly several 

hours to obtain a solution, since it needs extremely fine 

meshing within the air gap as well as the surrounding 

medium in order to obtain accurate results of the forces 

and magnetic fields. Consequently, alternative solutions 

are required in order to calculate magnetic forces and 

fields very fast [8].  

One interesting alternative is the calculation of  

the magnetic forces and fields analytically, because it 

combines high accuracy with a very low computational 

time compared to 3D-FEM [9-11]. Therefore, many 

scientists calculate forces in planar positioning systems 

and in ironless systems analytically instead using 3D-

FEM [12-14]. Mostly, they focus on the calculation of 

the repulsive levitation forces of magnetic guidances. 

However, because of the inherently unstable behavior  

of repulsive magnetic guidances, the moving magnet 

experiences, in addition to the levitation force, also a 

destabilizing force, that intends to push the permanent 

magnet laterally away from the center position. Thus,  

the determination of these undesired propulsion forces 
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are a crucial task, since they must compensate from 

propulsion actuators in order to restore the lateral 

stability and to move and position the mover 

simultaneously.  

In this paper, attention is given to the semi-

analytical calculation of the planar propulsion forces  

of a novel 2-DoF actuator presented in [3]. The main 

contributions are new expressions, which consider the 

position dependence of the desired propulsion force and 

the planar destabilizing propulsion forces over the whole 

planar stroke.  
 

II. 2-DOF ACTUATOR 
The actuator under investigation is shown in Fig. 1. 

This novel 2-DoF actuator for 6-DoF high-precision 

magnetic levitation systems is proposed in order to 

overcome the limitations of Halbach arrays and reluctance 

actuators [3]. It consists of air-core propulsion and guiding 

coils generating two perpendicular forces (levitation and 

propulsion) on a single moving magnet. This actuator 

configuration reduces the mover mass significantly and 

consequently the power consumption of the guiding  

coil. A 6-axis motion can be realized with only three  

or four of such actuators in a triangular or rectangular 

configuration [3]. As mentioned, the magnetic guiding 

coil generates not only a desired repulsive levitation 

force, but also an undesired destabilizing propulsion 

force. Figure 2 shows a more detailed illustration of this 

unstable behavior.  

 

guiding coil

magnet

propulsion coil

mover

 
 

Fig. 1. Ironless 2-DoF actuator. 
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Fig. 2. Generation of the propulsion and levitation force. 

As can be seen, the magnetic field generated by the 

permanent magnet creates flux density components in 

the x- and z-direction. The x-component of the magnetic 

flux density creates the desired levitation force, i.e.,  

the motion of the mover along the z-direction is stable. 

This is because as the air gap increases, the repulsive 

levitation force decreases and thus, the gravitational 

force restores the mover in the equilibrium position. 

Nevertheless, the z-component of the magnetic flux 

density is responsible for a destabilizing propulsion force 

that intends to push the permanent magnet away from the 

equilibrium position. This instability is consistent with 

Earnshaw’s theorem, which states that a stable levitation 

based only on static magnetic forces between dc coils 

and permanent magnets is never stable in all directions 

simultaneously [15]. Consequently, a stable levitation 

can only be achieved by an additional propulsion 

actuator in combination with a control system.  

However, the total force acting on the permanent 

magnet is generated according to the electrodynamic 

principle (Lorentz force) and can be calculated using the 

Lorentz force formula: 

 

𝑭= ∫ 𝑱 × 𝑩 d𝑉𝑐𝑜𝑖𝑙 ,

𝑉𝑐𝑜𝑖𝑙

 (1) 

where J is the current density in the coil, B the magnetic 

flux density generated by the neodym-iron-boron (NdFeB) 

permanent magnet and d𝑉𝑐𝑜𝑖𝑙  represents the small volume 

element in the coils. 

 
A. Analytical calculation of the magnetic flux density 

In order to evaluate the Lorentz force according to 

(1), the first important step is the calculation of the 

magnetic flux density of the NdFeB permanent magnet 

inside the coil volume. One possible calculation approach 

known in the literature is based on the magnetic scalar 

potential, which results in a reduction of the magnet to a 

distribution of fictive magnetic charges (magnetic surface 

charge model) (Fig. 3) [13]. The magnetic surface charge 

model is derived from the magnetic scalar potential 𝜑. 

The starting point is Ampere’s law for current-free region: 

 𝜵 × 𝑯 = 0, (2) 

where 𝜵 is the Nabla-Operator and 𝑯 is the magnetic 

field strength.  

Since (2) is rotation-free, from a mathematical point 

of view, the magnetic field strength can be described by 

introducing a magnetic scalar potential 𝜑 [16]: 

 𝑯 = −𝜵 ∙ 𝜑. (3) 

Inserting the constitutive relation, 

 𝑩 = 𝜇0 ∙ (𝑯 +𝑴), (4) 

where 𝜇0 is the vacuum permeability and 𝑴 the 

magnetization of the permanent magnet into Gauss’s law 

for magnetism: 

 𝜵 ∙ 𝑩 = 0, (5) 

yields, 
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 𝜵 ∙ 𝑯 = −𝜵 ∙ 𝑴. (6) 

By introducing a fictive magnetic charge density 

𝜌 = −𝜵 ∙ 𝑴 and using the magnetic scalar potential 𝜑, 

this results in: 

 𝜵𝟐 ∙ 𝜑𝑚 = −𝜌. (7) 

Under the condition that there are no boundary 

surfaces in the whole volume, that is 𝜇 = 𝑐𝑜𝑛𝑠𝑡., and 

under the assumption of ideal magnets, which are 

characterized by a fixed and uniform magnetization in 

the volume of the magnets, the solution for the magnetic 

scalar potential 𝜑 is as follows [13]: 

 

𝜑 =
1

4𝜋
∮
𝑴(𝒓𝑸) ∙ 𝒏

|𝒓 − 𝒓𝑄|
𝑆𝑚𝑎𝑔

 d𝑆𝑚𝑎𝑔 , (8) 

where d𝑆𝑚𝑎𝑔 is the surface that bounds the volume V of 

the magnet, 𝒓 = {𝑥, 𝑦, 𝑧} describes the point of evaluation 

and 𝒓𝑄 = {𝑥𝑄 , 𝑦𝑄 , 𝑧𝑄} describes the position of the source. 

In free-space, the magnetic flux density can be expressed 

as: 

 𝑩 = 𝜇0𝑯, (9) 

and finally with (8) substitute into (3), (9) becomes: 

 

𝑩 =
𝜇0
4𝜋

∮ 𝑴(𝒓𝑸) ∙ 𝒏 ∙
(𝒓 − 𝒓𝑸)

|𝒓 − 𝒓𝑸|
3

𝑆𝑚𝑎𝑔

d𝑆𝑚𝑎𝑔 . (10) 

 

north pole

south pole

magnetization M

a)

magnetic

charges

b)  
 

Fig. 3. NdFeB permanent magnet (a) and magnetic surface 

charge model (b). 

 

B. Destabilizing force calculation of the guiding coil 

Using (10) and inserting into (1), the total Lorentz 

force can be generally written as: 

𝑭 = ∫ 𝑱 × (
𝜇0
4π

∮ 𝑴(𝒓𝑸) ∙ 𝒏

SmagVcoil

∙
(𝒓 − 𝒓𝑸)

|𝒓 − 𝒓𝑸|
3 d𝑆𝑚𝑎𝑔)  d𝑉𝑐𝑜𝑖𝑙 . 

(11) 

In order to calculate the destabilizing propulsion 

force, we split the whole guiding coil in four identical 

coil sections according to Fig. 4, where two of the coil 

sections generate a force in the x-direction (CS1 and 

CS3), and the remaining coil sections (CS2 and CS4)  

in the y-direction, respectively. For calculation of the 

propulsion force in x-direction generated by CS1 and 

CS3, we determine the z-component of the magnetic flux 

density 𝐵𝑧: 

 

𝐵𝑧 = 𝑩 ∙ 𝒆𝑧 =
𝜇0
4𝜋

∮ 𝑴(𝒓𝑸) ∙ 𝒏

Smag

∙
(𝒓 − 𝒓𝑸)

|𝒓 − 𝒓𝑸|
3 ∙ 𝒆𝑧 d𝑆𝑚𝑎𝑔 , 

(12) 

and assume also a constant and uniform volume current 

density in the y-direction (see Fig. 4 (b)): 

 
𝑱 =

𝑁 ∙ 𝐼

𝑏𝑎𝑖 ∙ ℎ
∙ 𝐞𝑦 , (13) 

where N is the number of coil turns, I the current through 

the coil, 𝑏𝑎𝑖 ∙ ℎ the cross sectional area and 𝐞𝑦 is the  

unit vector in the y-direction. Under consideration of  

the parameters, shown also in Fig. 4, the destabilizing 

propulsion force in x-direction as a function of the 

current mover position over the whole planar stroke can 

be calculated according to (14), shown at the bottom of 

the next page.  
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Fig. 4. Geometry of the magnetic guiding coil. 

 

This derived equation is semi-analytical, because 

this equation requires besides an analytical integration, 

also a numerical integration. 

In the exact manner, we derive (15) in order to 

calculate the destabilizing propulsion force along the y- 

direction. Since the undesired destabilizing propulsion 

forces along the x- and y-direction acts simultaneously 

on the permanent magnet, the superposition of both 

forces must be applied in order to determine the total 

destabilizing force: 

 
𝐹𝑥𝑦 = √𝐹𝑥

2 + 𝐹𝑦
2. (16) 

 

C. Force calculation of the propulsion coil 

The propulsion coil in the 2-DOF actuator 

contributes towards the desired motion in the planar 

plane. The magnitude of the propulsion force component 

must be bigger than the magnitude of the destabilizing 

propulsion force components generated by the guiding 

coil, in order to counteract these destabilizing forces and 

to move and position the mover precisely within the 

planar stroke. Similar to the guiding coil, we divide the 

propulsion coil into four sections as shown in Fig. 5. 

Only CS2 generates the propulsion force in the desired 
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direction, whereas the other coil sections generate a force 

in the opposite direction. To determine the desired 

propulsion force acting in the x-direction as a function  

of the current mover position, we calculate the force 

components of the coil sections using (17–19) with the 

parameters also shown in Fig. 5. The actual propulsion 

force on the magnet can be calculated using (20): 

 𝐹𝑥,𝑝𝑟𝑜𝑝 = 𝐹𝐶𝑆2 − 𝐹𝐶𝑆4 − 𝐹𝐶𝑆13 . (20) 

The results based on our proposed equations can be 

used to design the control system. One possible approach 

is to store the Lorentz force values acting on the 

permanent magnet as a function of the current mover 

position in a look up table. Another approach is to use  

a polynomial function to fit the forces versus x and y. 

Anyway, both approaches can greatly help in the design 

of the control system. 
 

𝐹𝑥

=
𝜇0𝑀

4𝜋 

𝑁 ∙ 𝐼

𝑏𝑎𝑖ℎ

(

 
 
∑∑ ∫ ∫ ∫ ∫ ∫
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2
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2
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2
)

3

𝑥

−𝑥
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−
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1
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(14) 
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3

𝑦
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(15) 
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Fig. 5. Geometry of the magnetic propulsion coil. 

 

III. RESULTS AND DISCUSSION 
As already mentioned, the quintuple equations are 

semi-analytical, i.e., after two consecutive analytical 

integrations with the Symbolic Math Toolbox of 

MATLAB, it is difficult to express the remaining  

expression in an analytical form. Thus, after the analytical 

integration, we convert the remaining expression in  

a function handle using matlabFunction and used the 

intern numerical integration function integral3 to 

evaluate the remaining triple integral. The function of the 

numerical integration is used with the default settings. In 

order to simplify the calculation procedure, a MATLAB 

program is written which contains the analytical and 

numerical integration. Based on our MATLAB program, 

the destabilizing propulsion forces are calculated in 

millimeters in the horizontal plane from −20 mm to  

+20 mm (Fig. 6). 

In order to validate the semi-analytical equations, 

the Lorentz forces acting on the coils were also predicted 

using 3D-FEM (Fig. 7). The parameters and dimensions 

required for the numerical and semi-analytical calculation 

are given in Table 1. 
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Fig. 6. Calculated destabilizing force. 

 

 
 

Fig. 7. 3D-FEM model (Maxwell 3D). 

 

Table 1: Parameters for the force calculation 

Parameter Symbol Value Unit 

Number of turns N / Np 250 / 200  

Current I / I p 1 / 1 A 

Remanence of PM µ0M 1.44 Vs/m2 

Coil thickness bai / bc 10 / 80 mm 

Coil height h / hc / k / hc 30 / 30 / 5 / 3 mm 

Coil length bd 110 mm 

Magnet length a 20 mm 

Coil inner side bi 40 mm 

Coil outer side ba 50 mm 

Neg. magnetic 

charges height 
z1 / z1p 34 / 19 mm 

Pos. magnetic 

charges height 
z2 / z2p 54 / 39 mm 

 

The comparison of the destabilizing force-

displacement curves using the derived equations and 3D-

FEM is shown in Fig. 8, and the comparison of the 

propulsion force generated by the propulsion coil can  

be seen in Fig. 9, respectively. It can be observed in  

both figures, that the numerical and semi-analytical 

computation shows a very good agreement. The max. 

error between the solutions of our equation and the 

numerical ones in all investigated curves is below 1%. In 

order to determine the forces over the whole planar stroke, 

the calculation time of the 3D-FEM takes several hours, 

whereas the semi-analytical approach with MATLAB 

takes only a few seconds. Consequently, our proposed 

method is a very fast alternative to the time-consuming 

3D-FEM and can be used for designing and optimizing 

the 2-DoF actuator. Moreover, the presented theory in 

this paper can be easily adopted for other ironless PM-

actuators. 

 

 
 

Fig. 8. Force-displacement curve of the guiding coil. 

 

 
 

Fig. 9. Force-displacement curve of the propulsion coil. 

 

IV. CONCLUSION 
The new equation in this paper for determining the 

propulsion forces can help to evaluate the performance 

of our proposed 2-DoF actuator. It allows a very short 

calculation time compared to 3D-FEM and can be 

implemented very easy in MATLAB.  

The results obtained by our new equation have been 

compared with 3D-FEM results. Both show a very good 

agreement with a maximum error of 1%. 

The presented theory in this paper can also be used 

to derive similar semi-analytical equations for analysis, 

optimization and design issues of other ironless PM-

actuators. 
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Abstract ─ In this paper we illustrate a particular 

analytical numerical model of passive magnetic bearings 

with axial magnetization. The approach is based on  

the magnetic charges method. This method avoids the 

utilization of the finite element analysis. In relation to  

the system geometry, we find explicit formulations  

for computing magnetic fields by simple numerical 

integrations. A detailed magnetostatic model is developed 

and the nonlinearity of the magnetization vector M of  

the ring magnets can be considered by a very simple 

modification of the equations illustrated. The equations 

can be immediately implemented in a mathematical 

software and only few minutes are sufficient to obtain 

the results. 
 

Index Terms ─ Levitation, magnetic bearings, 

magnetostatic field, natural frequencies, stiffnesses. 
 

I. INTRODUCTION 
The magnetic levitation allows the suspension of 

one object above another without the two coming into 

contact. There are several studies and applications of  

this phenomenon [1], [2] and one of the best known is 

represented by passive magnetic bearings [3-6]. Generally 

these bearings can be of two types depending on the 

direction of polarization of the rings: axial or radial. In 

both cases, the forces that keep the rings separate are 

repulsive. Therefore, the rings of these bearings are 

arranged with the same poles facing each other. The 

value of these repulsive forces depends on the air gap 

between the facing surfaces. The air gap changes as  

a function of the applied forces. Consequently, it is 

possible to define a bearing stiffness which varies 

depending on the magnitude of the load applied and/or 

by the mutual position of the rings. Since the rotating 

rings of the magnetic bearings are always keyed to a 

shaft on which other elements are also fixed, an elastic 

system characterized by a certain stiffness and mass is 

defined. Therefore, we can evaluate the natural vibration 

frequencies of this mechanical system. These frequencies 

depend on the stiffness and mass suspended by the 

magnetic levitation. Since the stiffness changes with the 

mutual position of each pair of facing rings, the stiffness 

and the natural frequency of the system vary versus  

the applied load. Thus, in general, with regard to each 

stationary working condition of the magnetic bearings, a 

natural frequency of the system is fixed. In this respect, 

we have developed a model based on magnetic charges 

to evaluate stiffnesses and natural frequencies of a 

magnetic levitation system with a passive axial magnetic 

bearing. We note that the same procedure can be easily 

extended to calculate the above mentioned stiffness and 

frequencies also for passive radial magnetic bearing. 

 

II. CONFIGURATION OF THE SYSTEM  

Figure 1 shows the case study. The polarized ring A 

is fixed. The moving ring of the bearing is denoted by  

B. The two rings have the facing surfaces polarized with 

the same pole. The polarized ring B can rotate around  

its own axis with a certain angular velocity   and is 

positioned at a distance t from ring A. Therefore t is the 

air gap of the bearing. This air gap can also be considered 

as a translation degree of freedom of the system. The axes 

of the two rings are parallel but, in general not coaxial. 

An eccentricity e is defined: e represents a coaxiality 

error. The ring B supports a mass m whose value is equal 

to the sum of all the masses rigidly integral with the same 

ring B. The vertical force F is the axial force applied to 

the bearing. The dashed segments a and b represent the 

two circumferences that pass through the section centers 

of gravity of the polarized rings. The sections of these 

rings have been considered to be identical for both rings 

A and B. The shape of the sections is rectangular. Figure 

2 illustrates the magnetization vector M of A and B. The 

M direction is defined by different values of the angle  
 . Three cases have been considered:  = 90, 60, 30 

degrees. The discrete variability of the angle   has only 

been considered for illustrating a general procedure to 

obtain the equations of the field and the forces when the 

magnetization M depends on the same   and possibly 

on the radius. For simplicity, such procedure is illustrated 

by fixing the module of M to a constant value. Moreover, 

its direction does not change when the planes 1 and 2, 
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to which M belongs, radially move towards or away 

from the respective axes of the magnets A and B (see 

Fig. 2). If M depends on   and the radius r (the distance 

from the axes of the magnets), in all the integrals indicated 

in the following Section III, M and the other quantities 

versus   and r must remain under the integral sign (in 

this case the magnetization model is not linear). Moreover, 

also the volume charge density )(
M

Pρ  defined in the 

generic point P (end of the vector P) of the permanent 

magnets has to be considered. In the case study (M  

and   are constants), since the magnetization model is 

linear, the inclined magnetization can be decomposed  

in an axial and a circular component independent of   

and r. The circular component defines a flux inside the 

magnet and does not generate any external magnetic 

field outside the same magnet. Therefore, the circular 

components of M of the two polarized rings cannot 

interact since they produce no field and force outside the 

magnets. This consideration will be also illustrated by 

the numerical examples.  
 

 
 

Fig. 1. Axially polarized rings with eccentricity e.  

 

 
 

Fig. 2. Direction of the magnetization vectors M in the 

two polarized rings. 

 

III. EVALUATION OF THE MAGNETIC 

FIELD  
The calculation of the levitation forces has been 

performed by using the magnetostatic model and the 

magnetic charge method [7-9]. The surface charge density 

)(M P  and the volume charge density )(
M

Pρ : 

 n̂)()(M  PMP , (1) 

 )()(
M

PMP ρ , (2) 

were considered. This method can be considered a  

valid alternative to the finite element method that is  

often utilized [10], [11]. As a matter of fact, the time 

computation and the accuracy of the results can improve, 

even though an analytical formulation is necessary. 
 

A. Surface charge density )(M P  for the polarized 

rings A and B 

In Fig. 3 an infinitesimal element of the magnet  

A is illustrated. The point P represents the center of  

the element. The element shows six infinitesimal faces 

denoted by dS1, dS2,…, and dS6. The correspondent 

normal versors are 1
n̂ , 2

n̂ , …, and 6
n̂ . The expressions 

of the versors can be suitably expressed versus the angle 

.θ  The magnetization vector M(Mx, My, Mz) is applied 

to the point P of the infinitesimal magnet illustrated in 

Fig. 3. The moduli with the signs Mx, My, and Mz of  

the components of M can be expressed versus the angles 

θ and   (see Fig. 4). By using Eq. (11), we obtain the 

six surface charge densities 
iMA  relative to the surfaces 

dSi (i=1, 2, …, 6) of the infinitesimal magnet A: 

  sin1MA M , (3) 

  sin2MA M , (4) 

  cos3MA M , (5) 

  cos4MA M . (6) 

For the surfaces dS5 and dS6, 5MA  and 6MA  are equal 

to zero (M is always perpendicular to the normal straight 

line of the surfaces dS5 and dS6). The surface charge 

densities 
iMB  of the polarized ring B are obtained by 

changing the sign of the 
iMA . 

 

B. Volume charge density )(
M

Pρ  for the polarized 

rings A and B 

By observing Figs. 3 and 4 we obtain: 

 
22

cos

yx

y

pp

p
MM x



  , (7) 

and 

 
22

cos

yx

x

pp

p
MM y



  , (8) 

where px, py, and pz are the components of the vector P 

that identifies the point P. By using Eq. (2) and by deriving 
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Eqs. (7) and (8) with respect to px, and py, respectively, 

we obtain: 

 
2/3)(

cos
22

yx

yx

pp

pp
M

p

M

x

x







 , (9) 

and 

 
2/3)(

cos
22

yx

yx

y

y

pp

pp
M

p

M







 . (10) 

The partial derivative zz pM  /  is equal to zero. By 

substituting Eqs. (9), (10), and zz pM  / = 0 in Eq. (2), 

we note that volume charge density )(MA P  is always 

equal to zero. For the magnet B we obtain the same result, 

i.e., 0)(MB P , whatever the value of   is. 

 

 
 

Fig. 3. Infinitesimal element of the polarized ring A with 

versors outgoing from the surfaces. 

 

 
 

Fig. 4. Magnetization vectors components Mx, My, and 

Mz, in the generic point P of the magnet A (see Fig. 3). 

t-t is the tangent to the circumference of radius r in P (P 

is always perpendicular to t-t). 

C. Surfaces dS1, dS2,…, and dS4 

In order to evaluate the magnetic induction 

generated by the magnet A and the forces/moments 

applied to the magnet B, since 
5MA , 

5MB , 
6MA , 

and 6MB  are equal to zero, we evaluate the only 

expressions of the surfaces dS1, dS2,…, and dS4. By 

observing Fig. 5, we can define the expressions of the 

infinitesimal surfaces dSi with i=1,2, …, 4 versus dθ , dr 

and h. Denoting by Pi (pxi, pyi, pzi) the vectors that 

identify the centers Pi of the above-mentioned surfaces 

dSi, we obtain the expression of the components pxi, pyi, 

and pzi in function of θ , r and h. 
 

D. Evaluation of the magnetic induction )(P'B  

In order to evaluate forces and moments applied to 

the magnet B, four contributions )(P'B
1

, )(P'B
2

, …, 

)(P'B
4

 of the magnetic induction have to be considered. 

P’ is the vector that identifies the point where the magnetic 

induction will be computed is given by [4]: 

 i
i

i
i dS

S
3

)((

4
)(

MA0

P'-P

P'-P)P
P'B






, (11) 

with i=1, 2, …, 4.
0

  is the free space permeability. The 

volume contribution to )(P'B
i  is always equal to zero 

because 0)(
AM

P . By substituting Eqs. (3)-(6) and 

the expressions of pxi, pyi, and pzi versus θ , r and h in Eq. 

(11), we achieve the components )(P'
xi

B , ( )P'yiB , and 

)(P'
zi

B of )(P'B
i . For example, the components 

1( )P'xB

is the following: 
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2
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( ' sin )
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e
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μ M p r θ r
B d dr

p r θ
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p h
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  

 

 (12) 

The other components have a similar formulation. The 

components )(P'
x

B , ( )P'yB  and ( )P'zB  of the resultant 

magnetic induction )(P'B  in the generic point P’ of  

the B magnet surfaces are obtained by adding the 

correspondent components )(P'
xi

B , ( )P'yiB , and )(P'
zi

B  

with i=1, 2, ..., 4. Since the sign of )(P'
xi

B , ( )P'yiB , and 

)(P'
zi

B  is opposite to the sign of )(1 P'xiB , )(1 P'yiB , 

and )(1 P'ziB , respectively, when i is equal to 3 and 4 

and the corresponding moduli are equal to each other, we 

have: 
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 )()()( 21 P'P'P' xxx BBB  , (13) and analogous expressions of ( )P'yB  and ( )P'zB . 
 

 
 

Fig. 5. Evaluation of: (a) dS1, (b) dS2, (c) dS3, and (d) dS4 with the relative P1, P2, P3, and P4 centres (see also Fig. 3) 

in the magnet A. 
 

IV. EVALUATION OF FORCES AND 

MOMENTS APPLIED TO THE POLARIZED 

RING B 

With reference to Fig. 6, the infinitesimal resultant 

force dF applied from the magnet A to a generic 

infinitesimal element of the magnet B is obtained by 

adding four force dFi (i=1, 2, …, 4): 

 4321
dFdFdFdFdF  . (14) 

Each of them is applied to the correspondent surfaces dSi 

that define the infinitesimal element of the polarized ring 

B (see Fig. 6). We observe that these surfaces have the 

same expressions of the correspondent surfaces defined 

for the magnet A. Since the surfaces charges densities 

5MB  and 6MB  are equal to zero, the surfaces dS5 and 

dS6 relative to the ring B do not give any contribution  

to dF. By denoting P’i(p’xi, p’yi, p’zi) the vectors that 

identify the centers P’i of the above-mentioned surfaces 

dSi (i=1, 2, …, 4), we can define the expressions of p’xi, 

p’yi, and p’zi versus pxi, pyi, pzi, e, and t (see Fig. 6). The 

forces dFi are applied to the points P’i. The evaluation of 

dFi is performed by the following relation: 

 iiiii dS'' )()(B PBPdF  , (15) 

where i=1, 2, …, 4. By using Eq. (13) and the analogous 

expressions of ( )P'yB  and ( )P'zB , integrating Eq. (15), 

we compute the moduli with the signs Fxi, Fyi, and Fzi of 

the Fi components. For example, the components Fx1 and 

Fx3 are the following: 

 
drdr'BMF

e

i

xx

r

r

 



2

0

11 )(sin P
, (16) 

 hdr

r

r

'BMF
e

i

x
x  )(sin

3
3 P . (17) 

The other components have an analogous formulation. 

Therefore, by adding the four forces Fi (Fxi, Fyi, Fzi) we 

obtain the resultant force applied to the ring B. 
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Fig. 6. Infinitesimal forces: (a) dF1, (b) dF2, (c) dF3, and (d) dF4 applied to the corresponding centres P1, P2, P3, and 

P4 of the surfaces dS1, dS2, dS3, and dS4 of the infinitesimal element of the magnet B. 
 

V. EVALUATION OF THE TORQUE 

APPLIED TO THE POLARIZED RING B 
In order to check the correctness of the physical 

mathematical model, it is suitable to verify the law of 

energy conservation. This check can be performed by 

computing the moment component 
z

  along the axis Z 

applied from the ring A to the ring B. 
z


 
must always be 

equal to zero, whatever the values of   and e are. If this 

condition is not met, the law of energy conservation is not 

verified and the model is wrong (the ring B spontaneously  

rotates). The computation of 
z

  is performed by integrating 

the following relation: 

 
4321 zzzzz

 ddddd   , (18) 

where 

 '
iizi

PdFd  , (19) 

and i=1, 2, …, 4. 
zi

d  represents the moment around the 

axis Z generated from the force dFi applied to the 

corresponding surface dSi of the infinitesimal element  

of the ring B. Therefore, by Eqs. (18) and (19) we obtain 

the following modulus with sign of 
z

 : 

2

0

sin [ (  cos ,  sin , )( )sin -
2

(  cos ,  sin , ) cos ]
2
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2
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y

h
M r B r θ r θ e h t r e θ

x

h
B r θ r θ e h t r θ

h
r B r θ r θ e t r e θ

h
B r θ r θ e t r θ dθdr.



      

   

   

 

  (20) 

In relation to the law of energy conservation the 

value of 
z

  computed by Eq. (20) must be equal to zero, 

whatever the angle   of the magnetization M is (see 

Fig. 2). Eq. (20) has been numerically evaluated and in 

Part II we briefly discuss this aspect. The values of 
z



versus   and e obtained are very small and confirm the 
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previous statement.  
 

VI. AXIAL/RADIAL STIFFNESSES AND 

NATURAL FREQUENCIES 

A. Stiffnesses 

In general, the computation of the stiffness K is 

based on the following relation: 

 
p

pF
 K






)(
, (21) 

where F(p) is the force versus the parameter p that 

defines the degree of freedom (DOF) along which the 

stiffness is computed. In the present study we evaluate 

the axial stiffness Kt along the axis Z versus the air gap 

t: 

 
t

tF
 K z

t 




)(
, (22) 

and the radial stiffness Ke along the axis Y where the 

eccentricity e is defined: 

 
e

eF
 K

y

e 




)(
. (23) 

The evaluation of Ke can be interesting also when we 

study an axial magnetic bearing. As a matter of fact, Ke 

has to be considered together with the other radial 

stiffnesses of the two radial bearings keyed on the shaft. 

The dynamic behaviour of the system also depends on 

Ke. 
 

B. Natural frequencies 

The natural frequencies of a system depend on its 

mass and stiffness. From the modelization point of view, 

the number of these frequencies is equal to the number 

of degrees of freedom of the model. In relation to the 

device schematized in Fig. 1, we can consider various 

models. The choice of the model is strictly connected to 

the dynamic behaviour of the real system that we want 

study. If a rigid body schematization of the real system 

is acceptable and the radial bearings of the vertical shaft 

have a very high radial stiffness, we can modelize the 

structure by one degree of freedom (DOF) model (the 

DOF along the axis Z). If the flexural stiffness of the 

shaft is not high and there are radial excitation forces, it 

is necessary to introduce new DOFs. Moreover, also if 

the radial stiffness of the radial bearing is not high, other 

radial DOFs associated with these bearing have to be 

considered. We observe that the system can become  

very complex. The vibrational behavior will depend on 

nonlinear magnetic stiffnesses and also small chaotic 

precessional motions can rise. In a demanding practical 

application, this kind of motions can be due to the 

alignment errors of the shaft (concentricity, circularity, 

perpendicularity, plumb, straightness, see Fig. 7 [12]). In 

the present study we can limit ourselves to two simple 

cases. The first one considers a model with a DOF only 

along the axis Z. In the second case the model has a DOF 

only along the axis Y. The two models are illustrated  

in Figs. 8 (a) and 8 (b), respectively. The model of Fig. 

8 (a) can be used to study the dynamical behaviour of  

a device where all the stiffnesses are much higher than 

the stiffness Kt defined by Eq. (22). In Fig. 8 (a) mtot, 

represents the total suspended mass. Conversely, Fig.  

8 (b) shows a model to study a system with a shaft that 

can only horizontally translate. By this schematization 

we again assume that the stiffness of all parts of the 

device are very high with respect to the radial stiffness 

Ke furnished by Eq. 23). In this case the translation DOF 

could be due to the radial clearances of the radial 

bearings. These clearances would allow a small 

horizontal translation of the rigid shaft. Therefore, the 

shaft horizontally translates during its rotation. Small 

rotations around the centres of the bearing could also 

occur. Nevertheless, if the flexural stiffness of the shaft 

is high, in general the influence of the corresponding 

rotational DOFs on the vibration behavior is negligible. 

With reference to this hypothesis and overall for 

simplicity, we can consider the simplified model 

illustrated in Fig. 8 (b). The system would normally be 

studied by using complex modelizations based on rotor 

dynamics (see, for example, [13]). The four masses 

indicated in Fig. 8 (b) represent the point masses to 

modelize, for example, the rotating mass of a hydrounit 

for electric generation (see Fig. 9 [12]). If we assume to 

substitute the oleodynamic thrust bearing (see particular 

C in Fig. 9) with a passive magnetic axial bearing (see 

Fig. 1), we can suitably fix the values of m1, m2, …, and 

m4 versus the masses of the various rotating parts of the 

hydrounit [mass of the thrust bearing, shafts, rotor, 

turbine (not illustrated), etc.]. Therefore, the mass of  

the polarized ring B indicated in Fig. 1 contributes to 

defining the mass m2 shown in Fig. 8 (b). With reference 

to the two models illustrated in Fig. 8 we evaluate the 

corresponding natural angular frequencies 
h

em , 
tot

emω , 

h
tm , and 

tot
tmω  of the system by the following relations: 

 

4321
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mmmm
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em
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t
tm m

tK

 
tot

)(

 . (27) 

As soon as mtot, m1, m2, …, and m4 have been fixed and 

the stiffnesses Kt and Ke are known [see Eqs. (22) and 

(23)], we can compute the natural angular frequencies 
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versus the air gap t and the eccentricity e [when we 

evaluate )(tK
t

 we fix a certain value of e and vice versa]. 

 

 
 

Fig. 7. Alignment errors of a turbine and generator shafts 

of a hydrounit [12]. 
 

 
 

Fig. 8. Simplified physical model of the system with one 

(a) vertical and (b) horizontal DOF. 

 

 
 

Fig. 9. A typical vertical disposition rotor/stator with 

thrust bearing C of a hydrounit for electric generation [12]. 

VII. CONCLUSION 
A detailed formulation for evaluating forces, 

moments, stiffnesses and natural frequencies of a thrust 

magnetic bearing has been presented. Equations for 

checking the correctness of the analysis based on the 

magnetic charges method was considered. A mechanical 

model referred to a vertical disposition of a hydrounit  

for electric generation for performing the numerical 

calculations illustrated in Part II has been developed. 

 

REFERENCES 
[1] H. Li, S. Wang, H. He, Y. Huangfu, and J. Zhu, 

“Electromagnetic – thermal – deformed – fluid –

coupled simulation for levitation melting of titan-

ium,” IEEE Transactions on Magnetics, vol. 52, 

no. 3, 7402104, 2016. 

[2] Z. J. Sun, B. Ye, Y. Qiu, X. G. Cheng, H. H. Zhang, 

and S. Liu, “Preliminary study of a legged capsule 

robot actuated wirelessly by magnetic torque,” 

IEEE Transactions on Magnetics, vol. 50, no. 8, 

5100706, 2014. 

[3] J. P. Yonnet, “Passive magnetic bearings and 

couplings”, IEEE Transactions on Magnetics, vol. 

17, pp. 1169-1173, 1981. 

[4] E. P. Furlani, “A formula for the levitation force 

between magnetic disks,” IEEE Transactions on 

Magnetics, vol. 29, pp. 4165-4169, 1993. 

[5] E. Tripodi, A. Musolino, A. R. Rizzo, and D. 

Casini, “Stability analysis of a new passive PMs 

bearing,” Proceedings of ISMB14, Linz, Austria, 

August 11-14, 2014. 

[6] E. Rodriguez, J. Santiago, J. Pérez-Loya, F. S. 

Costa, G. Guilherme, J. G. Oliveira, and R. M. 

Stephan, “Analysis of passive magnetic bearings 

for kinetic energy storage systems,” Proceedings of 

ISMB14, Linz, Austria, August 11-14, 2014. 

[7] W. F. Brown, Jr., “Electric and magnetic forces: A 

direct calculation I,” Am. J. Phys., vol. 19, pp. 290-

304, 1951. 

[8] W. F. Brown, Jr., “Electric and magnetic forces: A 

direct calculation II,” Am. J. Phys., 19, pp. 333-

350, 1951. 

[9] E. Furlani, Permanent Magnets and Electromech-

anical Devices. Academic Press, New York, 2001. 

[10] S. Wu, S. Zuo, X. Wu, F. Lin, and J. Shen, “Magnet 

modification to reduce pulsating torque for axial 

flux permanent magnet synchronous machines,” 

ACES Journal, vol. 31, no. 3, pp. 294-303, March 

2016. 

[11] Y. Chen and K. Zhang, “Electromagnetic force 

calculation of conductor plate double Halbach 

permanent magnet electrodynamic suspension,” 

ACES Journal, vol. 29, no. 11, pp. 916-922, 

November 2014. 

[12] D. Temple, W. Duncan, and R. Cline, “Alignment 

of vertical shaft hydrounits,” Hydroelectric Re-

676MUSCIA: MAGNETO-MECHANICAL MODEL OF PASSIVE MAGNETIC AXIAL BEARINGS VS. ECCENTRICITY ERROR, PART I



search and Technical Service Group, Facilities 

Instructions, Standards and Technique, vol. 2-1, 

United States Department of the Interior Bureau of 

Reclamation, Denver, Colorado, 2000. 

[13] S. Y. Yoon, Z. Lin, and P. E. Allaire, Chapter 2 – 

Introduction to Rotor Dynamics, in Control of Surge 

in Centrifugal Compressors by Active Magnetic 

Bearings. Springer, London, pp. 17-55, 2013. 

 

 

 

 

Supplementary materials 

All the details of the analytical formulations can be 

requested to the author at muscia@units.it. 

 

Roberto Muscia Professor at the 

University of Trieste, Trieste, Italy. 

He received his Master’s degree in 

Mechanical Engineering from the 

University of Trieste in 1981. From 

1983 to 1998 he was Researcher 

with the same university. From 1998 

he is Associate Professor. At the 

present time his research interests focus on the study of 

mechanical problems in magnetic devices to improve 

their design.  

ACES JOURNAL, Vol. 32, No. 8, August 2017677



Magneto-Mechanical Model of Passive Magnetic Axial Bearings versus the 

Eccentricity Error, Part II: Application and Results 
 

 

Roberto Muscia 
 

Department of Engineering and Architecture 

University of Trieste, Trieste, Italy 

muscia@units.it  

 

 

Abstract ─ In this paper we apply the physical 

mathematical model described in Part I [1]. The study 

shows: i) the influence of the eccentricity of two polarized 

rings of the bearing on the stiffness; ii) the numerical 

efficiency of the response surfaces for evaluating the 

magnetic field in any point of the domain fixed; iii), in 

relation to a demanding application example (possible 

replacement of a big axial oleodynamic bearing with a 

thrust magnetic passive bearing), the danger arising from 

possible resonances (the natural frequencies of the device 

are near to the excitation frequencies). 

 

Index Terms ─ Levitation, magnetic bearings, 

magnetostatic field, natural frequencies, stiffnesses. 

 

I. INTRODUCTION 
With reference to the formulations illustrated in Part 

I, some numerical computations to evaluate forces/ 

moments, stiffnesses, and natural frequencies relative  

to an application example have been performed. The 

calculation of the magnetic induction was executed first 

thing. This computation is based on the response surfaces 

[2]. The components ( ),P'xB  ( ),P'yB  and ( )P'zB  have 

been evaluated in a certain number of points suitably 

arranged on the surface where we compute ( ).B P'  

Subsequently, a surface that interpolates the values  

of ( ),P'xB  ( ),P'yB  and ( )P'zB  is defined. The two 

dimensional domain of the surface is represented by the 

integration parameters that define the polar coordinates 

of the generic point P'  (in general these coordinates  

are r and θ). In Fig. 1, an example of response surface  

is illustrated. For example, the points P'  where )(P'
x

B  

is computed are indicated by a small circle. In this way 

we can virtually have infinite points P'  where the 

magnetic induction is known without performing other 

integrations: as soon as we fix r and θ we can 

immediately interpolate the corresponding value of 

( ).B P'  The interpolation is so fast that it is possible to 

perform the integration to compute forces and moments  

in a few seconds. Moreover, as illustrated in Fig. 1, by 

plotting ( ),xB r,θ ( ),yB r,θ  and ( )yB r,θ  a check of the 

interpolation fitness can be easily performed: the response 

surface must not show anomalous peaks, it has to be a 

continuous function of r and θ. All these computations 

have been performed by using Mathematica [3]. These 

computations can surely be performed by using the finite 

elements methods [4], [5] but, the computing time can  

be much longer. In relation to the influence of the 

inclination angle   of the magnetization M (see Fig. 2 

in Part I [1]), we observe that it has always a constant 

value. Consequently, the quantity  sin  has always been 

put out from all the integral signs defined in Part I [1] for 

computing the magnetic inductions, forces and moments. 

This fact enables us to compute at once the previous 

quantities relative to each angle   lower than 90 degrees 

as soon as the same quantities have been computed  

with 90  degrees. As a matter of fact, to perform  

the magnetic inductions computation, we have only to 

multiply each value obtained with 90  degrees by  

the sine of the new angle 90  degrees. In the case of 

forces, moments, and stiffnesses, the values evaluated 

with 90  degrees have to be multiplied for the square 

of the sine of the new angle 90  degrees.  
 

 
 

Fig. 1. Response surface for magnetic induction 

computation relative to 441 points (r,θ). 
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Fig. 2. Some real dimensions of a hydrounit thrust 

bearing with Kaplan turbine [8]. 

 

II. A DEMANDING APPLICATION 

EXAMPLE 
The physical mathematical model previously 

described in Part I [1] has been applied to define a 

possible initial step in dimensioning of a thrust magnetic 

passive bearing. This bearing should be able to generate 

the same thrust of a big axial oleodynamic bearing 

assembled in a hydrounit for electrical generation. With 

reference to an axial passive magnetic bearing that can 

generate a thrust equal about to 30 KN, some researchers 

[6], [7] are experimentally testing such kind of solution. 

In relation to a real hydrounit for electrical generation, in 

Fig. 2 [8] the inner and outer diameters of the relative 

oleodynamic bearing are reported in mm. Figure 3 [8] 

shows the thrust bearing pads of the bearing. The 

positioning of the bearing is indicated in Fig. 9 in Part  

I [1] (see the particular C) and the axial dimension of  

the bearing pads is equal to 100 mm (see Fig. 2). Over 

the bearing pads, the upper ring integral to the vertical 

shaft has a thickness also equal about to 100 mm. Unlike 

the bearing pads, the upper ring rotates together with the 

shaft. Therefore, in relation to our application example, 

for the polarized rings illustrated in Fig. 1 in Part I  

[1] we can fix the following dimensions: h=100 mm, 

ri=400 mm, and re=900 mm. The bearing pads and the 

upper ring would be substituted by the polarized rings  

A and B, respectively. Polarized rings of the previous 

size could be practically manufactured by superimposing 

many smaller polarized angular sectors. The thrust that 

the hydrodynamic bearing generates during a stationary 

working is very high and is equal to 5.5×106 N (with a 

rotational speed equal to 187.5 rpm). In order to obtain 

magnetic levitation forces so high, it is necessary to  

fix a very high value of the magnetization vector M. 

Nowadays, with reference to available neodymium 

magnets, the maximum value of the corresponding 

module M  is equal to 11.38×105 A/m [9]. However, as 

we will discuss in the following Section III, also if we use 

this high value of M , by considering an air gap ranging 

from 20 to 30 mm, we obtain about one-fifteenth of the 

thrust generated by the hydrodynamic bearing illustrated 

in Figs. 2 and 3. Therefore, in order to achieve the above-

mentioned thrust by passive magnetic levitation, it would 

be necessary to utilize at least sixteen polarized rings B 

(see Fig. 2 in Part I [1]) integral to the shaft and sixteen 

rings A integral to the base. From an engineering point 

of view, this number of rings is certainly too high. 

However, if we consider a Halbach configuration [10] of 

each polarized ring as illustrated in Fig. 4 [11], we could 

reduce the number of the rings magnets in such a way 

that a feasibility study could be considered. With 

reference to our demanding application example, since  

a Halbach magnets configuration could increase the 

attractive force of about fifty percent, assuming that  

the increase is true also when the facing magnets that 

generate repulsive forces, we could utilize only eight 

pairs of polarized rings. With reference to this 

configuration we observe that eight rings A (see Fig. 1 in 

Part I [1]) have to be fixed to the non-rotating frame. The 

other eight rings B will be fixed to the shaft of the rotor-

generator system. For example, four pairs A, B of rings 

could be arranged to define the upper axial bearing (see 

the area C in Fig. 9 in Part I [1]). The other four pairs of 

polarized rings A, B could be put under the rotor. 

Consequently, the axial height of each upper and lower 

magnetic passive bearing would be a bit greater than 

(100+100+20)x4=880 mm [20 mm represents a mean air 

gap t between each pair of rings and 100 mm is h (see 

Fig. 1 in Part I [1])]. The values of the air gap have been 

fixed from a possible engineering point of view in 

relation to a hypothetic stationary working condition of 

the device. The natural angular frequencies 
totem  and 

tottm  were evaluated with reference to Eqs. (25) and 

(26) in Part I [1], respectively, by considering the total 

mass mtot equal to 5.775×105 Kg plus 31200 Kg of 16 

polarized rings: mtot = 6.087×105 Kg. The value of 

5.775×105 Kg is greater than 5% with respect to the 

value of 5.5×105 Kg. The 5.5×105 Kg has been simply 

obtained by computing the mass that corresponds to the 

load of 5.5×106 N due to the gravity acceleration. This 

load is applied to the oleodynamic bearing. Moreover,  

in order to compute the frequencies 
i

em  and 
totem  by 

Eqs. (24) and (25) in Part I [1], respectively, in relation 

to all the simplifications considered, we can also assume, 

 
tot

mmmmm 
4321

. (1) 

Consequently, we obtain: 

 ,
h tot

e em emω ω ω   (2) 

 .
h tot

t tm tmω ω ω   (3) 

Moreover, if we consider eight pairs of polarized 

rings with eight Halbach rings B keyed on the shaft and 
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eight Halbach rings A fixed to the base of the structure, 

the stiffnesses Kt  and Ke relative to each pair of rings A, 

B non Halbach must be multiplied by 16 (the magnetic 

“springs” work in a parallel way). Consequently, the new 

equations for computing eω  and tω  relative to the two 

uncoupled vertical and horizontal DOFs (Degrees of 

Freedom) are the following [see Eqs. (22), (23), (25), and 

(27) in Part I]: 
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The maximum value of the eccentricity e considered 

in the numerical simulations was put equal to 0.01 m. 

However, in relation to a correct working of the 

hydrounit, e=0.01 m certainly is not an acceptable value 

(it is too high). Maximum values of e about equal or 

lower than 0.0001 m should be considered. Nevertheless, 

from the simulation point of view, the previous maximum 

value e=0.01 m has been fixed to test the fitness of the 

modelization. In this respect, we observe that the forces, 

stiffnesses, and natural angular frequencies must be 

always continuous functions of e. Always in order to 

check the correctness of the model, the air gap t range 

has been fixed from 0.003 m to 0.5000 m. From a 

possible practical point of view, when the device works 

under a stationary condition, the real value of t could 

reasonably change from 0.01 to 0.05 m. 
 

 
 

Fig. 3. Tilting-pads thrust bearing [8]. 

 
 

Fig. 4. A Halbach configuration [10] of a polarized ring 

[11]. 

 

III. RESULTS  
The results that have been obtained versus the air 

gap t and the eccentricity e are: i) the magnetic induction 

B on the ring horizontal surfaces of the upper magnet; ii) 

the levitation force; iii) the axial and radial stiffnesses of 

the bearing; iv) the natural frequencies in correspondence 

with certain values of the mass mtot. Table 1 summarizes 

the main data utilized to perform some simulations. The 

computation of the magnetic induction was executed in 

the points '
1

P  and '
2

P  of the upper and lower surfaces, 

respectively, of the polarized ring B. 441 points on each 

surfaces have been fixed. The polar coordinates of these 

points are defined by a radius r and an angle θ (see Fig. 

6 in Part I [1]). The values of r and the correspondent 

angle θ have been fixed by the following relations: 

 i
k

rr
rr

r

ie
i

)( 
 , (10) 

 j
k

θ

θ




2
, (11) 

where i=0, 1, …, 
r

k  and j=0, 1, …, 
θ

k . This kind of 

discretization of the surfaces allows us to obtain good 

response surfaces and limit the computation time to few 

tens of seconds (by using a computer with an Intel I5 and 

4 GB of RAM). An example of these results is illustrated 

in the previously cited Fig. 1. Another example 

concerning the magnetization induction vectors relative 

to the upper surface of the ring B with t=0.050 m, 

e=0.000 m, and =90 degrees is illustrated in Fig. 5.  

We observe the complete axial symmetry of the field. 

The same symmetry characterizes all the magnetic field 

configurations computed by using any value of the 

eccentricity e and see Table 1 This fact confirms that 

the law of energy conservation is respected because such 

a symmetry implies that the moment 
z

  around the axis 

Z [see Eq. (20) in Part I [1]] is always equal to zero. As 

a matter of fact, the numerical evaluations performed 

have always given values of 
z

  almost equal to zero or 

relatively small. In this regard, we observe that the 

component Fx of the resultant force F applied to the 

polarized ring B should be equal to zero. Therefore, it  
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is sufficient that the difference between Fx1 and Fx2 

(components of the forces applied to the lower and upper 

surfaces of the ring B, Fx = Fx1+Fx2) is equal to a few 

newtons and 
z

  at once reaches a value higher than  

zero, for example 3 Nm. Nevertheless, in relation to the 

precision of the numerical simulations, it is necessary  

to consider the orders of magnitude of the quantities 

evaluated. In the case study we observe that Fz and also 

Fy (when e is greater than zero) are equal to hundred 

thousands of newtons. Moreover, overall they were 

computed by a kind of formulation similar to that  

used to evaluate Fx. Therefore, with reference to the 

approximations that affect the numerical integration  

in the study context, we can consider the numerical 

results obtained for Fx and 
z

  very good, i.e., a good 

approximation of zero. In this respect, a typical trend of 

Fx versus 0.003≤t≤0.015 m (with e=0 and =90 degrees) 

is illustrated in Fig. 6. When different values of the 

parameter e is fixed, similar trends have been obtained. 

In relation to the values obtained for Fz versus the air  

gap t, Fig. 7 shows some curves examples. The curves 

have been achieved by fixing =90, 70, and 30 degrees, 

eccentricity e=0.000 m and the values of t reported in 

Table 1. With reference to a non-operative working 

condition of the magnetic bearing for the hydrounit 

application example, we also have performed some 

calculations with an air gap t=0.003 m. In order to assure 

a non-dangerous working condition of the system, this 

value is certainly too small. This air gap could be easily 

set to zero as a consequence of a small axial overload 

together with planarity, perpendicularity, etc. errors.  

In this case, to avoid the destruction of the device, 

mechanical “catcher” bearings could be suitably 

integrated around and outside the rings of the magnetic 

bearings. In Fig. 8 the axial stiffnesses Ktze(t) 

corresponding to the previous Fz (see Fig. 7) are reported. 

These stiffnesses have been evaluated by Eq. (4). Figure 

9 shows the relative angular natural frequencies )(tωtze  

computed by Eq. (5). In Fig. 10 a comparison among 

three functions Fz(e) is presented. Three values of the  

air gap t have been considered: t= 0.003, 0.010, 0.020 m. 

We note that the vertical levitation force changes enough 

versus the value of t. In relation to the scale of the 

representation of the graphs, as soon as t is fixed, it could 

seem that Fz(e) is almost independent of e. Nevertheless, 

by using Eq. (6) we note that the axial stiffness Kezt(e) 

shows significantly different trends versus the three 

values of t (see Fig. 11). If, by Eq. (7) we compute the 

correspondent axial natural angular frequency )(eωezt , 

we obtain the various resonance conditions of the system 

along the vertical DOF versus the correspondent values 

of the eccentricity e. Figure 12 shows )(eωezt : it can  

change from about 2 to 24 rpm. With reference to the 

component Fy applied to the polarized ring B, in Fig. 13 

the corresponding trend versus e is reported. The curves 

are relative to the three values of air gap t previously 

considered. We note that the radial force Fy is sufficiently 

independent of t and increases almost linearly versus e. 

By deriving Fy (e) with respect to e, we obtain the radial 

stiffness Keyt of the levitation system [see Eq. (8)]. Figure 

14 shows the functions Keyt(e) versus t. By observing 

these curves, the nonlinearity of Fy (e) is pointed out. By 

using Eq. (9) we obtain the corresponding radial natural 

angular frequencies )(eωeyt . These frequencies vary from 

about 64.5 to 68.7 rpm (see Fig. 15). As noted in Section 

I, the values of forces and stiffnesses relative to an angle 

α of inclination of the magnetization M lower than 90 

degrees, can be simply obtained by multiplying the 

corresponding values computed with α=90 degrees by 

2sin . For the corresponding natural angular frequency 

the multiplicative factor is equal to sin . Consequently, 

when α decreases, also the stiffnesses and natural 

frequencies become lower. 

 

 
 

Fig. 5. Magnetization induction vectors in 441 points of 

the upper surface of the upper polarized ring B (see Fig. 

1 in Part I). 

 

 
 

Fig. 6. A typical trend of the radial force Fx when e=0 

and =90 degrees versus the air gap t. 
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Table 1: Parameters used for the numerical simulations 

Module of the Uniform 

Magnetization M  
11.38A/m 

Inner radius of the magnets ri 0.4 m 

Outer radius of the magnets re 0.9 m 

Free space permeability 
0

μ  4 Wb/Am 

 90, 70, 30 degrees 

e 
0.000, 0.001, 0.002, 

…, 0.010 m 

t 

0.003, 0.004, …, 0.012, 

0.015, 0.017, 0.020, 

0.025, 0.030, 0.035, 

0.040, 0.050, 0.075, 

0.100, 0.150, 0.200, 

0.300, 0.400, 0.500 m 

h 0.1 m 

mtot 6.087×105 Kg 

Number kr of subdivision 

intervals of re-ri 
20 

Number kθ of subdivision 

intervals of 2π 
20 

Number (kr+1)×(kθ+1) of 

points where the magnetic 

induction has been computed 

441 

 

 
 
Fig. 7. Vertical levitation force Fz when e=0 versus the 

air gap t and the angle . 

 

 
 

Fig. 8. Stiffnesses Ktze versus the air gap t when e=0 

versus the air gap t and the angle . 

 
 

Fig. 9. Axial angular natural frequency tzeω  versus the 

air gap t and the angle  when the eccentricity e=0. 

 

 
 

Fig. 10. Interpolation of the force Fz relative to three air 

gap values t versus the eccentricity e, with =90 degrees. 
 

 
 

Fig. 11. Axial stiffness Kezt relative to three air gap t 

values versus the eccentricity e, with =90 degrees. 
 

 
 

Fig. 12. Axial angular natural frequency eztω  relative to 

three air gap t values versus the eccentricity e, with =90 

degrees. 
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Fig. 13. Force Fy relative to three air gap values t versus 

the eccentricity e, with =90 degrees. 

 

 
 

Fig. 14. Radial stiffness Keyt relative to three air gap t 

values versus the eccentricity e, with =90 degrees. 

 

 
 

Fig. 15. Radial angular natural frequency eytω  relative 

to three air gap t values versus the eccentricity e, with 

=90 degrees. 

 

IV. SOME CONSIDERATIONS ON THE 

RESULTS OBTAINED  
With reference to the vertical levitation force we 

note that in the domain 0.000≤ e ≤0.010 m Fz varies very 

little (see Fig. 10). Conversely, the corresponding curve 

of Fy(e) shows an almost linear variation, from 0 to about 

20000 N (see Fig. 13). The component Fx (e), in general 

is several orders of magnitude lower than Fy(e) and, 

overall, Fz(e). As previously mentioned, Fx (e) should be 

equal to zero, whatever the value of e is. The irregular 

trend of Fx(e) depends on the number of effective digits 

fixed to perform the integrations. In this respect, we note 

that all the integrations have been performed by setting a 

precision for the computation with five effective digits 

of accuracy [3]. If a greater number of effective digits is 

fixed (for example 15), the computation time becomes 

very high and, in general, significant improvements of 

the results are not obtained (only small differences affect 

the results achieved with 5 and 15 effective digits). From 

an engineering point of view, we observe that a high 

value of stiffness (axial and radial) as much as possible 

independent of the air gap and the eccentricity would be 

suitable. In the case of the passive magnetic levitation 

this condition is partially met. Moreover, the angular 

natural frequencies are lower than the stationary rotation 

speed of the hydrounit (187.5 rpm). Therefore, during 

periods of start-ups and shutdowns the system passes 

more or less quickly through its resonant frequencies. If 

this passage is not quite fast, dangerous vibrations can 

arise. With reference to the simplified model illustrated 

in Fig. 8 (a) in Part I [1], we observe that it can reflect 

reality better than the one reported in Fig. 8 (b), also in 

Part I. However, the lateral instability of the magnetic 

levitation [12] is also confirmed by observing the trend 

of the force Fy (see Fig. 13): it quickly increases versus 

the eccentricity. Finally, we observe that in spite of the 

simplifications, the results obtained and the relative 

considerations suggest which basic problems can arise if 

we consider substituting a classic hydrodynamic thrust 

bearing with passive magnetic bearings. We can note that 

also the hydrodynamic bearings have their drawbacks 

[13]. Therefore, possible preliminary studies of alternative 

solutions could be acceptable. 

 

V. CONCLUSION 
The knowledge of the natural vibration frequencies 

of a system is important to avoid an operating condition 

where the frequencies of the excitation forces are near  

or equal to the above-mentioned natural frequencies. The 

passive bearings are parts of a mechanical system and 

determine the corresponding natural frequencies versus 

the applied load and the oscillating masses. In order to 

avoid dangerous resonances or beats it is convenient to 

evaluate how these frequencies change in function of 

different operating conditions. In the case study it was 

found that a reduction of the air gap beyond certain limits 

causes a significant increase of the stiffness of the axial 

bearing. Consequently, we obtain an increase of the 

natural frequency of the system. Therefore, the larger the 

load applied the higher the aforesaid frequency. This 
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behavior is similar to that which was found in another 

study concerning the passive radial bearings [14]. With 

reference to the demanding application example, this fact 

can surely be advantageous if we were able to increase 

the natural frequencies to a speed higher than the 

stationary rotational speed of the device (187.5 rpm). 

Unfortunately, higher natural frequencies correspond  

to too small air gaps that, from an engineering point  

of view, cannot be accepted. This problem could be 

studied and, perhaps, solved, by considering additional 

permanent magnets. The position of these magnets 

should be controlled by a feedback system versus the 

instantaneous values of air gaps and natural frequencies. 

Finally, if we consider a nonlinear magnetization M  

of the ring magnets, the details of the mathematical 

model illustrated in Part I [1] enable a very fast and easy 

modification to compute the field and the forces due to 

the surface charge density )(M P . 
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Abstract ─ Electrodynamic bearings (EDBs) are a 

promising way to support rotors passively with no 

friction. In particular, heteropolar EDBs could allow for 

combining the motor and guiding functions, thereby 

optimizing the use of permanent magnets. Despite this 

advantage, few efforts have been dedicated to the 

evaluation and optimization of the performance of 

heteropolar EDBs. In this paper, the performance of a 

yokeless topology of heteropolar EDB is evaluated and 

optimized. This is done by evaluating the parameters of 

a parametric dynamical model of the EDB using a two-

dimensional analytical model of the field distribution in 

the bearing. Compared to existing EDBs, the present one 

is shown to achieve a reasonable stiffness to permanent 

magnet volume ratio at high speeds. 

 

Index Terms ─ Bearing, electrodynamic, heteropolar, 

magnetic, optimization, passive, performance. 
 

I. INTRODUCTION 
Passive electrodynamic bearings (EDBs) allow to 

support a rotating object without contact. They are based 

on the electromagnetic interaction forces between 

permanent magnets (PMs) and the currents flowing in 

conductors. These currents are induced by the relative 

speed between the PMs and the conductors.  

For efficiency purposes, EDBs are designed in such 

a way that there is no variation in the PM flux linked by 

the winding when the rotor spins in a centered position. 

As a result, there are no induced currents, no forces, and 

above all no losses in the bearing when the rotor spins in 

a centered position. This property is referred to as “null-

flux”. It is found in all the designs of EDBs that are 

studied nowadays [1]. 

However, when the rotor spins in an off-centered 

position, currents are induced in the winding. This 

creates a force on the rotor that tends to restore its 

centered position. In this case, the energy dissipated in 

the windings comes from the drive torque on the rotor to 

keep the spin speed constant. On the one hand, this 

prevents the operation at zero spin speed. On the other 

hand, it eliminates the need for an additional electrical 

power supply to feed the EDBs, as is the case for the 

existing active magnetic bearings (AMBs). Furthermore, 

the absence of control system induces gains in 

compactness, simplicity, costs and reliability. As a 

result, EDBs could be well suited for applications where 

these aspects are critical. 

Nevertheless, the stiffness associated with the 

centering force of EDBs is low compared with AMBs. 

Moreover, some external damping must be added to the 

system to allow a stable operation above a given spin 

speed [2]. In this paper, only non-rotational damping 

between the rotor and the stator is considered. This 

damping should be added in a passive way in order to 

keep the advantages of passive bearings, which can be 

an issue [2]. Consequently, the bearing radial stiffness 

and the amount of damping required for stabilization are 

the main quality indices of an EDB. 

For the last 15 years, the research on EDBs has 

focused on homopolar topologies, which constitute  

most of the implementations of EDBs nowadays [3-5]. 

This resulted in significant progress in their modeling, 

allowing for accurate predictions of their behavior and 

performance. 

As opposed to their heteropolar counterparts, 

homopolar EDBs can be built using bulk conductors [3] 

[5], resulting in simple and robust bearing designs. They 

also allow for filtering the force excitations that are 

synchronous with the spin speed [6]. Therefore, in case 

of rotor unbalance, the rotor can spin around its axis  

of inertia without transmitting forces to the housing. 

However, the homopolar field source could hardly be 

coupled to a winding to create a torque, which is the case 

in heteropolar EDBs. Despite this advantage, the actual 

potential of heteropolar EDBs still needs to be evaluated. 

In this context, the paper presents an optimization of 

the performance of the heteropolar EDB introduced in 

[7]. Although the chosen bearing topology can perform 

the motor function, the present optimization concerns 

only the guiding function in the aim of providing an 

upper limit for the performance of this kind of bearing. 

The paper is organized as follows. In Section II, the 

bearing topology and model are presented, as well as the 

model parameters identification process. In Section III, 

the EDB optimization is described and the results are 

1054-4887 © ACES 

Submitted On: October 17, 2016 
Accepted On: April 8, 2017

ACES JOURNAL, Vol. 32, No. 8, August 2017685



analyzed. Finally, the performance of the optimal 

bearings are compared to the performance of existing 

homopolar EDBs in Section IV. 

 

II. MODELING AND PERFORMANCE 

EVALUATION 
The EDB topology studied in this paper is shown in 

Fig. 1. 
 

 
 

Fig. 1. Bearing topology and design parameters.  

 

The rotor PMs have one pole pair. The winding has 

three phases (Fig. 2) and two pole pairs in order to have 

the null-flux characteristic [8]. 

 

 
 

Fig. 2. Rotor position, electrodynamic forces and winding 

phases. 

 

The properties of the bearing materials are given in 

Table 1. As regards the modeling assumptions, the 

magnetic permeability of the shaft iron is infinite and the 

materials have linear magnetic characteristics, i.e., 

magnetic hysteresis and saturation are neglected. The 

eddy currents in bulk materials and the impact of the 

rotor off-centering on the winding inductances are also 

neglected. 

Table 1: Bearing material properties 

Parameters Units Definition 

𝜌𝑚 = 7500 kg/𝑚3 
Specific mass of the NdFeB 

magnets 

𝐵𝑟 = 1.2 T PM remanent magnetization 

𝜌𝑠 = 7800 𝑘𝑔/𝑚3 Specific mass of the shaft iron 

𝜎𝑐𝑢 = 6𝑒7 (Ω𝑚)−1 Copper conductivity 

𝜇𝑠 = ∞ / 
Relative magnetic permeability 

of the shaft iron 

𝜇𝑟 = 1 / 

Relative magnetic permeability 

of the winding, magnets, and 

stator yoke 
 

The dynamics of the rotor is studied using the 

Jeffcott rotor model. Therefore, the rotor is assumed to 

move in the radial plane only. Using complex coordinates, 

the position of the rotor and the electrodynamic forces are: 

𝑧 = 𝑥 + 𝑗𝑦, (1) 

𝐹 = 𝐹𝑥 + 𝑗𝐹𝑦. (2) 

They are linked with the external input force 𝑭𝒆 

through the state-space model [9]: 

 
[
�̇�
�̈�
�̇�

] = 𝐴 [
𝐹
�̇�
𝑧
] + 𝐵𝐹𝑒, (3) 

where the dynamic and input gain matrices are: 

 

𝐴 =

[
 
 
 
 −

𝑅

𝐿𝑐

− 𝑗𝜔 −
3𝐾Φ

2

2𝐿𝑐

−𝑗𝜔
3𝐾Φ

2

2𝐿𝑐

1

𝑀
−

𝐶

𝑀
0

0 1 0 ]
 
 
 
 

, (4) 

 𝐵 =
1

𝑀
[0 1 0]𝑇 . (5) 

The parameters in (4)-(5) are given in Table 2. As 

the bearing is studied in 2D, all the parameters and 

performance indices are evaluated per unit of active 

bearing length. The parameters 𝑹, 𝑳𝒄, and 𝑲𝚽 are 

identified using the 2D analytical model presented in  

[7] with the material properties listed in Table 1. In 

particular, 𝑲𝚽 is the ratio of the peak PM magnetic flux 

in a winding phase to the amplitude of the rotor off-

centering |𝒛|. The rotor is assumed to weigh three times 

the weight of its active length, which yields: 

 𝑀 = 3[𝜌𝑚𝜋(𝑅𝑚
2 − 𝑅𝑠

2) + 𝜌𝑠𝜋𝑅𝑠
2], (6) 

where 𝜌𝑚 and 𝜌𝑠 are given in Table 1. Lastly, the spin 

speed 𝜔 and the damping 𝐶 are set arbitrarily.  
 

Table 2: Parameters of the dynamical model 

Parameters Units Definition 

𝑅 Ω/𝑚 Winding phase resistance 

𝐿𝑐 𝐻/𝑚 Winding cyclic inductance 

M  𝑘𝑔/𝑚 Rotor mass 

𝐾Φ (
𝑁Ωs

𝑚3
 )

0.5

 Flux constant 

𝐶 𝑁𝑠/𝑚2 External non rotating damping 

𝜔 𝑟𝑎𝑑/𝑠 Rotor spin speed 

DUMONT, KLUYSKENS, DEHEZ: PERFORMANCE OF YOKELESS HETEROPOLAR ELECTRODYNAMIC BEARINGS 686



From these parameters, the two bearing performance 

indices can be calculated. The bearing quasi-static radial 

stiffness is derived from (3): 

 
𝐾 = ℜ𝑒 {

𝐹

𝑧
}|

�̇�=0,�̈�=0,�̇�=0
=

3𝜔2𝐿𝑐𝐾Φ
2

2(𝑅2 + (𝜔𝐿𝑐)
2)

. (7) 

Lastly, the damping required for stabilization 𝑪𝒔 is 

obtained by increasing the value of 𝑪 until the three 

eigenvalues of (4) cross the imaginary axis. 

 

III. OPTIMIZATION 
The bearing is optimized using a NSGA-II genetic 

algorithm with 100 individuals and 100 iterations. The 

mutation probability is 0.3, and the crossover rate is 0.9. 

From this, a Pareto front of optimal solutions that defines 

the area of achievable performance is obtained. The  

two objective functions 𝐾 and 𝐶𝑠 are optimized at a  

given spin speed 𝜔 rad/s. Defining the variables of the 

optimization problem: 

 𝑥1, 𝑥2  ∈ [0,1], (8) 

the constraints on the geometric parameters can be 

formulated as: 

  𝑅𝑚 = 𝑥1𝑅𝑚,𝑚𝑎𝑥 , (9) 

  𝑅𝑠 = 0.2𝑅𝑚, (10) 

  𝑅𝑤 = 𝑅𝑚 + 1.5𝑚𝑚, (11) 

 𝑅𝑦 = 𝑅𝑤 + 𝑥2(𝛽𝑅𝑚,𝑚𝑎𝑥). (12) 

In (9)-(12), the arbitrary parameters are set in order 

to get the best possible results, and thus an upper bound 

for the bearing performance. In (9), the maximum rotor 

radius 𝑅𝑚,𝑚𝑎𝑥 is constrained by the maximum rotor 

peripheral speed 𝑣𝑚𝑎𝑥 = 250 m/s: 

 𝑅𝑚,𝑚𝑎𝑥 = max(𝑅𝑚) =
𝑣𝑚𝑎𝑥

2𝜋𝜔
. (13) 

This is a realistic value for PM rotors with a 

retaining sleeve [10, 11]. In (10), the ratio of the rotor 

shaft radius to magnet radius is 0.2. This low value yields 

better results as the amount of magnet, and thus the 

bearing performance are maximized. In (11), the air gap 

width is set at 1.5 mm, which includes the width of  

a potential sleeve and allows for rotor eccentricities.  

In (12), the maximum winding thickness is related to  

the maximum rotor thickness 𝑅𝑚,𝑚𝑎𝑥  through the factor 

𝛽 = 1. This allows the algorithm to explore a large yet 

realistic range of winding thicknesses. 

Let us analyze the results for 𝜔 = 2𝜋1000 rad/s and 

𝛽 = 1. The Pareto front in Fig. 3 shows that the damping 

required for stabilization increases with the bearing 

stiffness. The graph was limited to values of 𝐶𝑠 < 500 

Ns/m², which can be considered as very large for 

damping added in a passive, contactless way. Damping 

values of an order of magnitude of 10 Ns/m are reported 

in the literature [4]. 

Regarding thermal limitations, the winding current 

densities for each individual on the Pareto front are 

presented in Fig. 4. The losses are calculated assuming  

a static eccentricity of the rotor with an off-centering  

𝑧 = 0.5(𝑅𝑤 − 𝑅𝑚). In this case, the current density 

always lies below the maximum value of 5 A/mm2 that 

is typical of enclosed PM machines [12]. In Fig. 4, the 

individuals are arranged in the same order as in Fig. 3, 

the individuals with lower stiffnesses on the left-hand 

side and the individuals with higher stiffnesses on the 

right hand side. This will be the case for all the figures in 

the following sections. 

 

 
 

Fig. 3. Pareto front of the bearing performance at 𝜔 =
2𝜋1000 rad/s. 

 

 
 

Fig. 4. Current densities associated with the individuals 

on the Pareto front, and maximum value of 5 A/mm2. 

 

Figures 5 and 6 show that bearings with a thicker 

winding require less damping for stabilization. This  

is the case for the individuals 1-20 with winding 

thicknesses nearing the maximum value. It corresponds 

to expectations as a lower winding resistance yields a 

more inductive behavior of the bearing that is known to 

have a positive effect on the stability [4, 7].  

On the contrary, the individuals 20-80 have a greater 

PM thickness and the winding is closer to the PM on 

average. As a result, the magnetic field strength and the 

bearing stiffness are higher. However, the winding is 

more resistive as (𝑅𝑦 − 𝑅𝑤) decreases, which affects the 

stability. 
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Fig. 5. Geometrical parameters of the individuals on the 

Pareto front for 𝜔 = 2𝜋1000 rad/s. 

 

 
 

Fig. 6. Width of the shaft (𝑅𝑠), PMs (𝑅𝑚 − 𝑅𝑠), air gap 

(𝑅𝑤 − 𝑅𝑚) and winding (𝑅𝑦 − 𝑅𝑤). 
 

The Pareto fronts corresponding to the spin speeds 

𝜔 = 2𝜋{50,100,500,1000} rad/s are shown in Fig. 7. 

For a given value of 𝐾, more damping is required to 

stabilize the bearings running at higher speeds. This is 

due to the mechanical constraint on the peripheral speed. 

The value of 𝑅𝑚,𝑚𝑎𝑥  is lower for the individuals running 

at higher speeds, which lowers the volume of PMs. An 

absence of the constraint on the peripheral speed would 

yield opposite results, as a given winding is more 

inductive while running at higher speeds. 

Finally, the graphs of the bearing geometrical 

parameters in the cases 𝜔 = 2𝜋{50,100,500} rad/s have 

a shape similar to that of the 𝜔 = 2𝜋1000 rad/s case. In 

each case, the crosses in Fig. 7 and in the zoomed view 

in Fig. 8 indicate the individuals that have PMs and 

winding widths close to their maximum values. For 

instance, it is the 20th individual in the case of 𝜔 =
2𝜋1000 rad/s (Fig. 6). For individuals lying further to 

the left on the Pareto front, the winding thickness reaches 

its maximum value, whatever the spin speed. In this area,  

the Pareto fronts for all the speeds are almost 

superimposed, as shown in Fig. 8 (𝛽 = 1). Furthermore, 

the values of damping lie in the range 𝐶𝑠 ∈ [0,50] Ns/m 

in this figure, which is more realistic. As a result, a 

bearing optimized under the constraints (9)-(13) requires 

a same amount of damping for a given stiffness, 

whatever the spin speed. 

 

 
 

Fig. 7. Pareto fronts for 𝜔 = 2𝜋{50, 100, 500, 1000} 
rad/s. 

 

 
 

Fig. 8. Zoom on the area of interest where 𝐶𝑠 < 50 Ns/m. 

 

For 𝜔 = 2𝜋{50,100,500} rad/s, the winding current 

densities lie far below the limit of 5 A/mm2. 

Lastly, Fig. 8 shows the Pareto fronts corresponding 

to 𝛽 = 5 in (12). As expected, the corresponding area of 

achievable performance is larger, because increasing 𝛽 

allows the algorithm to explore a wider range of winding 

thicknesses, although they may be unrealistic. These 

fronts constitute an absolute performance limit, as 

further increasing 𝛽 has no impact on their positions. 

Finally yet importantly, the Pareto fronts in Figs. 7-

8 constitute an upper performance bound as considering 

additional constraints and/or the end-effects may reduce 

the performance of the bearing under study. 
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IV. PERFORMANCE COMPARISON 
The performance of existing EDBs were summarized 

in [1]. The stiffness to PM volume ratios were calculated, 

yielding the black triangles in Fig. 9. The ranges given 

by the vertical bars correspond to the EDBs lying on the 

Pareto front in Fig. 7.  
 

 
 

Fig. 9. Stiffness to volume ratio of the existing EDBs 

(triangles) and of the individuals on the Pareto fronts of 

Fig. 7 (solid lines). 
 

The overall shape of the graph shows that bearings 

operating at higher spin speeds can achieve higher ratios. 

Compared with existing EDBs, the present topology 

provides a reasonable ratio at high speed, although it was 

not optimized considering this specific criterion. 

 

V. CONCLUSION 
In this paper, the domain of achievable performance 

of a heteropolar EDB was obtained by generating a 

Pareto front using an optimization algorithm. The two 

performance indices, namely the stiffness and the 

damping required for stabilization, were evaluated by 

combining two analytical models predicting the field 

distribution in the EDB and its dynamic behavior. The 

domain of achievable performance was obtained for 

different spin speeds. This highlighted a clear trade-off 

between stiffness and stability. 

Then, the bearings lying on the Pareto front were 

compared to existing EDBs in terms of stiffness to 

volume ratio. It was shown that ratios similar to that of 

existing EDBs can be achieved at high speeds with the 

present EDB topology. This ratio could be further 

optimized as it was not an objective function of the 

present optimization. 

Future work should include a study of both motor 

and bearing functions to take their respective constraints 

into account, and more especially thermal constraints. 
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Abstract ─ An alternative idea for the construction of 

active magnetic bearings, adapted from a successful 

structure used in split-winding self-bearing motors, has 

been recently discussed in the literature. A mathematical 

model for this bearing configuration is developed in this 

paper. Preliminary theoretical results predict a greater 

equivalent stiffness for this model, when compared with 

traditional active magnetic bearings. The use of recently 

built prototypes for testing if these expectations hold true 

is also discussed. 

 

Index Terms ─ Active magnetic bearings, interconnected 

magnetic flux, modeling. 

 

I. INTRODUCTION 
Conventional active magnetic bearings (AMBs) [1], 

[2], [3], here called Type A, are based on the structure 

shown in Fig. 1. There are four “U-shaped electromagnets”, 

two for the x or horizontal direction and two in the y 

direction, resulting in four independent magnetic flux 

loops. 

The windings in the x and y direction are fed with 

currents 𝑖0 ± 𝑖𝑥(𝑡) and 𝑖0 ± 𝑖𝑦(𝑡); the constant current 𝑖0 

is the base, or bias, and the differential currents 𝑖𝑥 and 𝑖𝑦 

will control the rotor position. Using basic reluctance 

concepts, the resultant forces 𝑓𝑥 and 𝑓𝑦 can be expressed 

in terms of these currents, the air magnetic permeability 

𝜇0, the total number of coils 𝑛𝑎, the cross section area in 

the stator ferromagnetic material 𝐴𝑎 and the nominal 

length ℎ of the air gaps. After a standard linearization 

procedure [1] around the operating point 𝑥 = 𝑦 = 𝑖𝑥 = 𝑖𝑦, 

the forces generated by the Type A structure are shown 

in (1). Notice that the non connected nature of the 

magnetic fluxes leads to uncoupled forces: 

 {
𝑓𝑥 = 𝑘𝑝

𝑎𝑥 + 𝑘𝑖
𝑎𝑖𝑥

𝑓𝑦 = 𝑘𝑝
𝑎𝑦 + 𝑘𝑖

𝑎𝑖𝑦
  where   {

𝑘𝑝
𝑎 = 𝜇0𝐴𝑎𝑛𝑎

2𝑖0
2 ℎ3⁄

𝑘𝑖
𝑎 = 𝜇0𝐴𝑎𝑛𝑎

2𝑖0
2 ℎ2⁄

. (1) 

A different structure for magnetic bearings,  

here named Type B, with four windings that cause 

interconnected magnetic loops, is depicted in Fig. 2. 

This structure is found in the split-windings self-

bearing motors researched in Brazil [4], [5]. In that 

approach, to provide spinning torques and radial restoring 

forces at the same time, alternate currents are injected in 

the windings; for the simpler case of AMBs, DC currents 

are considered. 

Although other results are known with the Type B 

bearing concept [6], the authors of this article did not 

identify, up to now, the association of the interconnected 

flux structure with uncoupled equations for radial 

restoring forces or with higher values of the magnetic 

constants. 

 

 
 

Fig. 1. Type A, or traditional, configuration for AMBs; 

windings are shown for the positive 𝑥 (𝑦) direction 

control the horizontal (vertical) position. 
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Fig. 2. Type B, the proposed configuration for AMBs; 

windings are shown for the positive 𝑥 direction only; the 

flux paths are interconnected. Opposing pairs of windings 

along the 𝑥 (𝑦) direction control the horizontal (vertical) 

position. 

  
The generation of reluctance forces 𝑓𝑥 and 𝑓𝑦 in 

Type B bearings is detailed in Section II, which follows 

closely [7] and [8]. The linearized final expressions  

for these forces also show a decoupled nature, and the 

position and current constants, 𝑘𝑝
𝑏 and 𝑘𝑖

𝑏, have higher 

values than in case A. Section III presents analytic results 

and simulations on how increasing 𝑘𝑝,𝑖 affects dynamic 

and control aspects of AMBs [8]. Details of the prototypes 

built to allow real comparisons between Types A and B, 

together with discussions about real tests, final comments 

and considerations on what remains to be done are made 

in Sections IV and V. 

 

II. FORCE GENERATION IN TYPE B 

BEARING 
A detailed study of the force generation in the flux 

interconnected structure was presented in [4], [7] and 

[8]; the main points are repeated below. The x and y 

components of a radial displacement of the rotor change 

the nominal gap width h as shown in Fig. 3. 

To compensate the displacements, it is usual to 

apply differential currents [1] to the pairs of windings: 

the differential, or control, currents 𝑖𝑥(𝑡), for the 𝑥 or 

horizontal direction, and 𝑖𝑦(𝑡), for the vertical direction, 

are added and subtracted to a base, or bias, current 𝑖0, a 

constant DC level. The total current, imposed at each  

winding are: 

 𝑖1(𝑡) = 𝑖0 + 𝑖𝑥(𝑡),𝑖3(𝑡) = 𝑖0 − 𝑖𝑥(𝑡), at  the 𝑥 axis, (2) 

 𝑖2(𝑡) = 𝑖0 + 𝑖𝑦(𝑡),𝑖4(𝑡) = 𝑖0 − 𝑖𝑦(𝑡), at  the 𝑦 axis. (3) 

Light pink lines in Fig. 2 represent the magnetic flux 

distribution caused by these currents. The reluctance 

forces depend on the total magnetic fluxes ∅𝑘 , 𝑘 =
1,2,3,4, in the four air gaps with cross section area Ab: 

  𝑓𝑥 =
∅1

2−∅3
2

2𝜇0𝐴𝑏
       and       𝑓𝑦 =

∅2
2−∅4

2

2𝜇0𝐴𝑏
. (4) 

 

 
 

Fig. 3. When the rotor moves x and y in the horizontal 

and vertical positions, the air gap widths change to ℎ − 𝑥 

in the right pole, ℎ + 𝑥 (left pole), ℎ − 𝑦 (upper pole) and 

ℎ + 𝑦 (lower pole); the fluxes are not shown. 

 

The ferromagnetic connections in Type B allow a 

current injected in any winding to cause fluxes in all four 

air gaps; Fig. 4 illustrates the effects of i1 in all four 

“poles”. If ∅𝑗𝑘  denotes the flux in air gap 𝑗 caused by a 

current in winding 𝑘, the total magnetic flux ∅1 in “pole” 

1 depends on ∅11, ∅12, ∅13, ∅14. Assuming no air or 

ferromagnetic losses, and positive signs for fluxes 

headed to the rotating center, the total magnetic fluxes in 

the poles are: 

 ∅1 =    ∅11 + ∅12 − ∅13 + ∅14, (5) 

 ∅2 = −∅21 − ∅22 − ∅23 + ∅24, (6) 

 ∅3 = −∅31 + ∅32 + ∅33 + ∅34, (7) 

 ∅4 = −∅41 + ∅42 − ∅43 − ∅44. (8) 

For the determination of the sixteen values of ∅𝑗𝑘, 

let the magneto-motive generated by current 𝑖1 be 

denoted by 𝐹1 and the reluctances of the air gaps in the 

four poles in Fig. 3 by 𝑅1, 𝑅2, 𝑅3 and 𝑅4. Figure 5 shows 

the equivalent circuit. 
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Fig. 4. Magnetic flux distribution associated to 𝑖1 in type 

B magnetic bearing; current injected only in winding 1 

causes fluxes in all air gaps. 
 

 
 

Fig. 5. Magnetic flux equivalent circuit associated to 

current only in winding 1 of type B magnetic bearing. 
 

In the following development, 𝐴𝑏 is the cross 

section area of the poles in Fig. 2. Considering that the 

reluctances are: 

 𝑅1 =
ℎ−𝑥

𝜇0𝐴𝑏

;  𝑅2 =
ℎ−𝑦

𝜇0𝐴𝑏

;  𝑅3 =
ℎ+𝑥

𝜇0𝐴𝑏

;  𝑅4 =
ℎ+𝑦

𝜇0𝐴𝑏

; (9) 

the equivalent reluctance 𝑅1
𝑒 can be found to be: 

 𝑅1
𝑒=

𝑅1𝑅2𝑅3+𝑅1𝑅2𝑅4+𝑅1𝑅3𝑅4+𝑅2𝑅3𝑅4

𝑅2𝑅3+𝑅2𝑅4+𝑅3𝑅4
. (10) 

To avoid cumbersome formulas, the following 

auxiliary variables are defined: 

 𝑁 = 𝑅1𝑅2𝑅3 + 𝑅1𝑅2𝑅4 + 𝑅1𝑅3𝑅4 + 𝑅2𝑅3𝑅4, (11) 

 𝐷1 = 𝑅2𝑅3 + 𝑅2𝑅4 + 𝑅3𝑅4, (12) 

 𝐷2 = 𝑅1𝑅3 + 𝑅1𝑅4 + 𝑅3𝑅4, (13) 

 𝐷3 = 𝑅1𝑅2 + 𝑅1𝑅4 + 𝑅2𝑅4, (14) 

 𝐷4 = 𝑅1𝑅2 + 𝑅1𝑅3 + 𝑅2𝑅3. (15) 

Since 𝐹1 = 𝑛𝑏𝑖1, algebraic operations lead to 

expressions for the fluxes associated to 𝑖1 = 𝑖0 + 𝑖𝑥 

imposed to the winding in pole 1 of Fig. 3: 

 ∅11 =
𝐹1

𝑅1
𝑒 = 𝑛𝑏(𝑖0 + 𝑖𝑥)

𝐷1

𝑁
, (16) 

 ∅21 = 𝑛𝑏(𝑖0 + 𝑖𝑥)
𝑅3𝑅4

𝑁
, (17) 

 ∅31 = 𝑛𝑏(𝑖0 + 𝑖𝑥)
𝑅2𝑅4

𝑁
, (18) 

 ∅41 = 𝑛𝑏(𝑖0 + 𝑖𝑥)
𝑅2𝑅3

𝑁
. (19) 

The same procedure, repeated for currents 𝑖2, 𝑖3,𝑖4 

imposed at the windings in poles 2, 3 and 4, in Fig. 3, 

results in: 

   ∅12 = 𝑛𝑏(𝑖0 + 𝑖𝑦)
𝑅3𝑅4

𝑁
;     ∅22 = 𝑛𝑏(𝑖0 + 𝑖𝑦)

𝐷2

𝑁
; 

   ∅32 = 𝑛𝑏(𝑖0 + 𝑖𝑦)
𝑅1𝑅4

𝑁
;      ∅42 = 𝑛𝑏(𝑖0 + 𝑖𝑦)

𝑅1𝑅3

𝑁
; 

   ∅13 = 𝑛𝑏(𝑖0 − 𝑖𝑥)
𝑅2𝑅4

𝑁
;      ∅23 = 𝑛𝑏(𝑖0 − 𝑖𝑥)

𝑅1𝑅4

𝑁
; 

   ∅33 = 𝑛𝑏(𝑖0 − 𝑖𝑥)
𝐷3

𝑁
;          ∅43 = 𝑛𝑏(𝑖0 − 𝑖𝑥)

𝑅1𝑅2

𝑁
; 

   ∅14 = 𝑛𝑏(𝑖0 − 𝑖𝑦)
𝑅2𝑅3

𝑁
;      ∅24 = 𝑛𝑏(𝑖0 − 𝑖𝑦)

𝑅1𝑅3

𝑁
; 

   ∅34 = 𝑛𝑏(𝑖0 − 𝑖𝑦)
𝑅1𝑅2

𝑁
;      ∅44 = 𝑛𝑏(𝑖0 − 𝑖𝑦)

𝐷4

𝑁
. 

The total fluxes ∅𝑘 for 𝑘 = 1,2,3,4 can be 

determined by substituting the previous values of the 

partial fluxes ∅𝑗𝑘 in Equations (5) to (8). Then, with the 

help of (4), the total reluctance forces generated in Type 

B magnetic bearing can be expressed as: 

 𝑓𝑥 =
𝜇0𝐴𝑏𝑛𝑏

2

2
𝑞𝑥(ℎ, 𝑥, 𝑦, 𝑖0𝑖𝑥𝑖𝑦), and (20) 

 𝑓𝑦 =
𝜇0𝐴𝑏𝑛𝑏

2

2
𝑞𝑦(ℎ, 𝑥, 𝑦, 𝑖0𝑖𝑥𝑖𝑦), (21) 

where 𝑞𝑥,𝑦 are the following functions: 

 𝑞𝑥(ℎ, 𝑥, 𝑦, 𝑖0, 𝑖𝑥 , 𝑖𝑦) =
𝑁1

2−𝑁2
2

∆2 , and (22) 

 𝑞𝑦(ℎ, 𝑥, 𝑦, 𝑖0, 𝑖𝑥 , 𝑖𝑦) =
𝑁3

2−𝑁4
2

∆2 , (23) 

with: 

 𝑁1 = (𝑖1 + 𝑖2)∆1 + (𝑖1 − 𝑖3)∆2 + (𝑖1 + 𝑖4)∆3, 

 𝑁2 = (𝑖3 − 𝑖1)∆2 + (𝑖2 + 𝑖3)∆4 + (𝑖3 + 𝑖4)∆5, 

 𝑁3 = (𝑖1 + 𝑖2)∆1 + (𝑖2 + 𝑖3)∆4 + (𝑖2 − 𝑖4)∆6, 

 𝑁4 = (𝑖1 + 𝑖4)∆3 + (𝑖3 + 𝑖4)∆5 + (𝑖4 − 𝑖2)∆6. 

The currents 𝑖𝑘 are defined in equations (2) and (3). 

If the distances ℎ ± 𝑥 and ℎ ± 𝑦 are denoted by 𝛿𝑥
± and 

𝛿𝑦
± , the “∆s” values above are: 

 ∆1=𝛿𝑥
+𝛿𝑦

+, ∆2= 𝛿𝑦
+𝛿𝑦

−,  ∆3= 𝛿𝑥
+𝛿𝑦

−, 

 ∆4=𝛿𝑥
−𝛿𝑦

+, ∆5= 𝛿𝑥
−𝛿𝑦

−, ∆6= 𝛿𝑥
+𝛿𝑥

−, and 

 ∆= 𝛿𝑥
−𝛿𝑦

−𝛿𝑥
+ + 𝛿𝑥

−𝛿𝑦
−𝛿𝑦

+ + 𝛿𝑥
−𝛿𝑥

+𝛿𝑦
+ + 𝛿𝑦

−𝛿𝑥
+𝛿𝑦

+. 

In order to make the linearization of Equations (20) 

and (21), it should be considered that AMB’s operate 

around a point P0 = (x, y, ix, iy)0 ≅ (0,0,0,0). The partial 

derivatives in the vicinity of this point are: 

      
𝜕𝑞𝑥

𝜕𝑥
|

𝑃0

=
4𝑖0

2

ℎ3 ,           
𝜕𝑞𝑥

𝜕𝑦
|

𝑃0

= 0, (24) 

      
𝜕𝑞𝑥

𝜕𝑖𝑥
|

𝑃0

=
4𝑖0

2

ℎ2 ,           
𝜕𝑞𝑥

𝜕𝑖𝑦
|

𝑃0

= 0. (25) 

If a similar procedure is made for qy, the combined 

results lead to the linear expressions for the Type B 

structure forces: 

 {
𝑓𝑥 = 𝑘𝑝

𝑏𝑥 + 𝑘𝑖
𝑏𝑖𝑥

𝑓𝑦 = 𝑘𝑝
𝑏𝑦 + 𝑘𝑖

𝑏𝑖𝑦

  where  {
𝑘𝑝

𝑏 = 2𝜇0𝐴𝑏𝑛𝑏
2𝑖0

2 ℎ3⁄

𝑘𝑖
𝑏 = 2𝜇0𝐴𝑏𝑛𝑏

2𝑖0
2 ℎ2⁄

. (26) 
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Two remarkable aspects are to be observed in 

Equation (26): 

(a) The complex interconnected fluxes in the Type  

B structure also lead to decoupled forces, in a 

similar way to Equation (1), derived for the Type 

A AMB’s; 

(b) there is a factor 2 in Equation (26), when compared 

to Equation (1), derived for the Type A structure. 

 

III. THEORETICAL COMPARISONS 
Assuming the same outside diameter of the stator, 

the following advantages can be identified for the Type 

B active magnetic bearing when it is compared with 

Type A: 

1) The position and current constants 𝑘𝑝
𝑏 and 𝑘𝑖

𝑏 in 

Equation (26) are two times bigger than their 

counterparts 𝑘𝑝
𝑎 and 𝑘𝑝

𝑎 in Equation (1); 

2) the cross section area Ab can be chosen greater 

than Aa; it is reasonable to have Ab ≈ 2Aa; 

3) the number of coils nb can, possibly, be larger 

than na. 

In conclusion the position (kp) and current (ki) 

constants for Type B AMBs have values at least 2 times 

higher than in case A. Depending on design aspects (Ab 

and nb), even higher rates can be achieved. How much 

can be these constants increased? The magnetic saturation 

seems to be the limit. 

In order to evaluate the effects of kb and ki in an 

AMB performance, a theoretical analysis was applied in 

[8] to a simple control problem summarized in Fig. 6: a 

particle moving without friction in a horizontal and 

rectilinear path is to be positioned.  
 

 
 

Fig. 6. The particle position x(t) is to be controlled by 

injecting currents in the magnetic devices MD1 and MD2. 

 

The magnetic devices apply a horizontal force 

f(t) = kpx(t) + kii(t) on the sphere, where i is a control 

current and x measures the displacement with respect to 

the reference position. A controller is desired, capable of 

driving the sphere position to 0 for all possible initial 

conditions x(0), and in the eventual presence of constant, 

horizontal disturbance forces v. This is a simple, but 

meaningful, problem: many aspects of the real life 

operation and control of AMBs are present in it. 

A stabilizing PD controller 𝐶(𝑠) = 𝛼𝑠 + 𝛽 was 

designed; it ensured, as expected, that non zero initial 

displacements 𝑥(0) were corrected, when 𝑣 = 0. When  

a constant 𝑣 was present, the controller effect lacked 

efficiency: the steady state offset error caused by such 

disturbances was found to be: 

 𝜌 =
𝑣0

𝛽𝑘𝑖−𝑘𝑝
, (27) 

where v0 is the disturbance magnitude. The well known 

fact that PD controllers do not completely reject (𝜌 = 0) 

constant disturbances becomes apparent. But Equation 

(27) tells more: for a fixed, stabilizing controller, 𝜌 

decreases when 𝑘𝑝 and 𝑘𝑖 increase by the same factor. In 

other words, if the position and current coefficients in a 

magnetic force generation law are both increased by the 

same amount, the resulting PD control is less sensitive  

to constant disturbances, and this characterizes a better, 

stiffer suspension. 

In addition, it was simple to verify that a PID 

controller caused complete rejection of step disturbances, 

as expected, and that high or low values for the magnetic 

constants were not crucial in the stabilizing stage. But 

when constant disturbance rejection was needed, better 

transient behaviors were a direct consequence of higher 

𝑘𝑝 and 𝑘𝑖 values. 

The conclusions of the simple example in reference 

[8] are valid in much more general situations, involving 

real world applications of practical interest. And these 

conclusions are: increasing the values of the magnetic 

force constants 𝑘𝑝 and 𝑘𝑖 is a highly desirable goal in the 

AMB field. 

 

IV. PROTOTYPE BUILDING AND 

SIMULATIONS 
The final conclusions of Sections II and III are that 

the interconnected fluxes in the Type B structure increase 

the values of the magnetic force constants 𝑘𝑝 and 𝑘𝑖. 

How can one be sure about the theoretical tools used in 

those developments? The idea of the Type B structure has 

already been tested. In the prototype used at UFRJ [4], a 

vertical rotor is positioned in the radial directions by a 

self-bearing motor based on the interconnected fluxes of 

the Type B structure. This situation is more complicated, 

because the windings are fed with AC currents, to 

achieve the dual capabilities: torque generation and 

radial positioning. The device has worked! 

The best possible way to give definite answers to  

the seminal questions posed above is by constructing 

prototypes and testing them in an exhaustive way. Only 

after this important stage, will the ideas proposed here be 

validated or not. Two prototypes, one for Type A and the 

other for Type B, have been constructed. Figure 7 shows 

a top view of them. A vertical rotor with a large, perforated 

upper disk will fill the above pieces; the same Fig. 7, in 

the center, shows a view of a mounted kit, with the rotor 

inserted in the casing with the stators. 
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Mounted kit 

 
  Type A stator  Type B stator 

  
 

Fig. 7. Top view of prototypes A, in the left and B in the 

right; notice the 8 “poles” in Type A, and only 4 “poles” 

in Type B. A mounted kit is shown in the center, with a 

vertical rotor inserted in one of the casings. 

 

A finite element simulation of the magnetic 

characteristics of Type A and Type B structures [8] was 

done, and some results are shown below. 

Figure 8 confirms the assumption that the flux 

generated at a particular winding is localized and does 

not interact with the other fluxes. Figure 9 shows clearly 

that a differential current in one direction does not affect 

the flux distribution in the other direction, thus confirming 

Equation (25). 

The geometry of the flux lines, how they interconnect 

in Type B or remain isolated in Type A, confirms the 

basic assumptions used in Section II and on which this 

work relies. 

 

 
 

Fig. 8. Flux distribution in a Type A structure with 

balanced currents in the 𝑥 axis and a differential current 

in the 𝑦 direction. 

  
 

Fig. 9. Flux distribution in a Type B structure with 

balanced currents in the x axis and a differential current 

in the y direction. 

 

A detailed mathematical model was built to describe 

the dynamic aspects of the prototypes. For evaluating 

their disturbance behavior, simulations were made when 

an extra mass was fixed in the upper disk. The rotor will 

be unbalanced by this and harmonic forces will be 

generated at the 𝑥 and 𝑦 axes. The resulting torques will 

disturb the centering capabilities of the most basic 

control laws used, imposing orbital movements to the 

rotor. This means that using the same initial conditions 

as before, the radial displacements will not tend to zero 

anymore. As expected, Type B behaves better than Type 

A in these extreme conditions; more details can be found 

in [9]. 

 

V. COMMENTS AND CONCLUSIONS 
The results in the previous section confirm the basic 

assumptions of Type B superiority on which this work 

relies. These are good news, but sound statements cannot 

be made yet: the prototypes are already finished but have 

not reached an operational stage yet. The laboratory tests 

are in a very primitive stage and no solid measurements 

has been made up to now. The authors have great 

expectations that the here called Type B concept will be 

a valid contribution for the active magnetic bearings field, 

because of the possibility of increasing their equivalent 

mechanical stiffness. 
 

REFERENCES 
[1] G. Schweitzer, H. Bleuler, and A. Traxler, Active 

Magnetic Bearings. Hochshulverlag AG an der 

ETH Zürich, 1994. 

[2] A. Chiba, T. Fukao, O. Ichikawa, M. Oshima, M. 

Takemoto, and D. Dorrel, Magnetic Bearings and 

Bearingless Drives. Newnes-Elsevier, 2005. 

[3] G. Schweitzer, E. Maslen, H. Bleuler, M. Cole, P. 

Keogh, R. Larsonneur, R. Nordmann, and Y. Ogada, 

Magnetic Bearings: Theory Design and Applications 

to Rotating Machinery. Springer-Verlag, 2009. 

[4] D. F. B. David, “Levitação de rotor por mancais- 

ACES JOURNAL, Vol. 32, No. 8, August 2017695



motores radiais magnéticos e mancal axial sc auto-

estável,” D. Sc. Thesis, COPPE-UFRJ, 2000. 

[5] E. F. Rodriguez and J. A. Santisteban, “An 

improved control system for a split winding 

bearingless induction motor,” IEEE Transactions 

on Industrial Electronics, vol. 58, no. 8, pp. 3401-

3408, 2011. 

[6] L. Santos and K. Kjolhed, “Experimental 

contribution to high-precision characterization of 

magnetic forces in active magnetic bearings,” 

Journal of Engineering for Gas Turbines and 

Power, vol. 129, pp. 503, 2007. 

[7] D. F. B. David, J. A. Santisteban, and A. C. D. N. 

Gomes, “Interconnected four poles magnetic bear-

ings,” in Proceedings of the 1st Brazilian Workshop 

on Magnetic Bearings, 2013. www.magneticbearings 

2013.com.br 

[8] “Interconnected four poles magnetic bearings 

simulations and testing,” Proceedings of ISMB14, 

14th International Symposium on Magnetic Bearings, 

pp. 30-35, 2014. http://ismb14.magneticbearings.org 

[9] “Laboratory tests on an interconnected four poles 

magnetic bearing,” in Proceedings of ISMB15, 15th 

International Symposium on Magnetic Bearings, 

2016. 

 

 

 

 

Domingos F. B. David: B.Sc. in 

Naval Engineering by the Federal 

University of Rio de Janeiro, in 

1976; M.Sc. (1978) and D.Sc. (2000) 

in Mechanical Engineering from 

COPPE, at the same University. He 

has worked, until 1995, as Project 

Engineer dealing with equipments 

for the nuclear and chemical industries. Since then, he 

has been researching and teaching at the Mechanical 

Engineering Dept. of the Fluminense Federal University, 

Rio de Janeiro, Brazil.  

 

José A. Santisteban: B.Sc. and Eng-

ineer degrees in Electronic Engin-

eering from Universidad Nacional 

de Ingeniería (UNI), Lima, Perú,     

in 1986 and 1988, respectively, and  

the M.Sc. and D.Sc. degrees in 

Electrical Engineering from Univer-

sidade Federal do Rio de Janeiro 

(COPPE/UFRJ), Rio de Janeiro, Brazil, in 1993 and 

1999, respectively. From 1988 to 1991, he was a 

Researcher and an Assistant Professor with UNI. From 

1993 to 1995, he was a Researcher with UFRJ. In 1999, 

he joined the Fluminense Federal University, Niterói, 

Brazil, where he is currently an Associate Professor in 

the Electrical Engineering Department acting in the 

Graduate Programs of Mechanical Engineering and the 

Electrical and Telecommunications Engineering. His 

current research activities include bearingless machines, 

power electronics, and electrical drives. He is a Member 

of the Brazilian Society of Power Electronics (SOBRAEP) 

and the Brazilian Society of Mechanical Engineering 

(ABCM). He is a co-author of the first Brazilian book on 

magnetic bearings. 

 

Afonso C. Del Nero Gomes: B.Sc. 

in Aeronautical Engineering by ITA, 

the Aeronautical Technology Insti-

tute; M.Sc. and D.Sc. in Systems 

Engineering by COPPE in the Fed-

eral University of Rio de Janeiro, 

where he has been researching and 

teaching for undegraduate and grad-

uate levels, for all his academic career.  

DAVID, SANTISTEBAN, DEL NERO GOMES: MODELING AND DISCUSSING AN INTERCONNECTED FLUX MAGNETIC BEARING 696



Crucial Parameters and Optimization of High-Speed Bearingless Drives 
 

 

Hubert Mitterhofer and Siegfried Silber 
 

Linz Center of Mechatronics GmbH 

Altenbergerstrasse, 69 - 4040 Linz, Austria 

hubert.mitterhofer@lcm.at, siegfried.silber@lcm.at 

 

 

Abstract ─ Bearingless drives integrate the functionality 

of magnetic bearings and an electric machine into a 

single device. While this integration allows very compact 

drives offering all advantages of magnetic levitation,  

the design process becomes significantly more complex. 

This work deals with the numerous topological and 

geometric design decisions which need to be taken for 

such a bearingless drive. Additionally, the definition of 

suitable optimization targets for the electromagnetic 

simulation process is outlined. The proposed guidelines 

generate a complex relationship of different dependencies 

which is then fed into the MagOpt optimizer for the design 

of a high speed bearingless disk drive, which allows 

verifying the optimization results through measurement 

results from two prototype drives.  

 

Index Terms ─ Bearingless drive, force and torque 

evaluation, MagOpt, optimization. 

 

I. INTRODUCTION 
Magnetic bearings dispose of several characteristics 

which have allowed them to conquer certain fields of 

applications requiring, e.g., high-purity, long lifetime, or 

high rotational speeds. By integrating magnetic bearings 

and electric drives in a bearingless drive, the mechanical 

dimensions become more compact while the complexity 

in design, optimization, and control increases.  

The design process of a high-speed bearingless drive 

demands several topological decisions. Section 0 presents 

the most stringent choices and discusses their respective 

influence on the drive performance. Section 0 first deals 

with the remaining geometric parameters and selects the 

actual optimization parameters. Before the optimization, 

not only the parameters but also the targets need to  

be defined. Other than in the design of conventional 

electrical machines, literature presents no widely used 

performance parameters since both, the torque and the 

bearing performance including their cross-coupling and 

their angle dependency are relevant. Therefore, this work 

proposes suitable optimization targets, characterizing 

different aspects of the performance of a bearingless  

disk drive. Their use as target values allows applying 

optimization tools, in this case, the general purpose  

optimizer MagOpt. 

Eventually, the optimization results for two certain 

designs are given in section 0. The comparison with  

the measurements at two actually constructed prototypes 

shows the benefits of the optimization. 

 

II. TOPOLOGICAL DECISIONS 

A. Machine topology  

Bearingless drives have been constructed using 

different machine topologies, from classic permanent 

magnet synchronous machines (PMSMs) to induction 

machines or reluctance based types. A good overview 

about the early developments is given in [1]. However, 

for achieving full levitation with a mechanically compact 

design, the PMSM topology with a permanent magnet 

rotor is the preferable solution. Additionally, high energy 

density and good efficiency, even for small drives, speak 

in favor of this motor topology. Therefore, as for most 

recent developments, the PMSM topology is chosen for 

the targeted high-speed drive.  

 

B. Rotor  

A disk-shaped rotor can be chosen over an elongated 

rotor because of its passive stability in axial and tilt 

directions [2]. Supplemented with the active stabilization 

in radial direction by the bearingless unit, stable levitation 

can be achieved with one bearing point.  

For high rotational speeds, an inner rotor with two-

pole magnetization has been used in the drives presented 

in [3], [4] or [5]. The inner rotor with its smaller diameter 

is subject to lower centrifugal forces. The low pole 

number results in the highest mechanical frequency for  

a given electrical frequency. However, the two-pole 

diametrical magnetization also adds anisotropic stiffness 

characteristic to the drive. Viewed in the stationary 

coordinate system, the effect can, e.g., be written for the 

destabilizing radial reluctance force as: 

 𝐹𝑟,𝑟𝑒𝑙 = 

 [
𝑐�̅�(1 + �̂�𝑟 cos(2Ω𝑡)) 𝑐�̅� �̂�𝑟 sin(2Ω𝑡)

𝑐�̅��̂�𝑟 sin(2Ω𝑡) 𝑐�̅�(1 − �̂�𝑟 cos(2Ω𝑡))
] [

Δ𝑥
Δ𝑦

], (1) 

with Δ𝑥 and Δ𝑦, being the stator-bound radial deflections. 

Ω gives the angular frequency of rotation and 𝑐�̅� and �̂�𝑟 
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stand for the mean stiffness value and its variation ratio, 

respectively. An equal formulation is possible for the 

stabilizing tilt reluctance torque. More details on this 

matter can be found in [6]. 

Despite this complexity increase for the system, the 

effect on a rotor is negligible when we can assume 

operation at high rotational speeds since Equation (1) 

clearly shows that the principal frequency of the 

anisotropic force on a deflected rotor is twice as high  

as the frequency of rotation and, therefore, quickly 

surpasses the radial rigid body mode, given as: 

𝜔𝑟 = √
𝑐�̅�

𝑚𝑟𝑜𝑡𝑜𝑟

, (2) 

with 𝑚𝑟𝑜𝑡𝑜𝑟 standing for the rotor mass. 

 

C. Stator core 

One of the main topological decisions concerns the 

used stator material. While laminated electrical steel 

with low hysteresis losses is surely preferable for low 

speed applications, high frequencies of the rotating 

magnetic field provoke high eddy current losses which 

may call for the use of soft magnetic composite (SMC) 

material. These sintered materials feature very low electric 

conductivity and thus, low eddy current losses which 

scale according to: 

𝑝𝐹𝑒,𝑒𝑑~𝑓2, 𝐵2, (3) 

where 𝑓 and 𝐵 denote the principal frequency of the 

magnetic field and the flux density, respectively. Due to 

the hysteresis losses which dominate in SMC materials, 

scaling according to: 

𝑝𝐹𝑒,ℎ~𝑓, 𝐵2, (4) 

there is a break-even point for a certain field frequency 

above which SMC is beneficial. In literature (e.g., in [7]), 

this point is typically found to be between 1 kHz and  

2 kHz, depending on the quality of the compared SMC 

and laminated steel materials, which makes the use  

of SMC interesting in high-speed drives. Due to the 

potential advantage concerning the core loss and the 

additional simplicity in prototyping (the SMC can be 

milled from a block form), the SMC material Somaloy 

700 5P is selected for the current analysis. 
 

 
 

Fig. 1. Slotted (left) and slotless (right) stator topology. 

 

A second principal decision for the stator design  

concerns the question if a slotted or a slotless core shall 

be applied (cf. Fig. 1). While the former provides small 

magnetic air gaps and, thus, high air gap flux density, the 

latter offers low stator losses due to the sinusoidal flux 

density distribution, the absence of higher slot harmonics, 

and the wider air gap. For very high speed machines, it 

has been shown in literature, e.g., in [4] or [8] and [9], 

that the slotless core is the better choice. 

 

D. Winding system  

The proposed slotless stator form directly triggers 

the decision between air gap winding or toroid winding. 

Both are depicted in Fig. 2. While electromagnetically 

equal, the toroid winding has the more compact 

mechanical form with reduced copper volume when a 

flat rotor shape is used [10]. Additionally, it offers simple 

prototype manufacturing and good cooling properties. 

Manufacturing in an automated process may be more 

complex than for the air gap winding but overall, the 

toroid winding seems advantageous. 

 

 
 

Fig. 2. Toroid winding (left) and air gap winding (right). 

 

Concerning the winding connection topology, it is 

possible to differ between the following configurations. 

 

1) Separated windings 

When multiple sets of windings are used, i.e., one 

for torque and another one for bearing force creation,  

the term separate winding system is applied. In this case, 

the necessary currents and voltages for the motor and 

bearing function are calculated, applied, and controlled 

separately. This poses a very intuitive approach to the 

problem of parallel torque and force creation which is 

frequently used and well documented in numerous 

publications, e.g., [11], [12]. 

 

2) Combined windings 

For additional mechanical simplification, the 

reduction to a single back iron core with one single set 

of windings is possible. The current components for 

torque and forces now have to be superposed before 

being applied to the drive. In this so-called combined 

winding system, the simplification of the mechanical 

setup increases the control complexity. Many studies 

have dealt with this winding type, e.g., [13], [14], or [5]. 
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3) Dual-purpose no-voltage windings 

A third winding topology has appeared recently ([15], 

[16], [18]), partly mixing the properties of separated and 

the combined windings. It provides combined windings 

with different coil terminals for torque and force current 

connections by tapping the respective coils. This is 

termed parallel motor winding or bridge windingand 

can, more generally be found in literature as dual-purpose 

no-voltage (DPNV) windings. However, this topology 

can increase the amount of necessary power switches  

and current sensors significantly as shown in [16]. 

Additionally, a full description of the multiple DPNV 

connection possibilities would go beyond the scope of 

this work but can be found in the cited publications. 

The authors of [17] have compared separated and 

combined winding systems for a disk shaped bearingless 

radial pump. Another work [18] discusses the differences 

between two DPNV winding types and eventually 

compares them to a separated winding system. All these 

considerations have come to the conclusion that the 

correct winding choice is highly dependent on the 

available power electronics. One of the most stringent 

differences, however, is the sensitivity to the rotor-field 

induced back-EMF which must be analyzed in order to 

allow a topology decision. 
 

 
 

Fig. 3. Separated winding example for bearing forces 

(left) or torque creation (right) with a two-pole rotor. 

 

The separated winding example in Fig. 3 shows two 

configurations of coils, each wound around a slotless 

stator core in a toroid winding manner. They can be 

connected in order to produce bearing forces (identical 

winding sense) and torque (opposing winding sense), 

respectively. Coil 1 and Coil 2 have an identical number 

of winding turns and, thus, identical values for resistance 

𝑅 = 𝑅1 = 𝑅2, inductance 𝐿 = 𝐿1 = 𝐿2, and linked rotor 

flux amplitude �̂� = �̂�1 = �̂�2. Due to the winding sense, 

it becomes clear that the back-EMF 𝑉𝐵𝐸𝑀𝐹  in the two 

coils adds up for the torque winding while it cancels  

out in the force winding setup. Figure 4 shows this 

relationship in an equivalent circuit. When the voltage 

drops in 𝐿1 and 𝐿2 cancel out in the torque winding due 

to the opposing winding sense, the voltage at the clamps  

of a connected full bridge inverter is: 

𝑉𝑏𝑟𝑖𝑑𝑔𝑒,𝑇 = 𝑖𝑇2𝑅 + 2�̂�𝑐𝑜𝑠(𝜔𝑡)𝜔, (5) 

where 𝑖𝑇 gives the torque current and 𝜔 specifies the 

electrical angular frequency. With a DC-link voltage of 

𝑉𝐷𝐶, the maximum rotational frequency is limited to: 

𝜔𝑚𝑎𝑥 =
𝑉𝐷𝐶−𝑖𝑇2𝑅

2�̂�
. (6) 

 

 
 

Fig. 4. Equivalent circuit for force (left) and torque 

creation (right) in the separated winding shown in  

Fig. . 

 

In a combined winding scheme, each of the coils 

needs to be controlled individually which results in the 

corresponding circuit diagram shown in Fig. 5.  

 

 
 

Fig. 5. Equivalent circuit for a combined winding system. 

 

In analogy to the separated winding described 

above, the clamp voltage at a full bridge is expressed as: 

𝑉𝑏𝑟𝑖𝑑𝑔𝑒 = (𝑖𝐹 + 𝑖𝑇)𝑅 + 𝐿
𝑑(𝑖𝐹 + 𝑖𝑇)

𝑑𝑡
+ �̂�𝑐𝑜𝑠(𝜔𝑡)𝜔, (7) 

since neither the inductive voltage drop nor the back-

EMF cancels out. This limits the maximum rotational 

frequency to: 

𝜔𝑚𝑎𝑥 =
𝑉𝐷𝐶−(𝑖𝐹+𝑖𝑇)𝑅−𝐿

𝑑(𝑖𝐹+𝑖𝑇)

𝑑𝑡

�̂�
. (8) 

As the back-EMF component is relevant for both, torque 

and force creation, a voltage reserve needs to be 

respected in order to guarantee that even at maximum 

speed, the system can react sufficiently to a radial  
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disturbance by injecting the necessary force currents. 

At a first glance, the combined winding topology 

seems disadvantageous due to the independence of the 

force creation from 𝑉𝐵𝐸𝑀𝐹 . However, this apparent flaw 

can be resolved by respecting the said voltage reserve. 

Also, the combined winding always uses the entire 

conductor cross section which increases efficiency. 

Lower part count and maximum mechanical compactness 

add to the advantages of the combined winding which is 

why it is chosen here. 

At the beginning of Section 0, the toroid winding 

form is presented as an alternative to the air gap winding 

which in turn was deducted from the winding in a slotted 

motor. Therefore, each phase shown in the left image in 

Fig. 6 consists of two coil halves which, together, are 

electrically equivalent to the air gap winding. This is 

called double coil arrangement. It is, however, also 

possible, to use only one half per phase (right part in  

Fig. 6) forming a single coil arrangement. Both forms are 

used for the optimization process below. 
 

 
 

Fig. 6. Exemplary double coil (left) or single coil (right) 

arrangement for a drive with eight phases. 

 

III. OPTIMIZATION 
With a chosen stator (slotless SMC core), a certain 

winding structure (toroid) with a selected connection 

(combined winding), the most influential remaining 

topological choices are the coil number per phase (single 

or double coil) and the number of phases. The different 

features of the resulting options have been discussed in 

[5], leaving the single coil scenarios with 6 or 8 phases 

as the most beneficial ones. However, for the sake of 

comparability with preceding studies, only the 5-phase 

double coil (5pd) and the promising 6-phase single coil 

(6ps) and 8-phase single coil (8ps) arrangements are 

selected for optimization. 

 

A. Geometric parameters  

Different geometric parameters characterize the 

drive. In the present case, the rotor diameter 𝑑𝑟𝑜 and the 

rotor magnet height ℎ𝑃𝑀 are set to a fixed value (cf. 

Table 1), making the further radial parameters, the rotor 

back iron (yoke) height ℎ𝑌, the height of the rotor 

bandage ℎ𝐵, the air gap width 𝛿, the height of the coils  

ℎ𝑐𝑜𝑖𝑙 , and the stator height ℎ𝐹𝑒  relevant for the design. 

Furthermore, the axial stator length 𝑙𝐹𝑒  and the phase 

number 𝑚 are varied in order to find the best choice.  

The parameters ℎ𝐵 and 𝛿 are determined by the 

mechanical safety demands, the necessary touchdown 

bearing dimensions, and the manufacturing tolerances 

and will not be used as optimization parameters. The 

remaining optimization parameters are listed in Table 2. 

 

Table 1: Optimization data – fixed parameters 

Fixed Parameter Value 

𝑑𝑟𝑜 30 mm 

ℎ𝑃𝑀 4.5 mm 

𝛿 1.5 mm 

Coil topology 5pd, 6ps, 8ps 

 

Table 2: Optimization data – variables and targets 

Variable 

Parameter 
Range Target Limit Value 

ℎ𝑌 2.5 – 3 mm 𝑐𝑧 > 2 
𝑁

𝑚𝑚
 

ℎ𝑐𝑜𝑖𝑙  2 – 3.5 mm 𝑐𝜏 > 0.8 
𝑁𝑚

𝑟𝑎𝑑
 

ℎ𝐹𝑒  9 – 13 mm 𝑘𝑠𝑡𝑎𝑟𝑡𝑢𝑝 < 2 

𝑙𝐹𝑒  10 – 14 mm �̅�𝑧 > 45 mNm 

 

B. Optimization targets  

The passive stiffness coefficients and the active 

bearing performance are the most important properties 

besides the torque capacity. Unfortunately, high passive 

stiffness calls for small magnetic air gaps while active 

forces and torque require the exact opposite in order to 

provide a large copper cross section for the stator coils. 

This conflict can be solved by defining the necessary 

conditions for the drive in order to function properly and 

leave the remaining parameters to optimization. In [5], 

multiple criteria have been defined of which are briefly 

explained below. 

 

1) Radial force 

The active radial force 𝐹𝑟 must overcome the passive 

radial reluctance force, defined in Equation (1). This 

allows setting a necessary criterion: 

 𝐹𝑟 (𝜑, −𝜗) > Fr,rel(𝜗 − 𝜑)𝛿   ∀   𝜑, 𝜗 ∈ [0,2𝜋],  (9) 

for guaranteeing the rotor lift-off for every possible 

initial rotor deflection angle 𝜗, determining the necessary 

force direction as – 𝜗, and every rotor orientation angle 

𝜑. The achievable radial force is maximized for the 

nominal current density 𝐽𝑚𝑎𝑥 while zero drive motor 

torque 𝑇𝑧 is produced: 

 𝐹𝑟,𝑚𝑎𝑥(𝜑, −𝜗) = max 𝐹𝑟(𝜑, −𝜗) |𝐽1..𝑚≤𝐽𝑚𝑎𝑥,𝑇𝑧=0. (10) 

For a practical and meaningful value, the radial 

reluctance force can be substituted by the radial stiffness 

value and then be put into relation with the maximized 

MITTERHOFER, SILBER: CRUCIAL PARAMETERS AND OPTIMIZATION OF HIGH-SPEED BEARINGLESS DRIVES 700



radial force. For a worst-case startup current coefficient, 

this ratio needs to be maximized, yielding: 

𝑘𝑠𝑡𝑎𝑟𝑡𝑢𝑝 = max
𝑐�̅�(1 + �̂�𝑟 cos(2(𝜗 − 𝜑)))𝛿

𝐹𝑟,𝑚𝑎𝑥(𝜑, −𝜗)
, 

∀ 𝜑, 𝜗 ∈ [0,2𝜋],            

(11) 

which, multiplied with 𝐽𝑚𝑎𝑥, must not exceed the short-

time tolerable overload current density 𝐽𝑠𝑡𝑎𝑟𝑡𝑢𝑝. 

 

2) Axial stiffness  

For guaranteeing a limited axial deflection 𝛿𝑧,𝑚𝑎𝑥  

of the rotor due to gravitational acceleration 𝑔, the axial 

stiffness constant must satisfy: 

𝑐𝑧 >
𝑚𝑟𝑜𝑡𝑜𝑟 𝑔

𝛿𝑧,𝑚𝑎𝑥

. (12) 

 

3) Torque and tilt stiffness  

When the necessary criteria in Sections 1) and 2)  

are met, the drive torque 𝑇𝑧 and the tilt stiffness 𝑐𝜏  

can be maximized as remaining optimization targets.  

As the drive torque value also needs to be evaluated 

under the maximum current density constraint and the 

independency from the radial forces, a similar criterion 

as for the forces can be written for the mean torque as: 

�̅�𝑧 =
1

2𝜋
∫ max(𝑇𝑧(𝜑)|𝐽1..𝑚≤𝐽𝑚𝑎𝑥, 𝐹𝑥=𝐹𝑦=0)

2𝜋

0
𝑑𝜑. (13) 

 

C. Optimization setup 

Before optimization, the simulation setup is verified 

by comparing simulation and measurement for two 

available prototypes. These have different geometric 

parameters and dispose of a 5pd and a 6ps winding, 

respectively. All target parameters obtained in simulation 

except for the tilt stiffness have been measured and the 

values given in Table 3 show good agreement with an 

acceptable error of ≤10%. 

 

Table 3: Comparison of simulated and measured data  

 5pd Design 6ps Design 

 Sim. Meas. Sim. Meas. 

𝑐𝑧 in 
𝑁

𝑚𝑚
 2.31 2.21 1.782 1.84 

𝑐𝜏 in 
𝑁𝑚

𝑟𝑎𝑑
 0.749 n.a. 0.565 n.a. 

𝑘𝑠𝑡𝑎𝑟𝑡𝑢𝑝 2.19 2.29 2.605 2.81 

�̅�𝑧 in mNm 24.0 22.92 38.97 37.39 

 

For the actual optimization, MagOpt, developed  

at LCM GmbH, was used. MagOpt provides an interface 

to several commercial and open-source programs such  

as CAD and finite element tools via the respective  

APIs. After configuring a simulation chain with starting  

parameters and result targets, the built-in genetic 

optimizer is used to automatically run the simulations. 

An initial generation of parameter sets is created, sent to 

the parametric model in a 3D FE solver, in this case, 

Ansoft Maxwell, and the results are obtained from the 

simulation output. After processing the results, the next 

generation of data sets is created, sent to the solver, etc. 

As the numerical simulation itself can be considered a 

standard procedure for the design of electric drives and 

magnetic bearings, the automated optimization is the key 

feature for this parameter-heavy design process. Within 

a matter of days, several thousand parameter sets are 

numerically evaluated, converging to the specified targets, 

forming the resulting Pareto fronts. 

 

IV. ANALYSIS AND CONCLUSION 

A. Analysis of the result 

The automated optimization process is stopped 

when the Pareto front shown in Fig. 7 converges and no 

longer produces new individuals in the graph. The top 

left and the bottom right graphs which display the two 

passive stiffnesses and the two active torque or force 

targets, respectively, are not useful for finding the 

optimal individuals. In these two images, both displayed 

targets benefit from and are weakened by the same 

geometrical changes. The remaining four graphs compare 

targets which show opposed reactions to a geometry 

variation. It is these graphs that the optimum needs to be 

selected from. It quickly becomes clear that the 5-phase, 

6-phase, and 8-phase designs do not differ in the passive 

stiffness targets as these results do not depend on the 

winding characteristics. The most prominent difference 

appears in the torque capacity where the 6ps and 8ps 

designs dominate. This is the only feature where the 

topology choice is significantly more important than the 

geometric choice. 

After filtering the solutions according to the target 

limits given in Table 2, the ones marked with red circles 

in Fig. 7 remain. For each phase number, one individual 

is selected and shown in Table 4. While all three meet 

the targets, the 6ps and 8ps designs are clearly favorable. 

 

Table 4: Selected individuals 

Parameter 5pd 6ps 8ps Target 5pd 6ps 8ps 

ℎ𝑌 in mm 2.91 2.94 2.96 𝑐𝑧 in 
𝑁

𝑚𝑚
 2.03 2.14 2.17 

ℎ𝑐𝑜𝑖𝑙  in mm 3.3 3.21 3.27 𝑐𝜏 in 
𝑁𝑚

𝑟𝑎𝑑
 0.84 0.82 0.85 

ℎ𝐹𝑒  in mm 9.63 9.82 10.51  𝑘𝑠𝑡𝑎𝑟𝑡𝑢𝑝 1.63 1.68 1.73 

𝑙𝐹𝑒  in mm 13.4 12.7 13.95 
�̅�𝑧 in 

𝑚𝑁𝑚 
47.6 69.2 76.4 
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Fig. 7. Optimization output: Pareto fronts with 5pd variants (green) and 6ps variants (blue). Individuals marked red 

fulfill all targets indicated as red lines. 
 

V. CONCLUSIONS 
The design of bearingless drives is a complex 

undertaking which is expressed by the plurality of 

topological decisions to take and the numerous geometric 

parameters influencing the drive performance. Several 

interesting conclusions can be drawn from the design 

process. 

Characteristic requirements such as high speed, high 

torque or high efficiency need to be respected in every 

design step and cannot be left to optimization alone. This 

is especially true for the selection of the winding 

topology and the phase number which heavily influence 

the necessary power electronics circuit. 

However, even if certain topological decisions are 

taken in advance, a multi-criteria optimization based on 

numerical electromagnetic simulation is necessary due 

to the large number of influential parameters. Also, the 

definition of optimization targets is significantly more 

complex than with a conventional electric machine and 

their number is higher since active and passive magnetic 

forces need to be considered.  

Even if MagOpt does not restrict the number of 

variable parameters or targets, a large number of either 

one will make the optimization process lengthy and the 

results hard to interpret. Therefore, it is important to stick 

to realistic parameter ranges and necessary targets.  
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Abstract ─ Permanent magnets are an attractive material 

to be utilized in thrust bearings as they offer relatively 

low losses. If utilized properly, they have a long service 

lifetime and are virtually maintenance free. In this 

contribution, we communicate the results of the tests 

performed on a permanent magnet thrust bearing that 

was custom built and installed in a hydropower 

synchronous generator test-rig. Tridimensional finite 

element simulations were performed and compared with 

measurements of axial force. Spin down times and axial 

force ripple have also been measured. We found good 

correspondence between the measurements and the 

simulations. 

  

Index Terms ─ Axial bearing, Halbach array, hydropower, 

magnetic bearing, permanent magnet, thrust bearing. 
 

I. INTRODUCTION 

A. Background 

Large electromagnetic actuators have been used 

successfully since the 1950’s to partly bear the load of 

vertical hydropower units [1]. This places hydropower 

among the oldest applications of magnetic thrust bearings. 

Even though, the technology improves the reliability and 

efficiency of the thrust system, their utilization is not 

widespread. They have been mostly utilized in pump 

storage stations. Notably, as a problem solver in Europe’s 

largest installation of this type at Dinorwig in the United 

Kingdom [2]. In general, as often happens with industrial 

components, thrust bearings for hydropower are required 

to be technically superior compared to the past. They are 

required to have a higher degree of efficiency, to operate 

with a higher level of reliability, to be more sustainable 

and to bear larger loads, both static and transient. They 

also need to operate in tougher conditions, the generation 

patterns required by energy markets and the introduction 

of intermittent solar and wind power results in an 

increased number of start and stop operations. Moreover, 

in some occasions, the generators are required to operate 

at a peak level, or on the contrary at low capacity. This 

operational patterns cause extra wear and tear in the 

thrust bearing pads. When it comes to reliability, a high 

percentage of the generator failures in large machines are 

due to bearing failures [3, 4, 5]. According to an analysis 

performed in 1980, more than half of the operational 

failures of equipment in hydropower stations is due  

to unreliable operation of the thrust bearing [6]. The 

economic implications of such failures are large. Not 

only due to the expenses required to repair the machine, 

but also due to production loss. On top of this, some 

utilities are looking for strategies to eliminate oil in  

the hydropower stations in order to eliminate the risk  

of pollution in the rivers. To achieve this objective 

relatively small hydropower generators have been fully 

levitated [7]. When it comes to large installations, thrust 

bearings are at its limit. Increasing their size to increase 

their capacity is not an easy task as the losses depend on 

the diameter of the bearing. With mechanical solutions, 

installing more than one bearing in order to increase the 

load capacity is not an option for machines in hydropower 

sizes. One way to cope with these challenges is to use 

magnetic forces either from electromagnets, permanent 

magnets or a combination of both [8], bearing the  

force only by magnetic means or in combination with 

mechanical bearings in a similar fashion as it has  

been done since the 1950’s, but with 65 years of 

advances in crucial technology in relevant areas, such as 

control, electronics and magnetic materials. At Uppsala 

University a synchronous generator hydropower test-rig 

with magnetic bearings has been designed at constructed. 

The test-rig is flexible enough to allow the study of the 

behavior of the machine while operating on a permanent 

magnet thrust bearing, an electromagnetic thrust bearing, 

a roller thrust bearing or any combination of them. With 

these new tools, the advantages of utilizing magnetic 

forces in the thrust system can be further investigated. 

The focus of this paper is on the performance and 

finite element simulations of a permanent magnet thrust 

bearing constructed with 2532 N48 Nd-Fe-B permanent 

magnets in a Hallbach array. The permanent magnet 

thrust bearing, is the preferred bearing for the test-rig as 

it does not require external power or control to function 
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and it offers lower losses compared to its mechanical  counterpart. 

  
 

Fig. 1. (Left) Cross sectional view of the 3D CAD model of the vertical synchronous generator test-rig built and 

designed at Uppsala University. (Right) Actual test rig. 
 

B. Brief description of the experimental test-rig 

The vertical synchronous generator test-rig built and 

designed by the hydropower group at Uppsala University 

as described by Wallin, [9] has been upgraded to 

accommodate a range of features. As shown in Fig. 1, 

from bottom to top, some of them are: a permanent 

magnet thrust bearing, an electromagnetic actuator and  

a brushless excitation system with permanent magnets 

[10]. The machine was also equipped with a roller thrust 

bearing that was mounted between the generator and the 

brushless exciter. After the upgrades, the shaft resulted 

in a weight of 12.56 kN. The rotational speed needed  

to synchronize the machine with the grid is 500 rpm.  

To mimic the power exerted by water on a turbine, an 

induction motor and a gearbox were utilized, they can  

be seen in Fig. 1 (left) in dark red. The torque was 

transferred from the gearbox to the shaft of the test rig 

through a flexible coupling and a ball spline, these 

components can be seen in Fig. 2 (top). This construction 

allowed us to adjust the axial position of the shaft in 

relation to the static parts without affecting the torque 

transfer. The idea was to be able to use the machine while 

resting on the permanent magnet thrust bearing, the 

roller bearing, while utilizing the electromagnet actuator 

or as well as any possible combination between them. 

The actual adjustment of the axial position of the shaft 

was realized by moving the permanent magnet thrust 

bearing up and down. When the permanent magnet thrust 

bearing sat at its lowest position, the shaft descended  

to rest on the mechanical bearing. In this position, the 

airgap of the permanent magnet thrust bearing was so 

large that there was virtually no force exerted on the  

shaft by the permanent magnets. On the contrary, as the 

permanent magnet thrust bearing was moved up, the 

magnetic forces started to push on the shaft. If raised 

enough, the shaft could be released from the mechanical 

bearing and rest only on the permanent magnets, all the 

experiments reported in this paper were performed with 

the test-rig in this position, except the spin down test on 

the mechanical bearing. When resting on the magnetic 

thrust bearing, the shaft is stable in the axial direction  

but unstable in the radial direction. This phenomena can 

be described by extension of Earnshaw’s theorem for 

electrostatic charges [11]. For this reason, the shaft was 

held in the radial direction by two radial roller bearings. 

They sit under the control and rectification box and under 

the generator respectively. To allow them to function 

properly regardless of the axial position chosen, the shaft 

was provisioned with oversized inner races. In this way 

contact between the rollers and a proper inner race was 

always achieved. The designation of both radial bearings 

selected is NU 326 ECP, the inner races belong to NU 

2326 ECMA, all from SKF. 

 

C. Permanent magnet thrust bearing 

The device was designed and custom built as part of 

a major upgrade to the test rig. The estimated weight of 

the rotating parts at the design stage was around 15 kN. 

The bearing was to be built by hand. Magnets that could 

be easily and safely handled by a person with no special 

Permanent 

magnet exciter 

Electromagnetic 

actuator 

Rectification 

Synchronous 

machine 

Permanent 

magnet  

thrust bearing 

Thrust bearing 

Radial bearing 

Radial bearing 

ACES JOURNAL, Vol. 32, No. 8, August 2017705



equipment were needed. For this practical reasons, it was 

decided to utilize cubic 12 mm N48 Nd-Fe-B permanent 

magnets. In order to accommodate as much magnetic 

material as possible in a given volume, a Hallbach array 

arranged in the radial direction was selected, 13 rows of 

magnets with alternating polarity were mounted to create 

a homo polar array in the angular direction. For practical 

and economic reasons it was convenient to utilize cubic 

magnets. However, the segmentation of the array carried 

its own drawbacks. One of them was that it could generate 

axial force ripple as the shaft rotates. There is at least one 

technique to prevent, or at least reduce this inconvenience. 

It involves covering the magnets with a thin piece of 

ferromagnetic material to smoothen out the field across 

the segmentation [12]. For this bearing, we decided to 

install a different number of magnets in the rotor than in 

the stator. Each of the rows of magnets have one pair of 

magnets difference than its counterpart in the other plate. 

By doing this, a constant overlap of magnetic material 

was achieved even when the shaft was rotated. Another 

measure taken to prevent force oscillations was to randomly 

position the rows of magnets in the angular direction in 

relation to each other. The resulting pattern of this efforts 

in the rotor plate is shown in Fig. 2. The details of the 

construction of the bearing can be found in [13]. Another 

drawback of this construction was that in order to 

evaluate the force capabilities of the bearing including 

the effect of the segmentation full 3D Finite element 

simulations were needed. The existent analytical formulas 

[8] or 2D simulations were not capable of evaluating the 

axial force ripple caused by the segmentation. 
 

 
 
Fig. 2. (Top) Flexible coupling and driving end of the 

shaft. (Bottom) Permanent magnet thrust bearing rotor 

prior assembly. The details of the segmentation of the 

magnetic material can be appreciated. 

II. METHOD 
To be able to assess the performance of the bearing, 

we performed finite element simulations, axial force and 

axial force ripple measurements, and spin down tests. 

 

A. Three dimensional finite element simulations 

In order to take into account the segmentation in  

the bearing, we have simulated it using 3D FEM static 

simulations. For all of them, we used 2535 volumes.  

One for each magnet, one for a cylindrical portion of air 

between the permanent magnet surfaces that was basically 

the airgap, and two more for the air surrounding the 

magnets in the radial direction. Since a Hallbach array 

was utilized, we decided not to model the steel plates  

in which the magnets were mounted as the field in  

this region was expected to be relatively low. We started 

the simulation routine by importing the geometry from  

a dedicated CAD software (Solid Works 2015) into a 

commercial finite element program (Comsol 5.1). After 

the geometry was processed, we proceeded to mesh the 

cylindrical volume that represented the airgap. In this 

part of the procedure, we required 5 tetrahedral elements 

in the axial direction as it is the main region of interest. 

Afterwards, the mesh that resulted in the interface 

between the airgap and the magnet assembly was swept 

to discretize the remaining bodies, for each of them we 

utilized two elements in the axial direction, thus it resulted 

in pentahedral elements. With this meshing procedure,  

it was possible to take into account the segmentation  

of magnetic material in the permanent magnet thrust 

bearing assembly. One of the resulting meshes is shown 

in Fig. 3. 

The resulting number of degrees of freedom solved 

for each mesh are shown in Table 1. As it can be seen, 

the number of degrees of freedom increases when the 

airgap is reduced. The reason is that we decided to utilize 

5 elements in the axial direction to model the airgap. 

Therefore, the resulting number of elements varied with 

the airgap length. For a smaller airgap, the maximum 

size of the element was reduced, resulting in a larger 

number of mesh elements. 

 

 
 

Fig. 3. One of the meshes utilized to calculate the force 

in the permanent magnet thrust bearing with the finite 

element method. 
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Table 1: Number of degrees of freedom solved for each 

simulation depending on the airgap length 

Airgap 

(mm) 

Number of Degrees of 

Freedom Solved 

10 2.7756e7 

11 2.5157e7 

12 1.9514e7 

13 1.7788e7 

14 1.6306e7 

15 1.4765e7 

16 1.1542e7 

 
After the meshing was performed, we proceeded  

to set the finite element formulation. We utilized the 

following constitutive relation for all the simulated 

volumes: 

 
r rB H+B . (1) 

For the two volumes surrounding the magnets and 

the volume that represented the airgap, the relative 

permeability was set to 1r = . Since the grade of Nd-Fe-

B permanent magnet material selected had a relatively 

high coercivity and the height to width aspect ratio of  

the magnets selected was high [14], we considered  

that implementing the BH  curve of the magnets was  

not needed. Therefore, we set the relative permeability 

of the permanent magnet material to 1.037r =  and the 

remanence to 1.35Tr B . The typical remanence for  

this batch of magnets was obtained directly from the 

manufacturer (Sura magnets), and the permeability from 

the datasheet of a typical N48 permanent magnet from 

Arnold magnetics [15]. The direction of magnetization 

of the permanent magnets was set according to the 

schematic shown in Fig. 4. 

 

 
 
Fig. 4. Direction of magnetization utilized in the Hallbach 

arrays of the permanent magnet thrust bearing. 

 

Afterwards, we solved for the magnetic vector 

potential using the following equation form: 

 1 1

0( ( ))r r    B B 0 , (2) 

where: 

 B A . (3) 

In all the studies, the forces between the volumes that 

represented the stator and the rotor of the permanent 

magnet thrust bearing were calculated using the Maxwell 

stress tensor. In total, we performed 7 simulations at 

different airgaps to evaluate the force as the plates 

approached each other and 38 simulations at 16 mm 

airgap for different rotational positions between the 

plates. 5 simulations in steps of 1 degree, 18 simulations 

in steps of 2 degrees, and 15 in steps of 5 degrees. With 

this amount of simulations we were able to cover one 

third a revolution. This was done to evaluate the axial 

force ripple as the bearing rotated. 

 

B. Thrust vs. distance measurements 

The measurements of thrust and distance between 

the bearing plates were taken in situ, with the bearing 

installed in the machine. We started by measuring the 

load exerted by the weight of the shaft on the bearing and 

the distance between the rotor and the stator. Afterwards, 

we artificially increased the load in the bearing as 

described in Fig. 5. To evaluate the axial force, three load 

cells were inserted in parallel under the bearing. The load 

cells used are of the doughnut type, model LTH350 from 

the company Futek. They were previously calibrated and 

the signals were properly amplified. We measured the 

airgap between the plates manually with a caliper at 

different points around the circumference of the bearing 

and then calculated the average. 

 

C. Spin down tests 

The test rig was provisioned with speed sensors that 

made it possible to evaluate the rotational speed of the 

machine over time during spin-down. The machine was 

accelerated to one third of the rated speed, afterwards the 

driving power was disconnected, the rotational speed 

was recorded when the machine was resting on the 

permanent magnet thrust bearing as well as when it was 

resting on the roller bearings. 

 

 
 

Fig. 5. Schematic of the axial force test set-up. Sliding 

rods (yellow) were attached to the rotor plate (red). Torque 

was applied to the nuts (orange), through washers (blue) 

that pressed on the static foundation that holds the bearing 

(black). By reaction, the rotor plate (red) was pulled 

downwards. The sliding rods were used to maintain the 

radial placement of the plates. To reduce their influence 

on the measurements, they were properly greased. The 

distance measurements between the plates were taken 

manually with a caliper, the force measurements were 

recorded with load cells (green). 

 

D. Axial force ripple measurements 

In order to evaluate the movement of the shaft in  

the axial direction, we measured the relative position 
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between the rotor and the stator with a high accuracy 

Eddy-current sensor from MICRO-EPSILON model 

eddyNCDT3010,S2. We did it at 500 rpm, the rated speed. 

At the same, we recorded the force measured in the three 

load cells that were described in Section II-B. 

 

III. RESULTS AND DISCUSSIONS 
The results arising from the methods presented are 

summarized in this section. The finite element method 

calculations are compared with the measurements 

performed for the thrust vs. distance and the axial force 

ripple. 

 

 
 

Fig. 6. Simulated flux density in the surface of one the 

permanent magnet bearing plates at an airgap of 16 mm. 

In order to be able to simulate the effects of the 

segmentation of the magnetic material, three-dimensional 

simulations were performed. In the figure, the flux 

density distribution pattern of the Hallbach array can be 

appreciated. 

 

A. Thrust vs. distance measurements and finite 

element calculations 
As described in the previous section, the permanent 

magnet thrust bearing was loaded from its usual load 

(shaft weight), to a value just under the maximum that 

the load cells could take. We also simulated the bearing 

in the same range. The resulting simulated magnetic flux 

density at the surface of one of the plates of the magnetic 

bearing is shown in Fig. 6. The calculated force between 

the plates at different airgaps with the three dimensional 

simulations and its corresponding measurements are 

shown in Fig. 7. We found good correspondence between 

them. In all the cases, the simulations showed a slight 

overestimation of the force. The discrepancy increased 

as the airgap was reduced. This is most likely due to the 

effects that we had chosen to neglect in order to simplify  

the simulations, mainly the full magnetic characteristics 

of the permanent magnets and the steel plates in which 

the magnets were assembled. If both were implemented, 

it is expected that the force calculated would be lower as 

the plates approach each other. This is due to the fact that 

the leakage field on the plates will result in a small 

attractive force. On the other hand, the magnetic domains 

would deviate from ideal as the magnets are pushed 

closer. Both effects act in detriment of the repulsive 

force. Nevertheless, as we suspected, the influence of 

this simplifications were small. On the practical side, 

during the measurements, the assembly was constrained 

radially not only by the sliding rods utilized to exert and 

extra force on the bearing, but also by the radial bearings 

and the spline. They certainly had an effect on the 

measured forces, but as it can be appreciated from the 

comparison this effect was small as well.  

 

 
 

Fig. 7. Simulated and measured thrust forces as a 

function of airgap length.  

 

B. Spin down tests 

After the installation of the permanent magnet thrust 

bearing into the hydropower test-rig, a number of spin-

down tests were made. These tests were performed with 

the rotor resting axially only on the permanent magnet 

thrust bearing, and also when it was supported only by 

the mechanical roller bearing. The rotor was accelerated 

to a rotational speed of 166.7 rpm, one third of the rated 

speed of the test-rig. The drive was thereafter turned  

off, and the rotor allowed to spin-down. The measured 

rotational speed over time for the two cases can be found 

in Fig. 8. From the figure it can be concluded that the 

losses in the machine when it is supported by the 

permanent magnet thrust bearing are lower that when it 

is supported by its mechanical counterpart. It is hard to 

isolate the losses of each thrust bearing from the losses 

in the other parts of the system, but if it is assumed that 

windage and radial bearing losses are the same for both 

tests, the difference presented in Fig. 8 corresponds to 

the difference in losses between both bearings. 
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Fig. 8. Measured rotational speed as function of time 

during a spin-down test from a rotational speed of 166.7 

rpm when the shaft was supported by the permanent 

magnet thrust bearing and the corresponding set of 

measurements when it was carried by a roller bearing. 

 

C. Axial ripple measurements and finite element 

calculations 

In order to estimate the influence that the 

segmentation of the magnetic material utilized to build 

the Hallbach arrays for the magnetic bearing as it rotates, 

we performed a large number of static simulations along 

one third of a revolution at an airgap of 16 mm which is 

the operational distance between the bearing plates. We 

did the simulations in different increments, the idea was 

to map the influence of the segmentation at different 

levels. The simulations with a small step (1 degree) were 

performed to try to map the influence within the width  

of a magnet. We found from the simulations that the 

influence of the segmentation on the axial force as the 

bearing rotates is very small. The average force obtained 

in all the 38 simulations was 12.5589 kN, the maximum 

force simulated was 12.55974 kN and the corresponding 

minimum was 12.53914 kN. We found that maximum 

variation from the average was a bit more than 30 N. The 

results of the simulations are shown in Fig. 9.  

In order to be able to compare the results from the 

finite element simulations, we also measured the relative 

movement between the shaft at rated speed and the force 

through the load cells, the results of these measurements 

are shown in Fig. 10. From the measurements of force 

we can see that the obtained thrust force peak oscillations 

were roughly double than the simulated values. Still,  

the figures were quite low compared to the operational 

thrust. In the distance measurements, sharp peaks can be 

appreciated, they corresponded to four equidistant holes 

in the measured surface. They were useful to measure  

the rotational position. From this measurements a pattern 

can be appreciated, the distance between the plates 

variated periodically with the rotational frequency. The 

measured variation was small, the measured peak was 

less than a fifth of a millimeter. 

 
 

Fig. 9. Simulated normalized force obtained from static 

three dimensional simulations. As it can be seen in the 

figure, the expected variation in the force as the bearing 

rotates is very low compared to the actual carried force 

of 12.55 kN. 

 

 
 

Fig. 10. Normalized measurements of airgap and thrust 

force at rated speed.  

 

IV. CONCLUSIONS 
The results presented in this paper showed that  

the design, construction and installation of a permanent 

magnet thrust bearing useable for rotor weights up to  

a couple of tons is technically feasible. For practical 

reasons, we decided to build a segmented structure. For 

the weight required, there were practically no constrains 

in terms of space, this allowed us to have a comfortable 

design that resulted in a bearing with a large airgap. 

Nevertheless, we took provisions to reduce the axial force 

ripple as much as possible in spite of the segmentation of 

the magnetic material utilized. The efforts resulted in 

relatively low axial oscillations. The expected thrust 

force and the expected ripple due to the segmentation of 

the magnetic material were simulated utilizing three 

dimensional finite element calculations. The calculated 

values had good correspondence with measured ones. 

The bearing presented in this paper will allow the further 

investigation magnetic bearings. The simulation tools 
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verified in this work, will allow us to design larger 

bearings. 
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Abstract ─ In magnetic vibration isolation field, magnetic 

force is used for the isolation, while the whole isolation 

system is always supported passively, which have non-

control shortcomings. Aimed at this problem, a novel 

active control strategy with a double closed-loop PID 

algorithm was designed in this paper. The double closed-

loop strategy includes an internal and external loop 

control, which was designed to fulfill the magnetic 

levitation and isolation, respectively. Firstly, the vibration 

isolation strategy proposed in this paper was simulated 

in both time and frequency domain. The simulation results 

showed that this method possesses good performance  

of vibration isolation. Then, an active levitation and 

vibration isolation control experiment was designed. The 

experimental results showed that the control algorithm 

has a good vibration control effect under periodic 

vibration and random vibration conditions. 

 

Index Terms ─ Double closed-loop PID, magnetic 

levitation, vibration isolation. 

 

I. INTRODUCTION 
With the development of precise and ultraprecise 

manufacturing technology, the vibration control in the 

process of mechanical equipment operation is getting 

more and more attention. The research on the vibration 

isolation control has developed from passive isolation 

control to active isolation control [1-2], and from single 

degree-of-freedom (DOF) vibration [3-4] to multi degrees-

of-freedom vibration [5-6]. 

The magnetic levitation technology possesses the 

advantages of no contact, no friction, free of lubricating 

oil pollution, adjustable bearing stiffness and levitation 

position [7]. Thus, the application of vibration control 

combining with the magnetic levitation technology has 

good prospects. 

For most of the magnetic vibration isolation system, 

the whole system is supported by the traditional methods 

such as spring, rubber pad and air bag [3, 6, 8]. Although 

traditional passive support can bear more weight, the 

bearing characteristics like height and stiffness are not 

easy to adjust. And traditional passive support is unable 

to achieve active control to the external disturbance. 

Therefore, the magnetic technology can be utilized to 

support and isolate vibration using the electromagnetic 

force without any additional vibration isolation equipment, 

which is very promising for the optical instruments, or 

those light load equipment sensitive to vibration. This 

method can simplify the vibration isolation system 

structure, reduce cost, and increase the vibration isolation 

frequency range combining the passive and active 

vibration isolation. So the magnetic suspension platform 

realizing both stable suspension and broadband vibration 

isolation has great research value. 

In this paper, a new double closed-loop control 

based on the PID control [9] was proposed and applied 

to a one DOF magnetic levitation platform with the 

combined functions of active levitation and the active 

vibration isolation. The controller using the relative 

displacement and absolute acceleration as feedback signal 

adopted the inner loop to control the magnetic levitation 

support and the outer one to control the vibration isolation. 

The remainder of this paper is organized as follows: 

Section 2 analyzes the vibrating transmissibility of the 

passive vibration isolation system and the passive-active 

vibration isolation system. Section 3 presents the vibrating 

transmissibility of magnetic levitation system with inner 

PID loop controlling the magnetic levitation support. 

Section 4 is the simulation of the system with double 

closed-loop PID. Section 5 shows the experimental results 

of the magnetic levitation system with double closed-

loop PID control, and conclusion are drawn in Section 6. 

 

II. ACTIVE AND PASSIVE VIBRATION 

ISOLATION 
According to whether the controller is needed or not, 
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vibration isolation system can be divided into active and 

passive vibration isolation system. Passive vibration 

isolation system can be simplified as one DOF mass-

spring-damping vibration isolation model, as shown in 

Fig. 1. 

 

Target plane m2

Basis plane m1

k c

x2(t)

x1(t)

 
 
Fig. 1. Principle for passive isolation. 

 

For the Fig. 1, the equation of motion can be written 

as: 

 
2 2 2 1 2 1( ) ( ( ) (t)) ( ( ) (t)) 0,m x t k x t x c x t x      (1) 

where m2 is the mass of the target plane, k is the 

supporting stiffness, c is the damping coefficient, x1(t)  

is vibration displacement of the basis plane, and x2(t)   

is the vibration displacement of the target plane. The 

main purpose of the vibration isolation is to reduce the 

vibration transmitted from the basic object to the target 

plane. 

The transmissibility of vibration acceleration 

amplitude is: 

 
2 2
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where X1 and X2 are amplitude of the basis plane and  

the amplitude of the of the target plane, respectively. 𝜔 

is the frequency of vibration. Therefore, the relationship 

between the vibration frequency and the vibration 

transmissibility can be obtained: 
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 (3) 

where  𝜔𝑛 is the natural frequency of vibration without 

damping. According to Equation (3), the passive vibration 

isolation is effective only when the vibration frequency 

𝜔  is larger than √2𝜔𝑛 . This limitation restricts the 

application of passive vibration isolation in low frequency 

vibration. 

With the development of control technology, active 

vibration isolation becomes more and more important 

and relatively has better performance in theory 

comparing to the passive isolation. In order to combine 

the advantages of passive vibration isolation with the 

advantages of active vibration isolation, active isolator 

can be series connected with the passive vibration 

isolation, which is shown in Fig. 2. 
 

Target plane m2

Basis plane m1

k c

x2(t)

x1(t)

xref(t)

kc

Support  

reference

Vibration 

isolator

 
 

Fig. 2. Principle for series connection of passive isolation 

and active isolation. 
 

The active vibration isolation uses the acceleration 

signal of the target plane as the feedback signal. Then, 

the vibration isolation controller outputs the control 

signal to change relative position between x1 and the 

support reference position xref. The control function is: 

 
1 2,ref cx x K x   (4) 

where Kc is the active controller transfer function. The 

motion equation of the whole system is: 

 2 2 2 2

1 2

( ) ( ) 0
.ref ref

ref c

m x k x x c x x

x x K x

    
  

 (5) 

In order to simplify the analysis, we assume that  

the control transfer function Kc is the constant gain kc. 

The vibration acceleration amplitude transmissibility 

with the active vibration isolator is: 
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The effect of vibration isolation is expressed by the 

logarithm of the transmissibility: 

 2
10

1

=20log .
X

X
  (7) 

Figure 3 draws the vibration transmissibility for 

passive isolation with and without active isolation. 
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Fig. 3. Comparison of vibration transmissibility between 

the passive isolation with and without active isolation 

series connected. 
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In Fig. 3, compared to passive vibration isolation, 

resonance frequency and resonance peak decrease with 

vibration active isolator series connected. Logarithmic 

transmissibility of vibration acceleration is less than 0  

at low frequency. And when kc is larger, the vibration 

transmissibility is lower. 
 

III. MAGNETIC LEVITATION PLATFORM 
Magnetic levitation system is composed of 

controller, power amplifier, displacement sensors, 

acceleration sensor, soft magnetic material and coil, as 

shown in Fig. 4. The displacement signal of target plane 

measured by the displacement sensor is used as a 

feedback signal to be input to the controller. The control 

signal is converted into the control current i through a 

power amplifier, which is superimposed with the bias 

current I, and input to the coil. Then the electromagnet 

generates electromagnetic force to the suspended target 

plane, in order to control movement of the target plane. 

The mathematical model of 1-DOF magnetic 

levitation platform is: 

 + ( , ),mx mg F x i  (8) 

where m is the total mass of suspended target which 

contains target plane and thrust disc and shaft between 

them as shown in Fig. 4, �̈� is the acceleration of the 

levitation target, F is electromagnetic force resultant 

from the upper and lower magnetic poles, and x is the 

displacement compared to the middle position. 

At the equilibrium position, the linearized 

electromagnetic force F(x, i) can be written as [10]: 

 ˆ ( , ) ,i xF x i k i k x     (9) 

where 𝑘𝑖and 𝑘𝑥 are the open loop current gain and the 

actuator stiffness, respectively. 

The control block diagram of the magnetic levitation 

supporting system is shown in Fig. 5. 
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Fig. 4. 1-DOF magnetic levitation platform. 
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Fig. 5. Diagram of magnetic levitation supporting system. 

Figure 5 presents the magnetic levitation supporting 

system based on PID control. 𝐾1(𝑠) is the support 

controller with PID control, 𝐺𝑝𝑎(𝑠) is the transfer function 

of the power amplifier, 𝐴𝑠(𝑠)  is the displacement 

sensor, 𝑥𝑟𝑒𝑓  is position reference signal. 𝑥2 is absolute 

displacement of the target plane. 𝑥1 is the basis plane 

absolute displacement. The input of magnetic support 

system is the acceleration signal of basis plane. And the 

output of magnetic support system is the acceleration 

signal of target plane. The transfer function is: 

 12
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𝐺1(s) = 𝐴𝑠(𝑠)𝐾1(𝑠)𝐺𝑝𝑎(𝑠)𝑘𝑖 + 𝑘𝑥, 𝑠 = 𝑗𝜔, so the 

vibration transmissibility is: 
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The transfer function of the PID control can be 

written as: 
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 (12) 

where j = 1,2, 𝑃𝑗 = 𝐾𝑝,𝑗 is proportion coefficient, 𝐼𝑗 =

𝐾𝑝,𝑗/𝑇𝑖,𝑗  is integral coefficient, and 𝐷𝑗 = 𝐾𝑝,𝑗𝑇𝑑,𝑗  is 

differential coefficient, and 𝑇𝑓,𝑗  is the time constant of 

the low-pass filter.  

Using three different PID control parameter groups, 

the vibration acceleration transmissibility of magnetic 

support system is simulated without vibration isolator. 

The simulation results show in Fig. 6. 
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Fig. 6. Simulated vibration transmissibility of levitation 

supporting loop with different control parameters. 

 

The three PID parameter groups (parameter 1, 

parameter 2 and parameter 3) have different value of 

proportion coefficient and integral coefficient and 

differential coefficient respectively. According to the 

simulation results, the levitation support system has the 

effect of vibration isolation only in the high frequencies, 

while the vibration that transmitted to the target plane 
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will be amplified in the lower frequencies. The vibration 

transmission characteristics are similar to the passive 

vibration isolation system. 

 

IV. NUMERICAL SIMULATIONS FOR 

DOUBLE CLOSED-LOOP PID 
To realize active supporting and active vibration 

isolation at the same time with only one magnetic 

levitation actuator, the controller needs new control 

strategy. The control system contains the active vibration 

isolation loop and the levitation support loop. For the 

vibration isolation, in order to facilitate the installation 

of sensors and vibration signal measurement, the 

acceleration sensor is used to measure the target plane 

vibration. For the levitation support, displacement sensor 

is used to measure the relative displacement of the target 

plane relative to the basis plane.  

Figure 7 is the control system block diagram in 

which the inner loop is nested in the outer loop. In the 

outer loop, �̈�2  is the acceleration signal of the target 

plane measured by acceleration sensor, 𝐴𝑎(𝑠)  is the 

transfer function of acceleration sensor. 𝐾2(𝑠)  is the 

isolation controller. The output signal of 𝐾2(𝑠) which is 

the position reference signal 𝑥𝑟𝑒𝑓  of the inner levitation 

support loop, is input to the levitation support controller 

𝐾1(𝑠) . The control signal from 𝐾l(𝑠)  is transformed 

into control current by power amplifier to control the 

target plane. 
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Fig. 7. Diagram for internal-and-external loop control 

system. 

 

Vibration isolation controller K2(s) also uses the PID 

control. The structure of the system can be equivalent to 

the system shown in the Fig. 2. 

After adding the isolation loop, transfer function 

from the basis acceleration �̈�1 to the target acceleration 

�̈�2 is: 
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𝐺2(s) = 𝐴𝑎(𝑠)𝐾1(𝑠)𝐺𝑝𝑎(𝑠)𝑘𝑖𝑠
2 , ,s j  so the 

vibration transmissibility is: 
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The acceleration sensor transfer function is: 

 0.0078,a gA A   (15) 

where Ag is the acceleration signal gain. The vibration 

transmissibility at different Ag shows in Fig. 8. 
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Fig. 8. Comparison among the simulated vibration 

transmissibility with different Ag. 

 

As Fig. 8 shows, the addition of active vibration 

isolation loop can effectively reduce the vibration 

transmissibility and the resonance frequency. 

After adding the active vibration isolation loop, the 

dynamic characteristics of new system is obtained through 

the step response simulation. The result shows in Fig. 9. 
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Fig. 9. Step response of double closed-loop PID control 

system with different Ag. 

 

Figure 9 is the system step response at different Ag, 

when adding vibration isolation loop. It can be seen from 

the figure, with the increase of Ag, the overshoot 

decreases and the settling time increases. So when Ag 

ranging from 100 to 300, the system can get better 

performance. 

The vibration isolation effect of the system is 

simulated in time domain, taking Ag=10, with the 

vibration acceleration amplitude of basis plane is 1.0m/s2 

and vibration frequency is 25 Hz. Amplitude of target 

plane with and without the isolation shows in Fig. 10. 

Without the vibration isolation, the vibration amplitude 

of the target plane is 1.0m/s2, while with the vibration 

isolation, the amplitude becomes 0.08m/s2. So the 

amplitude transmissibility is -21.9 dB. 
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Fig. 10. Simulated result in time domain, 25 Hz. 

 

When the basis plane vibrates randomly with 

maximum amplitude of 1.0m/s2, it can be seen from the 

Fig. 11 that, without vibration isolation loop, maximum 

amplitude of levitation target is magnified and about 

5.5m/s2. With the vibration isolation loop, the maximum 

amplitude of target plane is 0.6 m/s2, so isolation effect 

to the random vibration is equally obvious. 
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Fig. 11. Simulated results in time domain of random 

vibration isolation. 

 

V. VIBRATION ISOLATION EXPERIMENT 
The principle diagram of the experimental magnetic 

levitation platform with active vibration isolation and 

levitation support is shown in Fig. 12. And the real 

experimental system built according to principle diagram 

consisting of seven main parts is shown in Fig. 13. 
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Fig. 12. Vibration isolation with double closed-loop PID 

control. 
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Fig.13. Real experimental equipment. 

 

Setting vibration frequency of the basis plane to  

25 Hz, for the convenience of observation, using 

acceleration sensor to detect the vibration signal, the 

vibration acceleration with and without vibration isolation 

loop is compared in Fig. 14 and Fig. 15. The vibration 

acceleration amplitude of the basis plane is 10.1m/s2. 

Without the vibration isolation loop, the target vibration 

acceleration is amplified to 13.2m/s2. After adding 

vibration isolation loop, the amplitude of acceleration is 

3.33m/s2. The vibration acceleration transmissibility 

from the basis to the target plane before and after adding 

the vibration isolation loop is respectively 2.33 dB and  

-9.46 dB. 

As shown in the Fig. 16, after the vibration isolation, 

the power density of the basic frequency 24.9 Hz and the 

double frequency 49.8 Hz of the target plane respectively 

reduce 71.4% and 93.3%. 
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Fig. 14. Experimental comparison between base plane 

and target plane vibration without vibration isolation 

loop, 25 Hz. 
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Fig. 15. Experimental comparison between base plane 

and target plane vibration with vibration isolation loop, 

25 Hz. 
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Fig. 16. Experimental spectrogram of frequency domain. 

 

Setting the basis plane vibration to random vibration 

which has lower frequency components, the comparison 

between the acceleration without and with the vibration 

isolation is shown as Figs. 17 and 18. Without the isolation 

loop, vibration amplitude of the basis plane acceleration 

is 3.59m/s2 and the amplitude of the target acceleration 

is 4.10m/s2. And after adding isolation loop, vibration 

amplitude of the basis plane acceleration is 4.15m/s2 and 

the amplitude of the target acceleration is 1.84m/s2. The 

vibration acceleration transmissibility from the basis 

plane to the target plane without and with the vibration 

isolation is respectively 1.15 dB and -7.06 dB. So the 

target vibration acceleration is obviously reduced relative 

to acceleration without the isolation. 

From Fig. 19, in the power density of random 

vibration, the main frequency components after the 

vibration isolation have a significant reduction in. Such 

as in 14.8 Hz frequency, the power density decreases by 

55.1% and in 29.1 Hz frequency, the power density 

decreases by 75.9%. 
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Fig. 17. Experimental comparison between base plane 

and target plane vibration without vibration isolation 

loop, random vibration. 
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Fig. 18. Experimental comparison between base plane 

and target plane vibration with vibration isolation loop, 

random vibration. 
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Fig. 19. Experimental spectrogram of frequency domain 

of random vibration. 
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VI. CONCLUSION 
This paper proposed a new double closed-loop 

vibration isolation strategy which contained inner loop 

for levitation support and outer loop for vibration 

isolation. The double closed-loop control system was 

designed for the magnetic levitation platform. The 

simulation result shows the good vibration isolation 

effect of this method. And the bigger the acceleration 

sensor gain Ag is, the better the vibration isolation effect 

is. The vibration isolation experiment of magnetic 

levitation vibration isolation system with double closed-

loop PID control under periodic and random vibration 

conditions was designed to prove the effectiveness of 

vibration isolation. After adding the vibration isolation 

loop, vibration acceleration transmissibility of 25 Hz 

periodic vibration decreased from 2.33 dB to -9.46 dB. 

And the maximum acceleration transmissibility of low 

frequency random vibration decreased from 1.15 dB to -

7.06 dB. 
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Abstract ─ This study proposes a novel sensorless 

control of a current-controlled three-pole active magnetic 

bearing (AMB) system. It is based on the smooth current 

controller incorporated with the estimated rotor 

displacements. The rotor position information is extracted 

from additional sensing coil currents. The sensing coil 

currents are generated from three phase voltages injected 

to the additional coils on each magnetic pole. The 

dynamic model of the 3-pole AMB with the additional 

high frequency input is derived for levitation control and 

for position estimation. The results are verified through 

simulation analysis. 

 

Index Terms ─ Active magnetic bearing, sensorless 

control, smooth current control. 
 

I. INTRODUCTION 
High speed and high accuracy are the major trends 

for machines in the 21st century. In this regard, active 

magnetic bearing (AMB) is an important element since 

it can provide noncontact suspension. This brings several 

important advantages, including a significant increase of 

the maximum rotation speed, friction-loss reduction, etc. 

However, the potential of its industrial applications has 

not been fully explored yet. One of the main reasons is 

its high cost. Therefore, cost reduction has always been 

an important research direction for the development of 

AMB system. Hardware accounts for the major part of 

the overall cost of an AMB. The elimination of some 

hardware requirements can substantially cut down the 

overall cost. The three-pole AMB was proposed for this 

particular purpose [1-4]. It has been shown that the  

three-pole AMB system requires less power amplifiers, 

possesses less copper and iron losses and provides more 

space for heat dissipation, coil winding and sensor 

installation. 

To further reduce the overall cost, one may note that 

position sensors are in general more expensive than 

electrical sensors. It has been found that electrical signals 

may be used to estimate the mechanical information [5], 

leading to the so-called self-sensing technique. Thus, 

sensor cost can be reduced.  

In AMB system, the rotor displacement is the 

controlled variable, and thus, it must be measured or 

estimated. The rotor displacement is often measured 

using eddy-current sensors, which are the most widely 

used one for the magnetic bearing application [6]. It has 

the characteristics of small physical size with high 

resolution, excellent temperature stability, small phase 

shift and high dc stability. However, eddy current sensor 

has some drawbacks, including relatively high cost, as 

well as periodic calibration and maintenance requirements. 

There have been a large number of self-sensing 

studies in the literature [7]. The nonlinear high-gain 

observer method was presented in [8], but the observer 

design is quite complex. The approach of pulse width 

modulation (PWM) switching power amplifiers was 

proposed in [9], [10], but this method requires good 

performance of PWM. Another approach is to inject a 

high frequency signal to the electromagnet wires [11], 

[12]. This signal is modulated by the varying air gap 

through the inductance of the coil. By demodulating  

the output signal with the frequency component of  

the injection signal, the air gap and thus the rotor 

displacements can be obtained. Some of the techniques 

have been well known in the field of motor control [13], 

but has been applied to AMB only recently. 

This paper presents a new sensorless control 

technique for the three-pole AMB system. An additional 

coil on each magnetic pole is implemented for sensorless 

control. A three phase high frequency voltage is provided 

for the additional 3 coils. The current measurement of 

the additional coils and the original coils makes it 

possible to obtain the position of rotor. 

This paper is organized as follows. After the 

introduction, the mathematical model of three-pole 

AMB system with additional coils is described and a 

smooth current controller is proposed in Section II. In 
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Section III, the rotor position estimation is proposed. 

Numerical simulations are carried out in Section IV  

to verify the design of additional coil three-pole AMB 

system. Finally, conclusions are drawn in Section V. 
 

II. SYSTEM MODELING AND SMOOTH 

CURRENT CONTROL 

A. Three-pole magnetic bearing model 

The three-pole AMB considered here has been 

studied previously in [1-4, 14]. The three poles are 

arranged in a radially symmetric Y-shaped structure  

to produce a uniform force distribution in the 2-D 

configuration space. The upper two poles are wired 

together in a differential way so that only two 

independent coil currents and hence two power 

amplifiers are required. It has been shown in [1] that this 

configuration is the optimal design in the sense of 

minimum heat dissipation. In this section, in order to 

achieve sensorless control of the three-pole AMB, there 

will be an additional coil on each pole to provide three 

phase voltage source, as shown in Fig. 1. In other words, 

there are two sets of coils: control coils and sensing coils. 

The control coils for the upper two poles are wound in  

a differential way. In other words, the two poles share 

the same control current 2i , but with opposite winding 

directions (i.e., 23 ii  ). The magnetic circuit for the 

three-pole AMB is given by Fig. 2, assuming that the 

reluctances exist only on the air gaps. By simple circuit 

analysis, the magnetic flux passing through each pole, 

denoted by is , can be obtained as: 
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where 
1 1 1 1 ,s sN I Ni N i   

2 2 2 2 ,s sN I Ni N i   

3 3 3 3 ,s sN I Ni N i   N is the number of control coil turns 

on each pole, sN  is the number of sensing coil turns on 

each pole, 1i  to 3i  are the control coil currents, si1  to 

si3  are the sensing coil currents and 1R  to 3R  are the 

reluctances of the air gaps between the rotor and the three 

magnetic poles. The reluctance can be expressed by: 

 
A

l
R

j

j


 , (4) 

where 1l  to 3l  represent the air gaps,   is the magnetic 

permeability of the air and A is the face area of each pole. 

The magnetic force of the three-pole AMB can be 

easily obtained. Assume that the magnetic characteristic 

is linear (i.e., linear B-H relationship) and fringing 

effects and flux leakage are neglected. Then, by 

Ampere’s law and principle of virtual work, the 

magnetic force is related to the magnetic flux by: 

 3~1,
2

2

 i
A

F is
i




. (5) 

 

 
 

Fig. 1. The current-controlled three-pole AMB system 

with sensing coils. 

 

 
 

Fig. 2. Magnetic circuit for the additional coil three-pole 

AMB. 

 

Using Newton’s second law of motion, the magnetic 

force generated by the three poles in the X and Y 

directions are: 

     2s1s023 ΦΦ30cos
1

cFF
m

xr   , (6) 

        g
c

gFFF
m

yr  2
1s

2
2s

0
123 ΦΦ

2
30sin

1  , 

 (7) 

where 
m

A
c

3

4
0


 , m is rotor mass, s1  and s2  are 

defined by: 

 )(
4

3
Φ 231s ss

A



 , (8) 

 )
4

3
Φ 232s ss(

μA
  . (9) 
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B. Coordinate transformations 

Note that the magnetic fluxes is  contain the 

contribution from both control and coil currents. Due to 

the differential winding configuration, there are only two 

independent control currents since 23 ii  . On the other 

hand, the sensing coil currents isi  will be generated by 

the three phase voltages as shown in Fig. 1. That is, they 

need to satisfy the Faraday’s induction law as: 
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where sv1 to sv3 are three phase voltage, sr is coil resistance. 

Equation (10) can be transformed into the Cartesian 

coordinate through the inverse Clarke transformation: 

 




















































y

x

c

b

a

f

f

f

f

f

2

1

2

3

2

1

2

3

10

, (11) 

to yield, 
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In other words, yx vv ,  are the transformed three phase 

voltages; yx ii ,  are the transformed sensing currents; 

yx  ,  are the transformed magnetic fluxes on the three 

poles. It can be shown that Equations (8) and (9) will 

become: 

   yss
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Φ 231s  , (13) 
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Thus, Equation (12) can be re-written as: 
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Also, in terms of rotor displacements and coil 

currents, Equations (13) and (14) become: 
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where rx  and ry  are the rotor displacements, 0l  is the 

nominal air gap and  222
04 rr yxlL   is always 

positive in the operation rang because that the rotor 

displacement is always smaller than the nominal air gap, 

i.e.,   2
0

22 lyx rr  . Finally, let us define the system 

states as 
1 ,s rx x 2 ,s rx x 3 ,s rx y 4 ,s rx y 5 1 ,s sx Φ

6 2 .s sx Φ  That is,  

  Tsssssss xxxxxxx 654321 . 

Then, the system dynamics can be obtained as: 
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where tVvtVv yx  sin,cos  , V is the amplitude of 

the three phase voltage. The sensing currents depend on 

the rotor displacements and control currents, and can be 

obtained from Equation (16) as: 
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C. Smooth current control 

It is well known that the AMB system is unstable 

and nonlinear. As a result, it is necessary to design a 

stabilizing feedback controller for stable suspension. 

Following the smooth current controller proposed in [3], 

we will design a controller for this system. For more 

details on smooth current control, please refer to [3]. Let 

us first consider the rotor dynamics part in the overall 

state Equation (17), i.e., 
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Regarding s1  and s2  as virtual control inputs, 

we can design a control law as: 

  xψs 11  ,      xψ
c

g
s 2

0

2

2
 , (20) 

 1132121111 )( zkxkxkx ss  ,  (21) 

 2264253242 )( zkxkxkx ss  ,  (22) 

where  dtxz s11 ,  dtxz s32 , and ijk ’s are the PID 

feedback gains. Therefore, from Equation (16), the overall 

control law for the control currents is given by: 
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 (23) 

Note that unlike the standard smooth current control [3], 

here the control currents need to compensate the 

disturbance from the sensing currents. 

Comments on the computational issues of the 

feedback control law (23) are made here. An important 

parameter in the control law is 0c . It is related to the 

magnetic force model. In order to get accurate value,  

it is better to use finite element method for the model  

of magnetic forces [15]. It can also be obtained by 

experimental calibration of magnetic force model, as 

presented in [2]. 

 

III. THE ROTOR DISPLACEMENT 

ESTIMATION 
The estimation of rotor displacements will be based 

on Equation (16), or equivalently, Equation (18). It is the 

relationship between the rotor displacements and the 

electrical and magnetic quantities: the control currents 

1 2, ,i i  the sensing currents yx ii , , and the equivalent 

magnetic fluxes 
1 2, .s s   Equation (18) can be re-written 

as: 
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which is equivalent to: 

  ssrsr lyx 2021 2 , (26) 

  ssrsr lyx 1012 2 , (27) 

where xsiNNi
2

3
3 2   and ysiNNi

2

3
1  . From 

Equations (26) and (27), one can obtain the rotor 

displacements as: 
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In (28) and (29), the control currents 21, ii  and sensing 

currents yx ii ,  can be measured by the current sensors. 

Also, the equivalent magnetic fluxes ss 21 ,  can be 

obtained by integrating Equation (15), i.e., 
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Therefore, Equations (28) and (29) can be used for the 

estimation of rotor displacements, and can be used for 

the feedback control in the smooth current controller (23). 

Comments on the computational issues of position 

estimation algorithm (28) and (29) are made here.  

Note that the equivalent magnetic fluxes ss 21 ,  are 

important quantities for the position estimation, as can 

be easily seen from (18) and (29). The computation of 

ss 21 ,  using (30) could lead to large error if the 

transformed three-phase voltages yx vv ,  and the sensing 

currents yx ii ,  are contaminated with large noise. 

Therefore, a key point to obtain good estimation is to use 

filters to handle yx vv ,  and yx ii ,  before computing (30). 

An alternative way to get ss 21 ,  is to use finite 

element method [15] to compute magnetic fluxes is  

and then use (13) and (14). This approach will yield more 

accurate 
1 2, ,s s   but it is time-consuming and not 

feasible for real-time sensorless control. 

 

IV. SIMULATION RESULTS 
To verify the effectiveness of the proposed 

sensorless control, numerical simulation will be carried 

out in this section. The nominal values of the system 

parameters are shown in Table 1. Note that the frequency 

of the sensing voltage is 100 Hz with amplitude of 1V. 

The control gains ijk ’s in (21) and (22) are designed 

using the method of pole placement. The closed-loop 

poles are chosen at: 

 2811  , 5.2512  , 1313  ; 

 5.2521  , 2322  , 5.2323  ; 

where i1  represents the poles for the closed-loop 

linearized dynamics in the X-direction, and i2  for the 

Y-direction. The initial conditions for the system state 

 0sx  is taken to be: 

    24 10100105000   mxs . 

Note that there is a backup bearing placed on half 

way between the stator and the rotor. In other words, the 

practical allowable operation range for the rotor is a 

circle with radius of m4105  , which is marked by 

dashed lines in the following figure. Hence, the initial 

condition represents the situation that rotor is initially  

at rest on the backup bearing. The simulation results  

are shown in Fig. 3 and Fig. 4. Figure 3 shows the 

performance of the smooth current controller with the 

proposed rotor estimation scheme. Figures 3 (a) and 3 (b) 

indicate that the rotor can be levitated to the bearing 

center within 0.3 seconds. In Fig. 3 (c), the control 
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currents exhibit periodic oscillation to compensate for 

the sensing currents. Figure 4 shows the response of  

rotor displacement estimation and the estimation error.  

It indicates that both X and Y displacements can be 

estimated with good accuracy. The simulation results 

clearly verify the effectiveness of the proposed method. 
 

 
 (a) 

 
 (b) 

 
 (c) 
 

Fig. 3. Numerical simulations: (a) rotor trajectory with 

smooth current controller; (b) rotor displacements with 

smooth current controller; (c) control currents. 

Table 1: Parameters of the AMB system 

 

 
 (a) 

 
 (b) 

 

Fig. 4. Numerical simulations: (a) estimated rotor 

displacements; (b) estimation error. 

 

V. CONCLUSIONS AND FUTURE WORKS 
A sensorless controller for a three-pole AMB system 

has been proposed in this study. It is based on the smooth 

current controller with additional three-phase sensing 

coil currents to estimate the rotor displacements. 

Numerical simulations verify the effectiveness of the 

proposed method. In the future, the stability of the 

closed-loop system will be analyzed and the experimental 

validation will be performed. 
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X: 0.4908

Y: -2.59e-008

Rotor mass 0.6595kg 

Nominal air gap m31095.0   

Permeability mH /104 7  

Number of coil turns 300 

Number of additional coil turns 20 

Cross sectional area of the air gap 24104 m  

Amplitude of sensing voltage 1V 

Frequency of sensing voltage 100Hz 

Resistance of additional coil turns 0.7056  
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Abstract ─ An algorithm for accounting for inner 

damping in an actively developed computer model of 

dynamics of a flexible rotor on active magnetic bearings 

is presented. The algorithm is illustrated by applying it 

for analyzing the effects of amplitude-independent inner 

damping on rotor dynamics when residual imbalance is 

present. 

 

Index Terms ─ Active magnetic bearing, dynamics 

influenced by inner damping, flexible rotor, inner 

damping. 
 

I. INTRODUCTION 
One of popular applications of suspension systems 

based on active magnetic bearings (AMB) is supporting 

big size and weight flexible rotors of complex design (as 

in [1, 2]). Such multi-ton flexible heterogeneous rotors 

meet the criteria formulated in [3] that define complex 

unique systems. Such rotors comprise dissimilar 

machines: turbines, power generators, compressors, etc. 

Each AMB has its own control system interacting with 

the systems for other bearings via the rotor itself. 

Numerous forces influencing rotor behaviour [4] – such 

as weight, imbalance, gyroscopic, thermomechanical, 

gas-dynamic and electromagnetic effects – excite several 

simultaneous mode shapes in a flexible rotor, a 

combination of which can result in substantially different 

movement patterns for different rotor parts. 

For the studies required both during design and 

operation phases of such systems, a computer model of 

dynamics of a flexible heterogeneous rotor on AMB is 

being actively developed. One of interests of development 

is extending the list of available forces that influence the 

system by adding new, yet unaccounted, forces that have 

considerable effect on the rotor dynamics. 

Paper [5] presents formulas for generalized forces 

which influence dynamics of a flexible rotor on AMB: 

imbalance force, gyroscopic force, gravity, magnetic and 

circulation forces caused by electromagnetic interaction 

in the generator, exciter and motor as well as gas-

dynamic forces in turbines, compressors and labyrinth  

seals of their shafts. 

Inner damping can have substantial effects on rotor 

dynamics [6, 7], especially in transitional modes of 

starting and stopping the rotation when frequency passes 

critical values. This paper aims at designing an algorithm 

for accounting for inner damping in an actively developed 

computer model of dynamics of a flexible rotor on AMB. 

The introduced algorithm is illustrated by computations 

demonstrating the effect of inner damping on dynamics 

of a flexible rotor on AMB when residual imbalance is 

present. 
 

II. DISCRETE MATHEMATICAL MODEL 

OF ROTOR DYNAMICS 
The actively developed computer model of dynamics 

of a flexible rotor on AMB is a discrete mathematical 

model of rotor expressed in a computer code [5]. The 

model includes a mechanical model, a control system 

model and models of forces affecting the behaviour of 

the rotor on AMB. 

The implementation of the aforementioned model is 

oriented on performing the calculations in a parallelized 

way, either using conventional CPU parallelization or 

utilizing the power of GPGPU which is now becoming 

more and more used in such modellings [8, 9]. 

Mechanical model is based on the equations and 

results of studying dynamics of flexible rotors [7]. A  

otor is considered to be a resilient heterogeneous rod. 

Specific characteristics of the dynamics of the rotor on 

AMB are determined by flexural vibrations, which are 

the objective of this paper. 

The model of the rotor is a series of homogeneous 

cylinder parts combined into one mechanical model by 

two types of connections: rigid coupling and flexible 

clutches. Flexural vibrations are described using 

Timoshenko beam model [10]. The solution of the initial 

distributed problem of determining flexural vibrations is 

determined by four functions describing linear and 

angular motions of the rotor as well as inner stresses and 

moments. Transition to a discrete model is based on basis 

functions expansion of the solution. The choice of basis 

functions depends on the problems being solved. The 

presented model proposes to generate the required laws 
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of variation of forces in the AMB control system, 

including those that are linearly dependent on rotor 

displacement [11, 12]. As a result, basis functions for the 

problem are chosen to be orthogonal eigenmodes of the 

oscillations of a rotor on resilient bearings with the 

assigned rigidity at the cross-sections where the AMBs 

were situated. 

To obtain resulting equations of the mechanical 

model of a flexible rotor [13], Lagrange equations are 

used. Equations describing rotor dynamics in a global 

fixed coordinate system in the two orthogonal crosswise 

directions are composed for vectors of generalized 

coordinates Ci. The generalized coordinates are 

eigenmode expansion coefficients. The dimension of Ci 

– n – is the number of generalized coordinates, i.e., the 

number of eigenmodes accounted for when approximating 

the solution. The dynamics equations in matrix form for 

Ci are as follows: 

 ,2,1,
2

2

 iFСm
dt

Сd
m ii

i  (1) 

where m is rotor mass; Ω is a diagonal n×n  matrix, its 

elements being squares of eigenfrequencies of the rotor; 

Fi are vectors of generalized forces (with the dimension 

of n) acting in two orthogonal crosswise directions. Each 

Fi force is the resultant force of all the forces accounted 

for in the model (1) of different natures. 

The control system model [5] accounts for the 

discrete nature of polling displacement sensors, operation 

of current amplifiers with dead space and relay parts,  

a lag in forming of control signal, the nonlinear 

dependence of the AMB forces on the current in the coils 

and a gap between the magnets and the rotor surface. 
 

III. MODEL OF FORCES CAUSED BY 

INNER DAMPING 
Inner damping includes both energy dissipation  

in the material and structural damping in the joints. It 

destabilizes rotor dynamics, so taking inner damping 

into account is essential when constructing a model of 

dynamics. 

Numerous studies [6, 14-16] show that in a wide 

range of frequencies the amount of energy dissipation 

does not depend on the strain rate, but rather on type of 

the stressed state, strain level and on the temperature of 

material. Structural damping in the joints has similar 

properties. Currently there exist numerous theories of 

inner damping that in certain conditions are able to 

account for the main features of the energy dissipation 

process. Those theories use relations between strain and 

stress tensors in the process of oscillations (including 

nonstationary ones). In general, those relations are 

nonlinear and ambiguous (e.g., of a hysteresis type). Most 

theories and models of inner energy dissipation that are 

conformant to experiments are either too complex for 

practical application or aimed at solving the problem 

with special conditions (stable oscillations, single-

frequency oscillation, linear approximations) [14, 16]. 

The presented approach for accounting for inner 

damping is based on two assumptions: a) oscillation 

behaviour mainly depends on the amount of energy 

dissipated during one oscillation cycle (the area of 

hysteresis loop), and detailed characteristic of stress 

caused by deformation (the hysteresis loop shape) do not 

influence behaviour much; b) forces caused by inner 

damping are of small value, so they cannot lead to any 

noticeable interaction of different oscillation processes 

in model (1). 

In the introduced model it is assumed that generalized 

forces caused by inner damping are independent for all 

generalized coordinate components ({qk}, k=1,…,n) of 

vector of generalized coordinates Q that describes 

crosswise displacement of the rotor in the coordinate 

system fixed to the rotor (and rotating with the rotor). For 

each generalized coordinate a phenomenological model 

of friction damping is used (model by Korchinsky, 

model by Leonov and Bezpalko) [15]. Keeping this in 

mind, generalized force caused by inner damping can be 

written as follows: 

 ,,1, nk
dt

dq
signqsr k

kkk 


  (2) 

where rk is a component of generalized damping force R; 

sk is effective mechanic rigidity (as in mechanical model 

(1)) along the generalized axis; , are parameters 

describing the relation of energy dissipation and rotor 

oscillation level. 

If deformations along generalized axis qk are cyclic 

and have amplitude uk, then energy losses ∆W during one 

cycle are described as follows: 

   .,1,1/4 1 nkusW kk      (3) 

Total oscillation energy is 2/2

kk usW  , and, taking 

(3) into account, relative energy dissipation   will be: 

   .,1,1/8/ 1 nkuWW k      (4) 

Considering that logarithmic decrement is coupled 

with the relative energy dissipation: , Equation  

(4) makes it possible to determine parameters  and 

experimentally from the measured logarithmic 

decrements. 

For = 1, it follows from (4) that χ = δ/2, thus (2) 

can be transformed to: 

 .,1,2/ nk
dt

dq
signqsr k

kkk    (5) 

Equation (5) describes components of generalized forces 

caused by inner damping when damping is assumed 

amplitude-independent. 

The dependence of inner damping on the oscillation 

amplitude of a flexible rotor can be taken into account by 

identifying the parameters of inner damping based on 

phenomenological model of friction damping. 
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To describe deformations of a flexible rotor, its 

motion in the coordinate system fixed to the rotor is 

examined. For the vectors of the generalized coordinates 

Qi (i=1,2) characterizing rotor motion in the moving 

coordinates, the following equations hold: 

 
,cossin

;sincos

212

211









CCQ

CCQ  (6) 

where is rotor angle – the angle between axes of fixed 

and moving coordinate systems. 

Forces Ri caused by inner damping in the moving 

coordinates are expressed as follows: 

 ),2,1()(
2

 iQHD
m

R ii
 (7) 

where D is a diagonal matrix of logarithmic decrements 

for eigenmodes; H(X) is a vector function with dimension 

n, with its components hk defined as: 

 nk
dt

dx
signxxh k

kk ,1,)(  , 

where xk are the components of n-dimensional vector X, 

argument of H(X) function. 

When expressed in a fixed coordinate system, 

generalized forces of inner damping Ni produce additions 

to the right-hand member of original Equations (1): 

 
.cossin

,sincos

212

211





RRN

RRN




 (8) 

Thus, accounting for inner energy dissipation and 

structural damping during rotor deformation could be 

reduced to adding generalized forces (8) to mathematical 

model of rotor dynamics (1). Implementation of the 

algorithm (1) could be summarized as following - at each 

integration step we sequentially execute 3 procedures: 

1) Using known vectors of generalized coordinates 

and speeds in the fixed coordinate system, rotor 

angle and Equation (6) compute respective vectors 

in the coordinate system attached to the rotor. 

2) Using forces Equation (7) compute vectors of 

generalized forces caused by inner damping in the 

coordinate system attached to the rotor. 

3) Basing on (8) compute respective generalized 

forces’ vectors in the fixed coordinate system. 

 

IV. A CASE STUDY OF EFFECTS OF INNER 

DAMPING ON DYNAMICS OF A FLEXIBLE 

ROTOR  
As a case study proposed algorithm was applied to 

a flexible vertical rotor of the generator part of the RSM 

(Rotor Scale Model) test bench [17] consisting of two 

radial AMBs with the length of 5.4 m and the mass  

of 640 kg. Default control law is a “linear” one that 

specifies AMB force to be linearly proportional to the 

displacements and speeds of the rotor [11]. The lowest 

eigenfrequencies of oscillations of rotor on AMB are 

7.5 Hz, 8.2 Hz, 15.8 Hz, 39.3 Hz and 77.5 Hz. 

The first two frequencies mostly correspond to rotor  

oscillations as a rigid body; the others correspond mostly 

to flexural oscillations. 

The effect of inner damping on rotor dynamics was 

studied for the case of residual imbalance. Inner damping 

is characterized with logarithmic decrement . Figure 1 

depicts rotor displacements in the section of the upper 

AMB as a function of the rotation frequency in the 

acceleration mode with a constant angular acceleration 

of 0.1 Hz/sec for =0.05 and =0.10. Here and below the 

black curves correspond to logarithmic decrement =0.05 

and the gray ones correspond to =0.10. 
 

 
 

Fig. 1. Rotor displacement as a function of rotation 

frequency. 

 

Figures 2-4 present rotor oscillations for the rotation 

frequencies of 10 Hz, 22 Hz and 25 Hz. For subcritical 

frequencies (under 15 Hz), rotor displacement for a 

given imbalance is almost constant and is determined by 

dead space in the current amplifiers of the AMB control 

system. In the presence of resonance and in the 

supercritical frequency region the displacement grows 

when internal damping increases. The main factor 

causing the growth is the increase of the amplitude of the 

first flexural eigenmode with the rotation frequency.  

Figure 5 depicts oscillation spectrum for the rotation 

frequency of 23 Hz. The value of the peak corresponding 

to this frequency in the oscillation spectrum as a function 

of rotation frequency is shown in Fig. 6. 

Rotor oscillations at the frequency of first flexural 

eigenmode are constantly present because of random 

perturbations generated in AMB control system which 

includes relay parts. When inner damping increases, a 

sharp increase of the oscillation amplitude is observed at 

supercritical rotation frequencies, which effectively 

describes the destabilization effect of inner damping. 

Such effects are in good agreement with known theoretical 

and experimental results for rotors on conventional slider 

bearings: the higher inner damping is, the higher is the 

hazard of exciting flexural oscillations of the rotor [6, 7]. 
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Fig. 2. Rotor oscillations for the rotation frequency of  

10 Hz. 
 

 
 

Fig. 3. Rotor oscillations for the rotation frequency of 

22 Hz. 
 

 
 

Fig. 4. Rotor oscillations for the rotation frequency of 

25 Hz. 

 
 

Fig. 5. Rotor oscillation spectrum at the rotation frequency 

of 23 Hz. 

 

 
 

Fig. 6. The peak in the oscillation spectrum caused by 

the frequency of first flexural eigenmode as a function of 

rotation frequency. 

 

V. CONCLUSION 
An algorithm for accounting for inner damping in an 

actively developed computer model of dynamics of a 

flexible rotor on AMB is presented. The model is a 

computer program of a discrete mathematical model of 

the rotor. The application of the algorithm is illustrated 

by analyzing the effect of amplitude-independent inner 

damping on dynamics of a flexible rotor in presence of 

residual imbalance. The results of modelling agree with 

known data for rotors on conventional slider bearings  

the higher inner damping is, the higher is the hazard of 

excitation of flexural rotor oscillations at supercritical 

rotation frequencies. The software implementation of the 

algorithm allows for sufficiently accurate account for 

inner damping effect in the computer model of dynamics 

of a flexible rotor on AMB. It also almost does not 

increase computation time which is very important for 

conducting multi-variant numerical experiments which 

are essential for design and operation of such complex 

rotor-based systems. 
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Abstract ─ In this article, the vertical and horizontal 

forces of interaction of permanent magnets in a magnetic 

support system (magnetic suspension, MS) are 

considered. Permanent magnets have a stepped structure 

and uniform magnetization M  throughout their entire 

volume ( M  const ). The magnetic support system 

contains multi-row magnetic strips. The results of the 

comparison of the vertical and lateral forces for the classic 

horizontal magnetic system (HMS) are presented too. A 

stability factor index, the ratio of vertical to lateral force 

of interaction Z Yf f  , and an effectiveness factor 

( )eff Zf mg   are defined (where mg is the weight of 

the magnets per unit length). A prototype of the proposed 

magnetic support system was built, and measurements 

were performed. Analysis of the obtained data indicates 

that the investigated magnetic suspension system performs 

better than the classical horizontal MS system. 

 

Index Terms ─ Permanent magnets, stability, stepped 

suspension, suspension effectiveness factor, vertical and 

horizontal forces. 

 

I. INTRODUCTION 
In this work the vertical and the horizontal forces of 

interaction in a horizontal magnetic support (HMS) 

system (also referred to as magnetic levitation or 

suspension, MLS) are analyzed. The system contains 

multi-row magnetic strips (permanent magnets) and has 

a stepped structure as well as a classical structure. 

The magnets have a rectangular cross-section and  

a sufficiently high stability of the magnetization M  

throughout their entire volume ( M  const ). The 

magnetization vector is directed vertically, along both 

the positive and negative directions of the z-axis. 

 

II. MAGNETIC SUSPENSION (SUPPORT) 

SCHEMES 
Schematic diagrams of the analyzed systems are 

represented in Figs. 1 to 3 (cross-section of magnetic 

systems). The length is in the normal direction. 

 
 

Fig. 1. Classical scheme of MLS. 
 

 
 

Fig. 2. Scheme with vertical displacement (stepped 

structure). 
 

 
 

Fig. 3. Combined scheme, classical and stepped structure. 
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In all of the depicted schemes, the cross-sectional 

dimensions of the magnets are much smaller than their 

lengths (in the normal direction). That is, a<<l and h<<l. 

In the system depicted in Fig. 4, the magnets 1а and 1b 

in the suspended section A are fixed on a the non-

ferromagnetic base 2. Magnets 4а and 4b of the stationary 

section B are also fixed on the non-ferromagnetic base 3, 

like the magnets 1a and 1b. The basic working gap is 

referred to as  . 

The distance between adjacent magnetic strips is 

equal to c. In the figure, arrows are used to indicate  

the direction of the magnetization M  of the permanent 

magnets 1 and 4. 

 

 
 

Fig. 4. The symmetrical scheme of magnetic support. 

 

As is evident from the figure, the magnetic strips 1a 

and 1b (or 4a and 4b) are moved in the vertical direction 

to 
1h . The expected effectiveness of the suspension 

system is based on the special features of the cross-

interaction of magnets 1b and 4a (left and right pairs). 

In other words, the effectiveness of the system can 

be explained by the distribution of the magnetic flux 

created by these magnets. Thus, the positive effect of the 

magnetic bearings (suspension) is achieved through the 

use of leakage flux. 

The magnetic system shown in Fig. 3 differs from 

the system depicted in Fig. 2, in that each of the magnetic 

strips shown in Fig. 2 has been replaced by two strips 

with alternating polarities. In the plane YOX, the support 

system can take the form shown in Fig. 5. 

 

III. INTERACTION ANALYSIS FOR 

STEPPED SYSTEM 
Under certain conditions (a<<l), the description of 

the interaction of the magnetic systems, represented with 

adequate accuracy in Fig. 5.1, is also valid for the case 

depicted in Fig. 5.2. Therefore, the interaction analysis 

of the magnetic systems depicted in Fig. 1 can be carried 

out only for the linear system (Fig. 5.1). 

The forces of vertical and horizontal interaction in 

the magnetic systems can be determined using the 

expression for the potential energy of a permanent 

magnet that is located in an external magnetic field: 

 0p

V

E M H dV   , (1) 

In (1) 







 

m

H7

0 104 , M  is the magnetization 

vector (e.g., the magnet 1a or 1b) and ( , )H y z  is the 

vector of magnetic field intensity (of the external magnetic 

field), created, for example, by the magnet 4a or 4b. 

Integration is performed on the volumes of the magnets 

which possesses the magnetization M . 

Expressions for the interaction forces of permanent 

magnets can be obtained using the equation 
pF E  . 

For the vertical and horizontal components of the force, 

this formula gives us: 

 ,
p p

z y

E E
F z F y

z y

 
   

 
, (2) 

where y  and z  are the unit vectors of axes y and z 

respectively. 

 

 
 

Fig. 5. Details of the stepped magnetic suspension. 5.1: 

Linear support. 5.2: Locked (circular) support. 5.3: Cross 

section. 1a and 1b – moving magnets of the support 

system, 4a and 4b – stationary magnets. 
 

The efficiency 
eff  of the support schemes shown  

in Figs. 1 to 3, can be estimated using the following 

expression: 

 ( )eff Zf mg  , (3) 

in which  zf N m  is the vertical interaction force for 

the unit length of the system that includes magnets 1 and 

4 and mg is the weight per unit length of magnets 1a and  

1b (or magnets 4a and 4b). 

To find the interaction force of magnetic systems, 

we must first determine the magnetic field intensity 
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( , )H y z  in those systems. Each magnet in Fig. 4 (e.g., 

1a or 4a) has a rectangular cross-section and can be 

represented by two faces (strips), each with a uniformly 

distributed fictitious magnetic charge with a surface 

density 
0 M     [1].  

The calculation schemes for the determination of 

( , )H y z  referred to Figs. 1 to 3 are shown in Fig. 6. 
 

 
 (a) 

 
 (b) 

 
 (c) 

 

Fig. 6. Calculation schemes corresponding to Figs. 1 to 

3. 

 

In accordance with [1, 2] and as shown in Fig. 7, 

based on the concept of the fictitious magnetic charge, 

the two-dimensional potential of the magnetic field 

produced by the “face-charge” at any point, can be 

expressed as:  

 
2 2

0 0

( , ) ln ( )
4

a

y z z y u du



 

        . (4) 

The components of the intensity of the magnetic 

field are determined by the following expressions: 

 
( , ) ( , )

( , ) ; ( , )z y

y z y z
H y z H y z

z y

  
   

 
. (5) 

By substituting (4) into (5), we obtain the expressions 

for the intensity of the magnetic field at the point  ,P y z : 

  
0

,
2

z

y y a
H y z arctg arctg

z z



 

 
  

 
, (6) 

      22 2 2

0

, ln ln
2

yH y z y z a y z


 
     
 

. (7) 

The vertical component of the force interaction of 

two charged surfaces with charge densities 
1 2     

can be determined using (1) and (2): 

 ( , )

t a

z z

t

F H y z dy


  . (8) 

Now, using (6) after a series of transformations, the 

vertical force per unit length of magnetic systems can be 

written for the scheme in Fig. 6 (a), as: 

 

1 2 (0, ) 4 (0, ) 2 (0, 2 )

2 ( , ) 2 ( , 2 )

4 ( , ), ( / ),

z z z z

z z

z

f f f h f h

f a c f a c h

f a c h N m

  

 



     

     

  

 (9) 

For the scheme in Fig. 6 (b), we can write, 

 

2

1 1

1 1

1 1

2 (0, ) 4 (0, ) 2 (0, 2 )

( , ) 2 ( , )

( , 2 ) ( , )

2 ( , ) ( , 2 ),

z z z z

z z

z z

z z

f f f h f h

f a c h f a c h h

f a c h h f a c h

f a c h h f a c h h

  

 

 

 

     

      

       

      

 (10) 

where the expression for ( , )zf y z  has the following form 

[2]: 

 

2

0

2 2 2

2 2 2 2

( , ) (( )
2

( ) 2

( )
ln ).

2 ( ( ) ) ( ( ) )

z

M y a
f y z y a arctg

z

y a y
y a arctg y arctg

z a

z z y

z y a z y a






   


    




    

 (11) 

Finally the expression of 
3zf  can be similarly derived 

by properly considering the interactions between the 

charged surfaces reported in Fig. 6 (c). 

Referring to Figs. 1 to 3, the following values of the 

parameters have been selected for the evaluation of 1zf  

and 2zf : 0.02 ,a m  0.015h m , 1 0.01 0.02h m    

( 1 0.002h m  ), 0.005 0.02m    ( 0.0025m  ), 

0 0.01c m   ( 0.0025c m  ), 1 0 ;c m  and 

1 0.005c m . 

Some of the results of these calculations are 

presented in the Table 1 below, in which 
1zf  is the 
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vertical force of interaction (with 
1 0h  , ref. to Fig. 1, 

i.e., the configuration without the step). 

 

 
 

Fig. 7. The calculation scheme for a charged surface of a 

magnet. 

 

Table 1: Results of the calculations for 7.5mm   

mg

f z
eff

1
1   

1 [ ]h mm  
1

2

z

z

f

f
 

mg

f z
eff

2
2   

10.4 1.0 1.49 15.4 

10.4 1.2 1.53 16.0 

10.4 1.4 1.54 16.0 

10.4 1.6 1.50 15.5 

10.4 1.8 1.41 14.6 

10.4 2.0 1.24 12.8 

 

A graph of the dependence ( )zf   for two cases 

(with the step (
2zf ) and without the step (

1zf )) is 

presented in Fig. 8. 

 

 
 

Fig. 8. Graph of the dependence ( )zf  . 

 

IV. SIDE FORCES ANALYSIS 
In the case of two magnetic strips which are offset 

relative to each other in the horizontal direction by the 

distance y , as shown in Fig. 9, expression (1) becomes: 

 0

0

y ab h

p z

y

E M dx dy H dz







 

    . (12) 

In the case of the interaction of n  magnetic strips, 

the potential energy of the system is determined by 

summing the energies ij  of each ith fixed magnet (4a 

or 4b, Fig. 4, 
1 0h  ) with each jth magnet (1a, 1b) of the 

moving part of the system, i.e., 

 



n

j

ij

n

i

pE
11

0
. (13) 

The dependence of side destabilizing forces (acting 

on a unit length of a magnetic strip) on the value of 

lateral displacement takes the form: 

 
1 1

1
( )

n n

y ij

i j

f
l n y  


   

 
  , (14) 

where n is the number of magnetic strips on the mobile 

(or stationary) portion of the magnetic bearing, and l is 

the length of the magnetic strip. 

Expression (14), which takes into account formulas 

(6), (7) and (13) for interacting bands (Fig. 5) with two 

pairs of lateral displacement y , allows to record a 

destabilizing force in the form of: 

 

2

0

2 2

(
2

1 1
)

2 2

h
y y a

y z y y

h h
y y a c y y a c

z zy a c y y y

M
f H dz

H dz H dz





 

 





 



 
     

   

  





 

. (15) 

 

 
 
Fig. 9. The classical magnetic support scheme with 

lateral displacement. 

 

Table 2 shows the results of calculations of the 

lateral force yf , dependent on the distance c between the 

strips, with 1l m , 7.5mm  , 60a mm , 50h mm  

and 1 0h mm , that is, the vertical offset (step) is absent. 

The same table shows the ratio of the vertical and lateral 

forces, ( z yf f  ), defined as a measure of system 

stability (this index can essentially be defined as a 

destabilizing factor; the greater the value, the less 

resistant the support system is to tipping or sliding). 
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Table 3 shows the results of calculating the lateral 

force, dependent on the side displacement, at 1l m , 

7.5mm  , 60a mm , 50h mm .  

Table 4 shows the calculation of yf  for two and three 

strips with 1l m , 7.5mm  , 60a mm , 50h mm . 

 

Table 2: Dependence of the side force on the distance 

between the strips: 1y mm , 3n  , and 
1 0h   

 c mm   yf N m  z yf f   

  19.3 

  20.0 

  22.5 

 
Table 3: Dependence of lateral forces on the magnitude 

of side displacement y : 3n  , 10c mm  

 y mm   yf N m  1y y mmf f   

  1 

  2 

  3 

  3.9 

 
Table 4: Relationship of side force with number n of 

strips 

n  y mm   yf N m  

  41.0 

  44.0 

  81.0 

  88.0 

 
Figure 10 is a plot of the clearance   at the lateral 

displacement y , when 64a mm , 56h mm  and 

10c mm . 

 

 
 
Fig. 10. Loci of the vertical force in the lateral 

displacement - clearance ( y -  ) plane. 

 

V. CONCLUSION 
The vertical and horizontal forces of interaction 

between permanent magnets in a magnetic support system 

(magnetic suspension, MS) have been investigated.  

The main results of the investigations are here briefly 

summarized. 

1. The analysis of the obtained data for the stepped 

MS indicates that the investigated magnetic suspension 

system (Fig. 2 and Fig. 3) outperforms the classic 

horizontal system (Fig. 1). 

2. The ratio z yf f   increases with increasing 

width a, indicating a reduction of the instability of the 

support system in the horizontal plane (Fig. 9). 

3. The stability factor   grows more slowly than  

the width a of the magnetic strip. Doubling y  causes 

z yf f   to double. The nonlinearity of the relationship 

 yf y  becomes apparent when 0.5.y a   For smaller 

values of y , the lateral force between the magnets can 

be approximated by  yf y ky . 

4. Increasing the number of rows of magnets leads 

to an increase of the lateral force yf , as was the case for 

the vertical force 
zf . 
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Abstract ─ In this paper we present a new Permanent 

Magnets (PMs) bearing, which is composed of a rotor 

capable to levitate at a short distance from a dedicated 

stator. Proper configurations of PMs arranged on both 

the stator and the rotor allows having the magnetic 

suspension. Intrinsic mechanical instability characterizes 

the device; a passive stabilization is attempted exploiting 

eddy currents on a conducting sheet that surrounds the 

magnets on the stator. The system has been simulated  

by means of a dedicated numerical code that takes into 

account the effects of magneto-mechanical coupling. 

The coupled problem has been integrated by means of a 

prediction-correction nested scheme. Some interesting 

results, extensively discussed here, has been produced  

by simulation activity. In particular the stability of to the 

center of mass with respect to the translations has been 

passively obtained, if the rotations are actively prevented. 

 

Index Terms ─ Computational electromagnetic, coupled 

analysis, magnetic bearings, magnetic levitation, 

permanent magnets. 
 

I. INTRODUCTION 
In the late 1960s, the modern development of 

Magnetic Levitation systems (known as MAGLEV) 

started when the possibility to use magnetic forces to 

levitate vehicles became sustainable, mainly due to  

some discoveries of that time: development of low-

temperature superconducting wire, transistor and chip 

based electronic control technology [1], [2]. MAGLEV 

provides high-speed motion, safety, reliability, low 

environmental impact and minimum maintenance [3]. 

There are two basic options to obtain magnetic levitation: 

a) electromagnetic system [4]-[6] working in attraction 

mode with forces generated by electromagnets; b) 

electrodynamic system [7], [8] working in repulsive mode 

with forces generated by superconductive coils. An 

application example is flywheel energy storage systems, 

which are considered to be an attractive alternative to 

conventional electrochemical batteries [9], [10]. Unstable 

behavior is the main feature of both solutions. The first 

option is unstable in the levitating direction which is 

vertical, in general. The attractive force increases when 

the two parts of the system approach each other. The 

second option, i.e., the electrodynamic system is unstable 

in the transverse-to-levitation and in the motion directions. 

Nowadays a new class of MAGLEV systems can be 

conceived via the use of Rare Earth PMs (e.g., NdFeB) 

characterized by high values of remnant field. The 

suspension is then assured by the repulsion of properly 

shaped PMs [11], [12]. Stability of levitation systems 

based on PMs is prevented by Earnshaw’s theorem  

[13]. This theorem states that a set of steady charges, 

magnetizations or currents cannot stay in stable 

equilibrium under the action of steady electric and 

magnetic field. As applications of MAGLEV or magnetic 

bearing devices must be fail-safe, severe constraints are 

posed on the design and operation of the stabilization 

systems. So a great effort is devoted to the design of 

passive and more reliable stabilization devices. In some 

cases, electric and magnetic systems can avoid the 

consequences of the Earnshaw’s theorem: time varying 

fields (e.g., eddy currents, alternating gradient), 

ferrofluids, superconductors and diamagnetic systems. 

In this paper, the use of eddy current stabilization to 

reduce or compensate the intrinsic instability of the 

bearing is investigated: if some magnetized parts of a 

system are in motion near conductive materials, eddy 

currents are induced and the system is not under the 

action of steady magnetic fields. Since the system is now 

governed by the diffusion equation, the hypothesis of the 

Earnshaw’s theorem (direct consequence of the Laplace 

equation) is not valid. Some preliminary results of the 

coupled electromechanical analysis of a PMs bearing are 

discussed in this paper, demonstrating how the presence 

of motional induced eddy currents have a positive effect 

on the dynamic of the bearing device. This electrodynamic 

effect allows to reduce the complexity of the control 
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system. Section 2 introduces the proposed device, 

Section 3 briefly describes the numerical code used for 

the analysis of the device, while Section 4 discusses the 

results. 

 

II. PROPOSED DEVICE 
The proposed system is shown in Figs. 1 and 2: it 

exploits the induced eddy currents to contrast the 

instability related to the PMs arrangement. 

It is mainly composed of a toroidal stator and a 

segmented rotor made of at least three blocks equally 

spaced along the circumference. The rotor can move 

with 6 degrees of freedom (DOF) with respect to the 

fixed stator. The PMs in both the stator and the rotor are 

arranged in Halbach array configurations [14] focusing 

the field lines in the airgap between them. A sheet of 

conductive material surrounds the stator (black in Fig. 

2). Levitation along z-direction is achieved by the 

repulsion of PMs with opposite magnetization. To 

describe the dynamics of the proposed device we assume 

that the moving part rotates around a vertical shaft, 

directed as the z-axis that is the symmetry axis of the 

stator. Motion-induced eddy currents flow on the stator 

sheet; subsequently a levitation force on the z-axis in 

addition with the levitation force of the PMs and a 

magnetic drag torque are observed. Those currents 

interact with the PMs of the rotor reducing the cause 

which produces the eddy currents themselves. This 

reduction is produced by a drag force on the rotor which 

produces a velocity reduction, and by moving away the 

field source (the PMs on the rotor) from the conductive 

region. 

Since the levitation force is a decreasing function  

of the distance, the system is stable in the levitation 

direction. When the system rotates in the symmetric 

configuration, the radial forces are deleted. A net force 

in the radial direction is expected to appear if the system 

does not run in symmetrical conditions (e.g., a radial 

displacement of the rotation shaft occurs). This force is 

the resultant of the forces between the two PMs systems 

and of the interactions between the motion-induced eddy 

currents on the stator and the PMs on the rotor. 

Earnshaw’s theorem states that the forces between the 

PMs are destabilizing. If we consider a displacement of 

the rotor in the x-axis (Fig. 2), currents induced on the 

conductive sheet are stronger on the side of the 

displacement, while they get weaker on the opposite side 

where the distance is greater. The net resulting force is 

then directed along the negative x-axis direction and it 

performs a stabilizing action. This stabilizing effect occurs 

in principle also in the case of angular displacement of 

the rotation shaft with respect to the vertical (y-axis) 

direction. As a result of this angular displacement, since 

the rotor is divided in three sectors (or more), some of 

these sectors are closer to the stator, while others are 

more distant. The induced currents on the part of the 

stator corresponding to the nearest rotor sectors are more 

intense and the resulting forces exerted on the rotor PMs 

are stronger. On the contrary, the forces on the more 

distant rotor sectors are weaker. The final effect is a 

torque restoring the vertical position of the rotation shaft. 
 

 
 

Fig. 1. A 3D view of the analysed device. 
 

 
 

Fig. 2. Cross section of the bearing. 

 

III. THE NUMERICAL FORMULATION 
The performances of this device have been 

investigated by a numerical model. The equations 

describing the rotor dynamics with six DOFs are 

inherently nonlinear because of the dependence of the 

force on the position of the rotor itself. Moreover the 

problem of rigid body dynamics is coupled with the 

diffusion equation of the magnetic field. The solution of 

the electromagnetic problem has been carried out by an 

integral formulation that reduces the diffusion equation 

to an equivalent network with time varying parameters. 

The values of the parameters in the electrical equations 

are function of the position of the rotor. The details of 

the adopted formulation are reported in [15] - [23]. 

Under the hypothesis of linear magnetisable 

materials, the equations of the problem produced by  
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the equivalent network formulation coupled with the 

Newton-Euler equations of motion can be written as: 

 

            

  

  

,

,

d
t t t t t

dt

t m

t    

   
 



  

i
L R K i e

F q

M I I

C C C C

C

C

 (1) 

where e(t) represents the vector of the applied voltage 

generators and i is the vector of the currents in  

the elementary volumes, including the equivalent 

magnetization currents. All the coefficients matrices are 

function of C(t) which represents the system configuration 

at the instant t. C(t) is defined as the set of the positions 

and orientations of all the elementary volumes in which 

the device is discretized: 

               , , , , , ,t t t t t t tC x y z     (2) 

L(C(t)) denotes the inductance matrix; R(C(t)) is the 

resistance matrix and K(C(t), Ċ(t)) takes into account  

the electromotive force due to the motional effects. In 

particular Ċ(t), termed as the derivatives of the system 

configuration at the instant t, describes the velocity of 

every elementary volume in the hypothesis of rigid body. 

The Ċi(t) corresponding to the i-th elementary volume is 

constituted by the three components of the translation 

velocity, the three components of the angular velocity, 

and the three coordinates of the center of rotation. 

Equation (1) is solved by a prediction correction 

nested scheme. The rationale behind it is the search for 

an approximation inside the time step of the behaviour 

of the coefficients in electrical and mechanical equations. 

The predictor-corrector approach is used to obtain an 

approximate behavior of the named quantities by a linear 

interpolation between the known values at the previous 

time step and the predicted values at the next time step. 

Inserting this knowledge in the equations has the effect 

of considering updated values of the coefficients, allowing 

a coupling between the equations which is stronger than 

the one in a simply staggered scheme and comparable 

with a monolithic approach. 

The integration algorithm can be described as follows 

(∆t = tn+1 − tn): 

• assuming C(t) constant in the interval ∆t an estimate 

of the currents at tn is obtained by a trapezoidal rule 

applied on (1a); 

• an estimate of C(tn+1) = Cn+1 is obtained by applying 

forward Euler integration to (1b) and (1c); 

• a piecewise linear approximation is assumed for L 

in ∆t, similarly for R and K: 

  
     1

,
n n

n

t t
t

t

 



L L
L

C C
 (3) 

and as a consequence, 

           ,n n n n n nt t t t t t t      L L L L L  (4) 

similarly for the other coefficients. 

• The expressions are introduced in (1a): 
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

 (5) 

• Integrating with a trapezoidal-like rule we obtain the 

corrected values of the currents at the instant tn+1. 

We write: 
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• and after the numerical integration: 
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 (7) 

• Collecting terms finally gives a linear system where 

the unknowns are the corrected currents at the instant 

tn+1: 
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 (8) 

• Once (8) is solved, force and torque are evaluated 

again with the corrected values of the currents i(tn+1) 

just obtained. The integration of the mechanical 

equations yields the corrected position of the moving 

body. 

The integration method has been validated and the 

results exhibit a very good accuracy respect to the 

experimental data found in literature. 
 

IV. SIMULATION RESULTS 
We considered a device with an average toroid 

radius of 8 cm. We performed a set of simulations 

driving the rotor at different rotational speeds. At low 

speeds (less than 3000 rpm), we observed a small 

stabilizing effect; at speed greater than 4000 rpm the 

magnetic drag force reduces and the stabilizing effect is 

appreciable. Results correspondent to a speed of 4800 

rpm are reported here. 

Referring to Fig. 2 (which is not in scale), the red 

and cyan radial magnetized sectors have an angle of 

67.50°, the green and yellow ones have an angle of 45°, 

while the brown and blue azimuth magnetized sectors 

have an angle of 33.75°. The radial width is 0.5 cm for 

the red and yellow sectors, 1 cm for the green and cyan 

ones, and 0.3 cm for the brown and blue ones. The 

thickness of the conductive (aluminum) sheet is 2 mm 

and its average radius is 2.2 cm; the clearance between 

rotor and stator is 7 mm. 
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The numerical formulation described in Section 3 

has been used to perform the analysis of the described 

device operating under different conditions. 

We started considering the device without the 

conductive sheet and having an initial position 

characterized by the rotation shaft x-displacement of  

1.5 mm with respect to the symmetry axis.  

The results of simulation are shown in Figs. 3 and 4. 

The levitation force is 450 N. As expected the system  

is unstable with respect to the radial direction and with 

respect the rotation around the x and the y axes. The 

contact between the rotor and the stator happens after 

about 3 ms. 

 

 
 

Fig. 3. Velocity of the center of mass of the rotor. 

 

 
 

Fig. 4. Components of the angular velocity. 

 

Figures 5 and 6 refer to the configuration with the 

conductive sheet. The levitation force is raised to 470 N 

because of the effect of the eddy current. Even in this 

case the rotor touches the stator because of the unstable  

behavior of the system. Comparing the behavior described 

by Figs. 5 and 6 (presence of the conductive sheet) with 

the one in Figs. 3 and 4 (absence of conductive sheet), 

we can see that the eddy currents on the conductive sheet 

are able to slower the unstable dynamics; the rotor takes 

a longer time (about 17 ms) to touch the stator. Although 

the eddy currents are not able to stabilize the device, they 

can be used to reduce the complexity of the control 

system. In fact, a lower dynamic requires a slower control 

action, easier to be designed. 

Further simulations have been performed on the 

device with a reduced number of DOFs preventing 

rotations with respect to x and y axes. 

Figure 7 shows the waveforms of the three 

components of the velocity of the center of mass of  

the rotor, while Fig. 8 shows waveforms of the force 

components; the simulations correspond to the same 

initial lateral displacement dx = 1.5 mm. 
 

 
 

Fig. 5. Velocity of the center of mass of the rotor. 

 

 
 

Fig. 6. Components of the angular velocity. 
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Fig. 7. Velocity of the center of mass of the rotor with 3 

DOFs. 

 

 
 

Fig. 8. Force of the center of mass of the rotor with 3 

DOFs. 

 

The results of the simulations show that the dynamic 

of the system is stable. This is actually a good result if 

we think that in this kind of devices, stability has to be 

discussed in the contest of dynamics. This means that the 

robustness requirements previously mentioned, involve 

concepts of dynamic stability in presence of modeling 

error due to uncertainties (modern nonlinear dynamics). 

This theory, usually, not only requires the knowledge  

of how the forces and torques change with the position 

and orientation but also of how they changes with both 

linear and angular velocities. The control systems are 

consequently usually really complex: this result is then 

really interesting because it permits a simpler synthesis 

of the active controller and so reducing the cost. Another 

similar simulation has been done applying a lateral force 

of 10 N to the rotor. The results are shown in Figs. 9 and 

10; the system is able to compensate the lateral force as 

well as for the lateral displacement. 

 

 
 

Fig. 9. Velocity of the center of mass of the rotor with 3 

DOFs. 
 

 
 

Fig. 10. Force of the center of mass of the rotor with 3 

DOFs. 
 

V. CONCLUSIONS 
An exhaustive simulation activity has been 

performed on a PMs bearing based on Halbach array 

configurations. The conductive sheet is not sufficient  

to stabilize to system, but it makes slower the unstable 

dynamics, actually simplifying the control systems 

action. Since the actuators basically consist of coils, a 

slower dynamics will need slower control actions, and 

then smaller voltages. The main result of our analysis 

relies in the intrinsic stability with respect to the mass 

center translation, once the rotations with respect x and 

y axes are prevented. This means that a stabilization 

system is needed only to maintain the direction of the 

rotation axis parallel to the z-axis, while the system is 

able to self-stabilize the position of the rotation axis. 
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Equivalently, if the stabilizing action results in a net 

force beside the needed torque, the system is able to 

compensate this force by adjusting its position.  
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